Les oiseaux en questions
<table>
<thead>
<tr>
<th>Section</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteurs du dossier</td>
<td>Jacques Ayer, Alice Cibois, Pascal Moeschler, Daniel Thurre, Laurent Vallotton</td>
</tr>
<tr>
<td>Mise en page</td>
<td>Corinne Charvet</td>
</tr>
<tr>
<td>Maquette et montage photo de couverture</td>
<td>Florence Marteau</td>
</tr>
<tr>
<td>Iconographie</td>
<td>Corinne Charvet (CC), Javier Fortea (JF), Florence Marteau (FM), Gilles Roth (GR), Daniel Thurre (DT), Laurent Vallotton (LV), Philippe Wagneur (PW)</td>
</tr>
<tr>
<td>Commissaires d'exposition</td>
<td>Jacques Ayer, Alice Cibois, Pascal Moeschler, Laurent Vallotton</td>
</tr>
<tr>
<td>Impression</td>
<td>Centrale Municipale d’Achat et d’Impression de la Ville de Genève (CMAI)</td>
</tr>
</tbody>
</table>
Les oiseaux en questions

Dossier pédagogique destiné aux enseignants de 4P à 8P Harmos (7-11 ans)

Combien d’espèces d’oiseaux dans le monde ?

Quel oiseau ...

... a un bec aussi long que son corps ?

... ne se pose presque jamais ?

... a des plumes toxiques ?

... mange 2 kg en 1 repas ?

Illustrations JF
Table des matières

Pour organiser votre visite au Muséum ...4
L’exposition Oiseaux ...5
Introduction ..6
Des hommes et des oiseaux ...8
 Le rêve d’Icare ..8
 Tombés du net ...9
 Merci les oiseaux ...10
 Blanche corneille et noire colombe12
 Nourrir, observer et écouter les oiseaux13
La science des oiseaux ...18
 Les œufs ..20
 Sans chair et en os ...22
 Poids plume ..26
 Retour aux nids ...32
 Mélodies en sous-bois ...34
 Ces chers disparus ..38
Les oiseaux en questions ..42
 Vous avez dit « records » ? ...42
 Quizz dans l’exposition ..43
Pour en savoir plus ...45
Pour organiser votre visite au Muséum...

A. Pour les écoles

Ateliers de médiation gratuits, sur inscription en début d'année scolaire.

B. Pour tous les publics

Une visite guidée de l'exposition temporaire présentée par les commissaires peut être organisée sur demande, toute l'année, du mardi au vendredi.

Visite payante, dès 8 ans.

1 Téléphoner au +41 (0)22 418 63 44 pour fixer un rendez-vous, ou envoyer un courriel à : visites.mhn@ville-ge.ch

2 Après réservation, une confirmation écrite est envoyée.

3 A l’arrivée au Muséum, s’annoncer à l’accueil et s’acquitter du montant de la visite, en espèces uniquement.

Les euros (billets exclusivement) sont acceptés et la monnaie est rendue en francs suisses, au taux de change en vigueur au Muséum, le jour de la visite.

A l’issue de la visite, votre reçu peut être retiré à l’accueil.

Tarifs

Dès 16 ans

CHF 95.- par groupe (min. 10 pers. - max. 20-25 pers.), pour une visite d’une heure

Jusqu’à 15 ans

CHF 60.- par groupe (min. 10 pers. - max. 20-25 pers.), pour une visite d’une heure

Précisions utiles

Accès par car

Le Muséum dispose de quelques places de parking pour les cars.

Pour la procédure d’accès, nous vous prions de vous annoncer dès votre arrivée auprès de l’huissier à l’accueil – Tél. +41 (0)22 418 64 00.

Accès par train

Arrivée gare CFF de Cornavin bus 8
Arrivée gare SNCF Chêne-Bourg : tramway 12 (arrêt Villereuse)

Accès par la route

Parking Villereuse
L’exposition Oiseaux

Du 21 septembre 2013 au 21 septembre 2014
Une exposition inédite sur quatre étages

Quatre regards croisés sur des animaux à redécouvrir.
Du rêve d’Icare au vol de l’albatros,
l’exposition offre un menu à déguster sans préjugés.

3e – La sciences des oiseaux : morceaux choisis

2e – Tous pour les oiseaux, les oiseaux pour tous

1e – Blanche corneille, noire colombe

Rez – Tombés du net – Merci les oiseaux !
Les oiseaux sont un magnifique et vaste sujet d'étude. Ces animaux que nous croisons au quotidien suscitent l'admiration, la curiosité, le questionnement, la crainte parfois. On peut les observer, les dessiner, les compter, s'interroger sur les techniques de vol, les migrations, les divers régimes alimentaires, les parades amoureuses, les chants... Les approches sont multiples. Au-delà des espèces elles-mêmes, de leur identification, c'est très vite l'ouverture vers d'autres thèmes: la notion de chaîne alimentaire, l'évolution des milieux naturels, l'adaptation en milieux extrêmes ou urbains, etc.

Il existe une multitude d'ouvrages et de dossiers pédagogiques sur ce groupe d'animaux, raison pour laquelle nous avons choisi une approche qui se veut originale, tout en collant à l'exposition, d'où peut-être un sentiment de «patchwork»: le contenu de l'exposition est riche et fort diversifié et ne se limite pas aux sciences naturelles. Vous en trouverez un reflet dans ce dossier.

Une bibliographie sélective est proposée en fin de document, ainsi qu’une webliographie et des adresses utiles.

Notre dossier commence par une petite enquête, avec une série de questions, sous le regard attentif du commissaire Magret :

Quelle spécificité fait qu’un oiseau est un oiseau ?

Le vol ?

Les oiseaux ne sont pas les seuls êtres vivants à voler: les insectes leur font concurrence, de même qu’un groupe de mammifères représenté par les chauves-souris. De surcroît, il y a des oiseaux qui ne volent pas du tout, comme le kiwi, ou sont adaptés à la course, comme l’autruche et l’émeu.

La migration ?

La migration est un déplacement cyclique d’individus ou de groupes sur des distances plus ou moins longues. Certes, les oiseaux sont les champions de la migration, mais ils n’en ont de loin pas l’exclusivité. Les crapauds, les saumons, les rennes par exemple, effectuent des migrations.
LE SAVIEZ-VOUS ?

On estime à 10'000 le nombre d’espèces d’oiseaux dans le monde (10'466 espèces vivantes et 145 éteintes selon l’Union Ornithologique Internationale). Plus d’un millier d’espèces d’oiseaux sont menacées aujourd’hui d’extinction. Parmi les espèces célèbres ayant disparu, il y a le dodo, ainsi que le pigeon migrateur. Le Muséum conserve l’unique peau d’émeu de Baudin, espèce également disparue. (p. 39).

Les œufs ?
Les ovipares sont nombreux dans le règne animal, des insectes aux poissons et reptiles.

Le bec ?
D’autres animaux en possèdent, comme le calamar géant qui a un bec lui servant à déchiqueter ses proies ou le poisson-perroquet qui mange du corail. Même l’ornithorynque a un bec de canard, bien que ce soit un mammifère.

Le chant ?
Même si ce sont les maîtres en la matière, nombreux sont les êtres vivants à chanter : on en compte parmi les insectes et amphibiens. Les baleines « chantent » également. Les oiseaux apportent une grande nouveauté aux sons produits par le règne animal : la variation rythmique et mélodique. Parmi les vertébrés, ils possèdent sans aucun doute l’appareil vocal le plus performant et disposent du répertoire sonore le plus riche et le plus développé.

Que reste-t-il alors ?
LA PLUME. Celle-ci est un critère spécifique de l’oiseau. Un groupe de dinosaures dont ils sont issus possédaient également des plumes, mais ceux-ci ont disparu il y a 65 millions d’années. A cette époque, les « poules avaient des dents » !

Aile de geai des chênes (PW)
Des hommes et des oiseaux

Le rêve d’Icare

Voler ! Un des plus vieux rêves de l’humanité.
Une personne sur trois rêve qu’elle vole. En faites-vous partie ?

Flash expo

Le mythe de Dédale et Icare, qui est notamment transcrit dans les Métamorphoses d’Ovide, relate comment l’ingénieux Dédale a tenté de fuir le Labyrinthe de l’île de Crète en fabricant des ailes pour lui-même et son fils Icare. Celles-ci, semblables à celles des oiseaux, furent confectionnées avec de la cire et des plumes. Dédale conseilla à Icare de ne voler ni trop haut ni trop bas de peur que, d’une part, la chaleur du soleil ne fasse fondre la cire, et de l’autre, que les embruns de la mer n’alourdissent les plumes. Puis il se lança dans les airs, suivi de près par Icare. Mais Icare désobéit à son père et, grisé par sa nouvelle puissance, s’éleva vers le soleil. Comme il s’en approchait, la cire de ses ailes fondit, et il fut précipité dans la mer qui porte désormais son nom.

Léonard de Vinci, vers 1500, a étudié scientifiquement la possibilité de faire voler une machine « plus lourde que l’air ». Depuis, les hommes ont imaginé, de manière plus ou moins réaliste, ce que pourrait être une machine volante ; mais ce n’est que bien longtemps après que les choses vont se concrétiser. A partir de la fin du XVIIIe siècle, on assiste au début de la conquête de l’air avec le développement de l’aérostation et de nombreuses tentatives de vol plané.

Dessins de Léonard de Vinci. La vis aérienne (en haut), 1486, considérée comme la base de l’hélicoptère, et expérience sur la force de levage d’une aile (en bas), British Museum, London (Wikimedia Commons)
Qui est plus branché que les oiseaux ? Leurs images sont partout et elles ont colonisé par milliards la planète Internet.

Flash expo
- Le rez-de-chaussée présente une foule d’images sous la rubrique « Tombés du net ».
- Il s’agit d’une mise en bec illustrant la gente ailée, son rapport de voisinage avec l’Homme et les réactions que cela peut engendrer. Il n’y a pas un jour sans oiseaux dans la vie de l’être humain... Faites l’exercice et ouvrez simplement un journal !
- Amusez-vous et tapez « oiseaux » sur Google : ce ne sont pas moins de 280’000’000 occurrences qui apparaissent (birds = 315’000’000).

Un exercice sympa avec les visiteurs : tourner le dos aux écrans et demander d’évoquer des souvenirs, films, expériences avec les oiseaux... puis prendre le temps de regarder le flot d’images. Il ressortira certainement que, depuis les origines, l’Homme jalousant les oiseaux et a envie de voler. Certains ont même été prêts à laisser leur vie pour réaliser ce rêve !
Merci les oiseaux

1. Avec leurs œufs et leur chair, les oiseaux nourrissent les êtres humains depuis la nuit des temps.

2. Dès les origines, les oiseaux ont enchanté le monde des humains, développant ainsi leur créativité et des éléments vitaux de leur culture (rites funéraires, peinture, littérature, musique).

3. Les oiseaux et leurs os creux ont contribué à l’invention de la musique instrumentale: la première flûte fut réalisée dans un os d’oiseau.

4. Les oiseaux ont contribué à aider les humains à communiquer par l’écriture en prêtant leurs plumes.

5. Les oiseaux ont guidé les marins, les invitant à découvrir de nouvelles terres (Christophe Colomb n’aurait pas découvert l’Amérique s’il n’avait pas observé un vol d’oiseaux annonçant la présence de côtes).

Horus (CC)

Le Beagle, à bord duquel Darwin embarqua pour une mission d’exploration de 5 ans (CC)

Vol de frégates le long de la côte du Costa Rica (LV)
6. Les oiseaux ont inspiré les ingénieurs qui ont construit les premiers appareils volants et ont contribué ainsi à l’invention de l’aviation.

8. Les oiseaux ont incité les humains à mettre en place les premières lois en faveur de la nature (les premières réglementations du commerce et de la chasse sur animaux ont été établies pour des oiseaux) et à instaurer des réserves naturelles, ainsi qu’à protéger les zones humides.

9. Les oiseaux sont les premiers êtres vivants qui ont appris aux humains à se méfier des effets néfastes de certains pesticides et des molécules artificielles lâchées dans la nature et de réglementer leur usage. On se souvient du faucon pèlerin et du DDT.

10. Les oiseaux aident les agriculteurs en dévorant chaque année des milliards de tonnes d’insectes et participent ainsi à l’équilibre écologique de notre environnement. Ils contribuent aussi, comme les chauves-souris, à la régénération des forêts tropicales.

11. Les oiseaux ont démontré que des espèces vivantes peuvent disparaître à cause des humains. Avec l’exemple tragique du dodo, ces derniers ont compris que de nombreuses espèces sont fragiles.

12. Si nous voulons un développement durable pour nos enfants, les oiseaux seront toujours présents dans les décisions concernant l’agriculture, les paysages et la pollution. Avec eux, prenons de la hauteur par rapport à nos actions.

En plusieurs régions de Suisse, des aménagements artificiels ont été réalisés afin de favoriser la nidification de la Sterne pierregarin (CC).
Blanche corneille et noire colombe

Symbole de paix ou animal de mauvais augure, l’oiseau véhicule aujourd’hui encore des images contradictoires. Et si nous laissions de côté tous nos préjugés?

Les oiseaux sont tour à tour adorés ou détestés, symboles de paix ou de peur, de vie ou de mort. La cigogne, la colombe sont fortement connotées positivement, alors que le vautour et la corneille n’ont pas de capital sympathie.

Urubus à tête rouge Cathartes aura et buses de Swainson Buteo swainsoni en migration au-dessus du Costa Rica (LV)

Effraie des clochers (bronze d’Y. Larsen) en compagnie d’un pigeon domestique (DT)

Flash expo > 1er étage

Un espace réalisé par la HEAD vous invite, dans un tribunal reconstitué, à assister à la projection d’un film, plaidoirie en faveur de la blanche corneille ou de la noire colombe. Plusieurs éléments de preuves sont mis en scène et viennent étayer les plaidoiries de chaque partie.

À l’issue de la présentation, le visiteur assume le rôle de juge et vote : quel oiseau sera libéré ?
Nourrir, observer et écouter les oiseaux

Flash expo > 2e étage

- Des arbres sont disposés dans l'exposition Oiseaux, ainsi que dans les galeries permanentes du Muséum : approchez-vous, des sons sortent de leur tronc ! Vous pourrez y découvrir les cris étranges des jungles équatoriales, apprendre les chants des espèces de nos régions, ou simplement vous relaxer en écoutant les différentes ambiances composées par les chants des oiseaux.

Pas besoin d’être un spécialiste pour observer les oiseaux ! Tout le monde peut les regarder de son balcon, dans son jardin ou dans les parcs de la ville. Il existe deux moyens faciles pour les voir de près, tout en leur donnant un coup de pouce selon les saisons : les mangeoires et les nichoirs.

Les mangeoires

Les mangeoires permettent de distribuer de la nourriture aux oiseaux sauvages. On les installe uniquement l’hiver, lorsque les oiseaux ont besoin de beaucoup d’énergie pour lutter contre le froid et que la nourriture naturelle est difficile à trouver, notamment en cas de neige et de gel. Consultez les 32 feuilles d’informations de Nos Oiseaux :

http://www.nosoiseaux.ch/index.php?m_id=24

Différents types de mangeoires :

- Les mangeoires-plateaux : faciles d’accès pour tous les oiseaux, à nettoyer souvent pour qu’elles ne soient pas souillées par des fientes.
- Les mangeoires suspendues : pour les mésanges, verdiers, chardonnets, etc. Pratiques, car le réservoir protège les graines de la pluie.
- Les trémies à cacahuètes (un tube en grillage galvanisé ou en acier inoxydable). Le grillage est suffisamment fin et rigide pour empêcher oiseaux et prédateurs d’emporter les cacahuètes entières.
- Les boules de graisse : mélange de graines et de graisse, elles apportent beaucoup d’énergie lors des grands froids. À suspendre ou placer dans une trémie. Pour les oiseaux acrobates.

Que mettre dans les mangeoires ?

Toutes sortes de graines (tournesol, millet, cacahuètes), des corps gras (margarine, saindoux), des fruits (pommes, poires), des vers de farine (séchés).
Les nichoirs

Les nichoirs sont des constructions en bois ou en aggloméré, mises à disposition d’espèces qui nichent dans des cavités. Ces oiseaux vont généralement les remplir de matériaux (brindilles, mousses, poils, plumes). A installer dans les arbres ou contre les habitations entre janvier et février, lorsque les oiseaux cherchent des emplacements pour leur futur nid. A nettoyer si possible une fois la nidification terminée, dès le mois d’août, pour favoriser l’utilisation l’année suivante et éliminer les parasites.

Pourquoi mettre des nichoirs ? Pour les cavernicoles, les cavités naturelles sont rares en ville et dans les jardins. Il y a très peu d’arbres morts et les branches mortes sont souvent élaguées. Quant aux espèces nichant sur les bâtiments, elles ont de plus en plus de mal à trouver des emplacements favorables ou de la boue pour fabriquer leur nid.

Différents types de nichoirs :

- Nichoirs pour oiseaux cavernicoles : la taille du trou d’envol détermine l’espèce qui va occuper le nichoir, de la plus petite (mésange bleue) à la plus grande (chouette hulotte).
- Nichoirs pour oiseaux semi-cavernicoles : pour les espèces qui n’aiment pas être complètement dans le noir, comme les rougequeues et les moineaux.
- Nichoirs à grimpereaux : dans la nature, les grimpereaux font leur nid entre l’écorce et le tronc des arbres.
- Nichoirs à hirondelles (à installer en groupe) : fixer un nichoir va les aider à commencer leur nid et peut-être les inciter à fonder une nouvelle colonie.
- Nichoirs à martinets (à installer en groupe) : les martinets nichent principalement dans les bâtiments, dans des cavités sous les toits ou dans des rebords. Il n’est pas facile pour eux de trouver des emplacements dans les nouvelles constructions. Poser une série de nichoirs peut donc favoriser une nouvelle colonie.

Les appeaux

Les appeaux sont de petits instruments qui permettent d’imiter certains chants ou cris d’oiseaux. Utilisés à l’origine par les chasseurs, on en trouve maintenant facilement dans le commerce. S’ils sont amusants pour s’entraîner à imiter des sons, il ne faut toutefois pas en abuser dans la nature pour ne pas déranger les oiseaux. Les appeaux sont aujourd’hui efficacement remplacés par des haut-parleurs raccordés à un baladeur ou un smartphone.
Matériel ornithologique
Impossible de bien observer les oiseaux sans matériel optique approprié, car les détails du plumage ne sont souvent pas visibles à l’œil nu.

- Les jumelles. Faciles à transporter, elles sont indispensables pour bien voir les oiseaux sauvages.
- Les longues-vues. Pour les observations à très grande distance, notamment les oiseaux d’eau sur les lacs.

Conseil pour les débutants : commencer par une paire de jumelles 8 x 40 (8= le grossissement, 40= diamètre en millimètres de l’objectif). Elles ont un grossissement suffisant, une bonne luminosité et elles ne sont pas trop lourdes. Ne jamais dépasser un grossissement de 10 x à cause des tremblements.

Liste des lieux sur le canton de Genève pour des observations :
Champagne / Les Teppes de Verbois / Marais de Sionnet / Mategnin / Moulin-de-Vert / Pointe à la Bise / Rade de Genève et Petit Lac / Rhône genevois: de la Jonction à Verbois / Rouelbeau / Vallon de l’Allondon / Vallon de la Laire.

Il faut au moins une paire de jumelles pour observer les oiseaux. La photographie est quant à elle une aide à l’identification et permet de documenter les observations (LV).

Les Marais de Sionnet ont fait l’objet d’importants travaux de renaturation ces dernières années (CC)
Autour de nous, quelles espèces ?
Visibles facilement depuis le parc du Muséum:
Chardonneret élégant / Corbeau freux / Corneille noire / Étourneau sans-sonnet / Faucon crècerelle / Fauvette à tête noire / Goéland leucophée / Grimpereau des jardins / Martinet noir / Merle noir / Mésange à longue queue / Mésange bleue / Mésange charbonnière / Mésange huppée / Mésange noire / Mésange nonnette / Milan noir / Moineau domestique / Mouette rieuse / Pic épeiche / Pic vert / Pie bavarde / Pigeon domestique / Pigeon ramier / Pinson des arbres / Pouillot véloce / Roitelet huppé / Roitelet à triple bandeau / Rougegorge familier / Rougequeue noir / Serin cini / Sittelle torchepot / Verdier d’Europe.
Pic épeiche (LV)

Geai des chênes (LV)

Pigeon ramier (CC)

Pinson des arbres (LV)

Rougegorge (LV)

Mésange noire (LV)
La science des oiseaux

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l'ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.

 Qui peut foncer à près de 400 km/h, pondre un œuf de 8 kg, jeûner pendant 4 mois ou voler pendant 10 jours sans se poser? Enfants des dinosaures, les oiseaux ont conquis l’ensemble de la planète. Dégustez le menu 100% science concocté par les ornithologues du Muséum.
Flash expo > au sommet du puits de lumière

Avec une envergure de 3,50 m, l’albatros hurleur (Diomedea exulans) est le plus grand oiseau du monde. Vivant en haute mer, il ne se pose quasiment jamais à terre, sauf pour se reproduire sur les îles de l’hémisphère Sud.

«Souvent, pour s’amuser, les hommes d’équipage
Prennent des albatros, vastes oiseaux des mers,
Qui suivent, indolents compagnons de voyage,
Le navire glissant sur les gouffres amers.(..)»

C. Baudelaire, extrait de L’albatros (Les fleurs du mal, 1857)

Deux albatros grandeur nature ont été réalisés par J. Fortea dans notre atelier de décoration (CC)
La forme des œufs varie en fonction des espèces et du mode de vie des oiseaux. Le nombre varie également : les oiseaux de mer pondent généralement un œuf unique, alors que les petits oiseaux terrestres peuvent avoir des couvées dépassant la douzaine d’œufs. Les cycles varient, quant à eux, de plusieurs couvaisons par saison jusqu’à une seule couvée par année.

Certains pondent des œufs aux couleurs mimétiques qui les confondent avec le milieu environnant. Les coucous gris sont connus pour ne pas construire de nid : la femelle dépose ses œufs dans ceux des autres espèces. Elle enlève un œuf du nid en question et pond le sien très rapidement. Les œufs du coucou sont généralement semblables à ceux qui se trouvent dans le nid sélectionné et prennent des couleurs variées en fonction de l’espèce hôte.
Collection Haller
En 2011, le Muséum d’histoire naturelle de la Ville de Genève a fait l’acquisition d’une remarquable collection scientifique comprenant 28'693 œufs. Ceux-ci ont été patiemment rassemblés et étudiés par un ornithologue suisse, Werner Haller. Sa collection est dans un état tout à fait remarquable, puisque chaque œuf et chaque ponte sont étiquetés et annotés, les espèces sont identifiées, leur origine géographique est connue et toutes ces données ont été informatisées. 28'693 œufs, cela représente 8359 pontes de 1043 espèces d’oiseaux, dont certaines sont malheureusement éteintes. Depuis cet achat, les 60’834 œufs en notre possession en font l’une des plus importantes collections oologiques au monde, témoin inestimable de la biodiversité passée et actuelle des oiseaux.

Du plus petit au plus grand
Les colibris pondent les plus petits œufs du monde, de la taille d’un Tic Tac (environ 1 cm de long pour un poids de 0,35 g). L’oiseau-éléphant de Madagascar a, quant à lui, pondu les plus gros de tous les temps. Entre ces extrêmes, on trouve une diversité que peu de personnes ont pu contempler. Sur 24 m de long et 3 m de haut, présentant tous les principaux groupes de la classification des oiseaux, le mur des œufs vous invite à découvrir une collection unique au monde.

A gauche: œufs de rossignols
A droite: œufs et nids de colibris (PW)

Grand corbeau Corvus corax (PW)

Harle bièvre Mergus merganser (PW)

Chocard à bec jaune Pyrrhocorax graculus (PW)
Pour reprendre les extrêmes évoqués, de l’énorme oiseau-éléphant au minuscule colibri, les squelettes des oiseaux nous montrent de formidables adaptations à des modes de vie variés.

L’étude des fossiles permet d’affirmer que l’ancêtre commun de tous les oiseaux actuels volait. Au cours de l’évolution, certains oiseaux ont perdu la capacité de voler et sont devenus aptères, adaptant leur squelette à un mode de vie terrestre ou aquatique.

Des oiseaux qui ne volent plus : les ratites
Les ratites forment un groupe d’oiseaux incapables de voler, mais qui sont d’excellents coureurs. On les trouve aujourd’hui en Afrique (autruches), en Amérique du Sud (nandous), en Australie (émeus et casoars) et en Nouvelle-Zélande (kiwis).

Avec leurs cousins d’Amérique du Sud les tinamous, ils forment le grand groupe des Paléognathes, alors que tous les autres oiseaux appartiennent aux Néognathes : morphologiquement, on distingue ces deux groupes par la forme de leur palais. La divergence entre Paléognathes et Néognathes date d’environ 120 millions d’années.

Les manchots sont des oiseaux qui ne volent plus, entièrement adaptés à la nage grâce à leur corps fuselé et à leurs ailes plates et allongées, reconverties en nageoires. Les plumes des manchots sont également spécialisées pour maintenir la chaleur du corps dans les eaux glaciées. Ces oiseaux vivent dans les mers de l’hémisphère Sud et reviennent sur la terre ferme, parfois sur la banquise, pour se reproduire et renouveler leur plumage (voir encore p. 44).

Un oiseau qui vole !… La poule domestique Gallus gallus
Toutes les races de poules domestiques sont issues d’une même espèce sauvage, le coq bankiva Gallus gallus, originaire d’Asie du Sud-Est. A partir de cette souche sauvage, les éleveurs ont petit à petit sélectionné des individus pour obtenir des traits particuliers, comme la production continue d’œufs ou la coloration particulière d’un plumage. On compte aujourd’hui plus de 200 races domestiques. Si la plupart des poules domestiques ne volent plus, l’espèce sauvage vole toujours très bien.

Un squelette d’oiseau typique
Aujourd’hui les oiseaux n’ont ni mâchoire ni dents, mais un bec. Cette structure, plus légère et très solide, peut prendre énormément de formes différentes, s’adaptant aux régimes alimentaires variés des oiseaux.

La structure des os de beaucoup d’oiseaux est creuse, parcourue de poches.
à air, appelées sacs aériens, qui sont reliées aux poumons. On dit que les os sont pneumatisés, ce qui leur confère une légèreté remarquable en même temps qu’une grande solidité.

Le bréchet constitue un os important du squelette des oiseaux : c’est la partie du sternum sur laquelle s’attachent les muscles puissants permettant de rabattre les ailes. Le bréchet des oiseaux volants, très développé, forme une sorte de quille. Celui des oiseaux aptères est plat et en forme de radeau (ratis en latin d’où le nom «ratite »).

De nombreux os sont fusionnés :
- les dernières vertèbres de la colonne vertébrale, formant le pygostyle sur lequel s’accrochent les plumes de la queue,
- les os de la main et des doigts, sur lesquels s’accrochent les rémiges primaires (les plumes de l’extrémité de l’aile).

La présentation, dans l’exposition, d’un squelette d’épervier est originale dans le sens où les os sont orientés de la même façon que pour un squelette humain. Cet objet a intégré les collections du Muséum en 1838. Il s’inspire de la célèbre étude du naturaliste Pierre Belon (1517-1564) qui, dans son « Histoire de la nature des oyseaux, avec leurs descriptions et naïfs portraicts retiré du naturel » (1555), pose les bases de l’étude comparative des vertébrés, une discipline appelée anatomie comparée.

LE SAVIEZ-VOUS ?

Les oiseaux et les humains sont les seuls vrais bipèdes. Nous sommes des plantigrades, alors que les oiseaux sont digitigrades... Tandis que l’homme marche généralement avec la plante des pieds (locomotion plantigrade), les animaux digitigrades marchent sur leurs phalanges distales et intermédiaires. Aussi, ce que l’on aurait tendance à considérer comme leurs genoux sont en réalité leurs chevilles.

Les oiseaux sont les descendants directs des dinosaures ; le compsognathus et l’archéoptéryx aux squelettes quasi identiques atté tent cette filiation !

La présentation, dans l’exposition, d’un squelette d’épervier est originale dans le sens où les os sont orientés de la même façon que pour un squelette humain. Cet objet a intégré les collections du Muséum en 1838. Il s’inspire de la célèbre étude du naturaliste Pierre Belon (1517-1564) qui, dans son «Histoire de la nature des oyseaux, avec leurs descriptions et naïfs portraicts retiré du naturel» (1555), pose les bases de l’étude comparative des vertébrés, une discipline appelée anatomie comparée.
Des becs à tout faire
Les pinsons des Galápagos de Darwin illustrent comment, par une radia-
tion évolutive, d’une espèce originale, quatre types de bec pour treize
espèces au total sont apparus. La forme et l’emploi du bec varient suivant
l’espèce et le mode d’alimentation.

Par exemple :
1. Les oiseaux de proie comme le faucon ou les charognards ont un bec
qui permet de déchiqueter la viande. Chez les Falconidae, il est orné
d’une dent qui s’emboîte dans une échancrure correspondante de la
mandibule inférieure ; c’est même un trait distinctif de cette famille.

2. Celui des oiseaux-mouches a la forme d’une paille pour boire le nectar
de certaines fleurs.

3. Celui des Anatidae, dont les canards, est plat, muni de lamelle interne,
pour lui permettre de retenir le plancton en filtrant l’eau.

4. Celui du perroquet est puissant et ramassé afin de briser des graines.

5. Celui des pics est un bec en forme de ciseau à bois pour creuser des
loges dans les troncs d’arbres et y nicher. Leur longue langue gluante
leur sert à rechercher des insectes sous l’écorce ou dans le sol, à la
manièrè d’un fourmilier.

C’est cette variabilité de la forme des becs qui a inspiré Charles Darwin
et sa théorie de l’évolution, ou plus particulièrement de la sélection natu-
relle, lors de son voyage sur les îles Galápagos. En effet, l’observation
des différentes espèces de pinsons présentes sur chaque île avait mis en
evidence l’adaptation des formes des becs aux différentes ressources ali-
mentaires dont les oiseaux disposaient (cf. p. 11).
Aigle royal (CC)

Colibri circé (CC)

Canard colvert (CC)

Ara macao (CC)

Pic épeiche (CC)
Vol, camouflage, parade et séduction, la plume fait l’oiseau ! Découvrez ses multiples fonctions, son origine, sa structure ou simplement sa beauté, racontées ici à la lumière des connaissances scientifiques actuelles.

Les principales plumes d’un oiseau :
• Rémerges : plumes de l’aile qui permettent la propulsion et le vol.
• Rémerges primaires : les plus longues au bout de l’aile, implantées sur les os de la main.
• Rémerges secondaires : moins longues, implantées sur les os de l’avant-bras.
• Rectrices : plumes qui forment la queue.
• Tectrices : plumes recouvrant le corps, qui donnent la forme aérodynamique de l’oiseau et qui le protègent de la pluie et du soleil
• Duvets : plumes sans barbules, lâches et assurant principalement l’isolation thermique du corps.
• Filoplumes : plumes ressemblant à un poil avec une petite touffe de barbe à l’extrémité. Très riches en terminaisons nerveuses.

Un plumage toujours impeccable est vital pour les oiseaux : pour voler bien sûr, mais aussi pour maintenir chaleur corporelle et imperméabilité. Chaque jour, les oiseaux passent ainsi beaucoup de temps à nettoyer et
lisser leurs plumes. Au cours de la mue, chacune d’entre elles est renouvelée : la plume usée tombe, remplacée par une nouvelle. Généralement, les plumes servant au vol (rémiges et rectrices) sont remplacées au fur et à mesure pour que l’oiseau puisse continuer à voler.

La mésange charbonnière est un petit oiseau bien connu de nos jardins. Vous la découvrez ici sous la forme d’un « éclaté », où sont présentées les 2872 plumes qui composent son plumage. Prêt du Musée cantonal de Zoologie, Lausanne (PW).
Des ailes et des plumes :

- La Cigogne blanche, *Ciconia ciconia*, a une aile large de grand planeur. Elle prend de l’altitude en utilisant les courants d’air chauds (les ascendants), puis plane pendant des kilomètres jusqu’à la prochaine ascendance. Elle effectue ainsi sa migration entre le nord de l’Europe où elle niche et l’Afrique où elle hiverne.

- Malgré ses grandes ailes, le héron cendré (*Ardea cinerea*) migre en vol battu, de nuit comme de jour, presque sans planer.

- L’épervier d’Europe (*Accipiter nisus*) ressemble à un autour, mais en plus petit, si bien qu’ils sont souvent confondus. Chez ces deux espèces – et chez beaucoup d’autres rapaces –, les femelles sont beaucoup plus grosses que les mâles, ce qui augmente les risques de confusion. Forestiers, l’autour des palombes (*Accipiter gentilis*) et l’épervier d’Europe (*Accipiter nisus*) chassent des oiseaux en vol. Leurs ailes courtes leur permettent de manœuvrer rapidement dans les frondaisons.

- La buse variable (*Buteo buteo*) : le juvénile est reconnaissable aux franges pâles des plumes et aux rémiges qui sont toutes de la même génération. Vues de dessous, les rémiges sont finement barrées jusqu’à leur extrémité. Chez l’adulte, le dessous de l’aile est plus uniforme, avec différentes générations de rémiges, les plus anciennes étant plus brunes que les nouvelles. Vues de dessous, les rémiges de l’adulte ont une large bordure sombre.

- Le troglodyte mignon (*Troglodytes troglodytes*) possède l’aile la plus courte de tous les oiseaux d’Europe, avec moins de 5 cm en moyenne.
• La chouette hulotte (*Strix aluco*) et l’effraie des clochers (*Tyto alba*): comme tous les rapaces nocturnes, ces deux espèces de chouettes ont des plumes très douces pour atténuer le bruit des battements d’ailes. Ceci leur permet de mieux surprendre leurs proies, principalement des petits mammifères. Le « peigne » sur les premières rémiges sert aussi à limiter les bruits du vol.

• Chez le faisan de Colchide (*Phasianus colchicus*), les ailes larges et rondes permettent un décollage puissant et rapide, mais ne sont pas adaptées aux grandes migrations.

• Les ailes pointues du martinet noir (*Apus apus*) sont profilées pour un mode de vie entièrement aérien, alternant acrobaties, vitesse pure et grandes migrations.

• A l’inverse du martinet, le manchot de Humboldt (*Spheniscus humboldti*) est l’oiseau le moins aérien que l’on puisse trouver, puisqu’il est entièrement adapté à la vie marine. Ses ailes sont des nageoires et son plumage très dense forme une combinaison étanche.
Un plumage par saison

Le lagopède alpin (*Lagopus muta*): lors de la mue, les plumes de cette espèce sédentaire de l’étage alpin repoussent avec une couleur différente selon les saisons. En plumage d’hiver, les oiseaux sont invisibles dans la neige. Au printemps, les nouvelles plumes sont brunes et grises, ce qui leur permet de se confondre avec la végétation et les rochers tout au long de l’été.

L’étourneau sansonnet (*Sturnus vulgaris*): changer de couleur sans changer de plume, est-ce possible ? Oui, en comptant sur l’usure naturelle des plumes. Par exemple, le plumage neuf des étourneaux a un aspect tacheté en hiver. Au printemps, les plumes usées, qui ont perdu leur extrémité blanche, montrent maintenant leur base irisée verte ou violette.

Dimorphisme sexuel: Pourquoi les oiseaux sont-ils beaux ?

Avec leurs plumes de couleurs vives, comme peintes de motifs incroyables, de structure complexe et de taille démesurée, de nombreuses espèces d’oiseaux présentent des ornements très élaborés. Le plus souvent, ce sont les mâles qui revêtent ces plumages voyants et les exhibent lors de parades dont les femelles, aux couleurs plus ternes, sont spectatrices. Ce dimorphisme (différence morphologique entre les deux sexes) s’explique principalement par la théorie de la sélection sexuelle proposée à l’origine par Charles Darwin: ce sont les femelles qui choisissent les mâles les plus colorés et les plus vifs, ceux porteurs d’extravagances qu’elles apprécient, comme une plume plus longue ou de forme particulière. Au cours des générations, si ce choix des femelles va toujours dans le même sens, les caractéristiques des mâles se renforcent. Avec le temps, des oiseaux à l’aspect surprenant peuvent apparaître. Un exemple extrême est celui du paon, avec sa queue démesurée, peu pratique pour se déplacer ou voler mais qui plaît aux femelles. L’aspect des mâles est donc en partie façonné par le goût des femelles.

Pourquoi ce choix des femelles ? Parce que ces éléments décoratifs du plumage sont de bons indicateurs de santé, d’une nutrition de qualité, d’une bonne capacité à éviter les prédateurs malgré une couleur voyante, etc. Ces mâles seront donc de bons pères, dans le sens où ils transmettront une partie de ces caractéristiques génétiques advantageuses à leurs descendants.
Les oiseaux sont les fils des dinosaures !

L’origine des oiseaux est une question qui a depuis longtemps préoccupé les scientifiques. En l’absence d’indices, on pensait que certains de leurs caractères, dont la présence de plumes, étaient uniquement liés à ce groupe zoologique. Or, la découverte de « chimères » fossiles présentant des caractères anatomiques à la fois d’oiseaux (plumes) et de reptiles dinosauriens (dents et longue queue osseuse) ainsi que la mise au jour d’empreintes de plumes fossiles en relation avec le squelette de certains dinosaures carnivores (théropodes) a permis de lever peu à peu le voile sur cette question.

Le fossile probablement le plus célèbre, véritable « Mona Lisa » de la paléontologie, qui a déclenché la controverse sur l’histoire évolutionne des oiseaux se nomme « archéoptéryx ». Le premier fossile découvert en 1860 dans le sud de l’Allemagne sur le site de Solnhofen (Bavière) est en fait une plume isolée. Une année plus tard, la découverte d’un squelette remarquablement préservé avec des empreintes de plumes visibles va amener certains chercheurs, dont l’éminent Charles Darwin, à envisager que l’archéoptéryx est en fait une forme transitoire, appelé chaînon manquant, entre les dinosaures et les oiseaux.

Depuis, 10 autres spécimens ont été mis au jour. La plupart de ces fossiles exceptionnels sont déposés dans les grands musées européens.

D’une longueur inférieure à 60 cm, l’archéoptéryx vivait à la fin du Jurassique, il y a 150 millions d’années, dans un environnement composé d’îles subtropicales. L’étude détaillée de son squelette et de la structure de ses plumes semble indiquer qu’il pouvait soutenir un vol battu sur de relatives courtes distances, mais n’était pas capable de planer véritablement.

Plus récemment, d’autres espèces fossiles « mi-oiseau/mi-dinosaure » ont été découvertes en Chine, dont le célèbre Microraptor, petit dinosaure recouvert de plumes ou encore le Confuciusornis, oiseau primitif qui a vécu quelques millions d’années après l’archéoptéryx.

Aujourd’hui donc, l’archéoptéryx est actuellement le plus vieux fossile d’oiseau connu, même si de récentes découvertes semblent remettre en cause cette affirmation. En effet, l’étude d’un petit dinosaure chinois (Aurornis xui) publiée dans le journal Nature en mai 2013 pourrait détrôner le fossile allemand.

Ceci dit, l’origine dinosauriennne des oiseaux, et plus précisément leur filiation avec un groupe de dinosaures théropodes, est maintenant unanément reconnue par la communauté scientifique. Les oiseaux sont donc en quelque sorte les survivants des dinosaures disparus il y a 65 millions d’années. Ils ont connu, depuis l’existence de l’archéoptéryx, une formidable diversification tant au niveau anatomique qu’écologique.
Retour aux nids

Connaissiez-vous de meilleurs artisans que les oiseaux? Avec comme seul outil leur bec, ils sont capables de construire de véritables œuvres d’art pour protéger leurs œufs.

Nids en coupe
Le nid en forme de coupe est le modèle le plus répandu chez les oiseaux. Les matériaux utilisés ont plusieurs fonctions : la structure (brindilles), l’attache aux branches (souvent des toiles d’araignées), l’isolation thermique (mousses, poils, plumes) et le camouflage (lichens).
A l’intérieur d’un nid en coupe, les merles et les grives construisent une solide couche en terre. Le merle noir (mais pas la grive musicienne) garnit ensuite la coupe de matériaux isolants (poils, plumes, mousses).

Nids cousus
L’oiseau utilise ici une ou deux grandes feuilles qui sont repliées, piquées de petits trous sur le bord et cousues entre elles avec une fibre végétale. La coupe ainsi formée sert de support pour le nid. Comme elles sont toujours attachées à la branche, les feuilles restent vertes, formant ainsi un excellent camouflage.

Nids fermés
Construire un toit au-dessus de la coupe empêche la plupart des prédateurs d’accéder aux œufs et aux poussins. Les grands spécialistes des nids fermés sont les tisserins. Ce sont les mâles qui tissent des feuilles ou des brindilles avec leur bec. L’oiseau commence par faire un anneau noué à une fourche, puis l’agrandit pour former une chambre sphérique ; il termine par le long entonnoir d’entrée. Les tisserins, oiseaux grégaires vivant en colonies, construisent souvent de multiples nids sur un même arbre.

Nids à terre
On imagine plutôt les nids des oiseaux dans les arbres, mais saviez-vous que certains oiseaux de Suisse, comme la bécasse, font leur nid ou pondent directement sur le sol? Et que les trois quarts des espèces nicheuses de Suisse peuvent construire leur nid à moins de 1 m de hauteur?
Près de 10% des oiseaux du monde sont coloniaux, nichant en groupes les uns à côté des autres. C’est le cas notamment de nombreux oiseaux marins qui ne reviennent à terre que pour pondre leur œuf et élever leur poussin, le plus souvent sur une île ou une presqu’île inaccessible aux mammifères terrestres. On trouve des colonies à même le sol, dans des terriers creusés dans des pentes herbeuses ou sur des falaises.

LE SAVIEZ-VOUS?

La prétendue stupidité de la bécasse des bois (Scolopax rusticola) vient du fait qu’elle a confiance dans son camouflage et ne s’envole presque qu’au moment de se faire piétiner.
Nids collés contre une paroi
A la manière des hirondelles, les salanganes, sortes de petits martinets, accrochent leur nid – réalisé à base de salive et de fibres – à des surfaces rocheuses. Dans certains pays d’Asie, des bâtiments sont spécialement dédiés aux colonies de salanganes dont les nids récoltés servent d’ingrédient à la célèbre « soupe de nid d’hirondelle ».

Nid creusé dans un tronc
La loge creusée par un pic pour y élever ses petits protège la couvée des prédateurs et des intempéries de la même manière qu’un nid fermé.
Mélodies en sous-bois

LE SAVIEZ-VOUS?

Toutes les espèces d’oiseaux sont reconnaissables à leur chant par l’oreille humaine (moyennant de l’entraînement !). La plupart des oiseaux ont, en plus de leur chant, un ou plusieurs cris (d’alarme, d’envol, de contact, etc.) qui permettent de les identifier.

Pourquoi les oiseaux chantent-ils?
Chez la plupart des espèces de passereaux, les mâles chantent pour défendre leur territoire et séduire les femelles. Tous les oiseaux ont aussi des cris différents qui ont plusieurs fonctions : alerte en cas de prédateur, cri de contact dans un groupe, cri de détresse, demande de nourriture des petits, pour n’en citer que quelques-unes.

Conseil pour les débutants : le chant des oiseaux, dû aux vibrations produites par différentes tensions des tissus cartilagineux de la syrinx (ils n’ont donc pas de cordes vocales) est un moyen de communication très précis. Il est difficile d’apprendre à reconnaître les chants des différents oiseaux. Suivre des sorties organisées par des spécialistes est un bon moyen pour éduquer ses oreilles ou alors écouter sur internet tout en étudiant les sonogrammes.

Flash expo > 3e étage
A l’intérieur de cet espace clos, un concert de chants d’oiseaux reproduit le réveil musical d’une forêt de nos régions. Approchez-vous des colonnes pour apprécier la performance de chacun des 14 choristes.
Que seraient nos forêts sans le swing matinal des oiseaux ?

Bruant jaune (CC)
Les sonogrammes et les onomatopées (chant du pouillot véloce et de la rousserolle effarvatte)

Pouillot véloce: Tsip tsap tsip tsap tsup tsip

Source : xeno-canto.org

Rousserolle effarvatte: Trett trett trett tchrri tchrri truy truy tié tré tré vi-vuy-vu tré tré

Source : xeno-canto.org

2. La grive musicienne (*Turdus philomelos*) possède une tonalité semblable à celle du merle noir mais, contrairement à lui, elle pratique presque systématiquement la répétition des motifs. Elle inclut aussi souvent des imitations d’autres espèces et des séquences de sons râpeux. Elle est une des premières espèces à chanter le matin.

3. Le pinson des arbres (*Fringilla coelebs*). Le chant de l’oiseau le plus commun de Suisse mérite d’être retenu ! Cette tâche est aiséée, son chant étant le seul qui soit une cascade descendante, avec un final typique court et enjoué « djjjui ! ». Le tout dure en moyenne 2,5 secondes. Au printemps, il peut chanter plus de 4000 fois par jour – 2200 fois en moyenne – soit une heure et demie de chant quotidien.

4. Le troglodyte mignon (*Troglodytes troglodytes*). Ce nain de 7 g sait donner de la voix ! Son chant se caractérise par des strophes et des trilles aigus, répétés, rythmés et extrêmement sonores pour un oiseau de si petite taille.

5. La mésange charbonnière (*Parus major*) est la plus commune des mésanges en ville. Son chant printanier particulièrement puissant ne peut être ignoré. Bien que variable d’un individu à l’autre, il est extrêmement répétitif.

6. Comme chez beaucoup de mésanges, le chant de la mésange noire (*Periparus ater*) est très répétitif, bien qu’enjoué. On le reconnaît à sa tonalité « glissante » – certains disent « mouillée ».

7. Le rougegorge familier (*Erithacus rubecula*). Son chant est des plus mélancoliques. Plus aigu que celui du merle, il semble, au départ, avoir du mal à sortir, puis il se déroule en cascades roulées et flûtées. Le rougegorge chante avant le lever du soleil. Notons que beaucoup de mâles cessent de chanter dès qu’ils ont trouvé une femelle.

8. Comme la plupart des autres espèces de pics, le pic épeiche (*Dendrocopos major*) a remplacé son chant par le tambourinage. Il choisit une branche sèche qui résonne et la frappe violemment jusqu’à 25 fois par seconde avec son bec, provoquant un son qu’on entend de très loin. Le tambourinage n’a donc rien à voir avec le creusage d’une cavité, activité peu sonore qui génère des sons mats et espacés d’une à deux secondes.
9. Contrairement à la plupart des pics, le pic vert (*Picus viridis*) tambourine peu. Il a un chant très sonore qui, comme chez d’autres pics, notamment américains, s’apparente à un rire puissant un brin narquois. Comme chez tous les oiseaux, ce chant est à la fois destiné à séduire les femelles et à défendre le territoire.

10. En forêt, on entend souvent les imitations et les cris puissants et peu harmonieux du geai des chênes (*Garrulus glandarius*), mais il n’en va pas de même pour son chant. Il s’agit d’un babil assez doux, un peu grinçant et nasillard, surprenant de la part d’un oiseau de cette taille d’ordinaire si peu discret.

11. Le chant du bouvreuil pivoine (*Pyrrhula pyrrhula*) est doux et haché, mélant des sons grinçants et râpeux, le tout dans une tonalité plaintive. Curieusement, le bouvreuil mâle est capable, si on le soumet dès la naissance à des morceaux de musique divers, d’en faire des imitations très convaincantes.

12. Comme beaucoup d’espèces des milieux ouverts, le serin cini (*Serinus serinus*) a un chant prolongé qui peut être porté par les vents. C’est un long trille aigu et métallique, pas vraiment agréable à l’oreille.

13. La sittelle torchepot (*Sitta europaea*) est particulièrement loquace. Elle émet différents sons, tous également efficaces pour la reconnaitre. Le plus connu est un sifflement flûté caractéristique répété plus ou moins rapidement.

14. Le grimpereau des jardins (*Certhia brachydactyla*). À l’inverse du pinson des arbres et son chant descendant, le chant du grimpereau des jardins est invariablement montant, avec un phrasé caractéristique et très facile à se rappeler.
Ces chers disparus

Flash expo > 3e étage La Crypte

Les sept espèces présentées ont toutes disparu. Certaines étaient rares, d’autres extrêmement communes. À chaque fois, les humains sont responsables.

1. Perruche de Caroline (*Conuropsis carolinensis*) Psittaciformes

La perruche de Caroline était la seule espèce de perroquet entièrement origininaire des États-Unis. Les principaux facteurs qui ont mené à sa disparition sont : la destruction de son habitat (forêts avec grands arbres creux près de rivières), la chasse pour ses plumes, la persécution directe (espèce considérée comme nuisible par les paysans), et la capture pour mise en cage.

Très grégaire, l’espèce était d’autant plus facile à chasser que les oiseaux venaient auprès de leurs congénères abattus. Le dernier individu du monde, un mâle nommé Incas, est mort en captivité au zoo de Cincinnati (USA) le 21 février 1918, une année après sa femelle Lady Jane.

Un spécimen est présenté au 1er étage du Muséum.

2. Pigeon migrateur (*Ectopistes migratorius*) Columbiformes

Le pigeon migrateur était un pigeon d’Amérique du Nord, probablement l’espèce la plus abondante du monde avec une population estimée à 3-5 milliards d’individus au XIXᵉ siècle. En 1866, en Ontario, un vol mesurant 1,5 km de large et 500 km de long avait mis 14 heures pour passer.

Les principaux facteurs qui ont mené à sa disparition sont la destruction de son habitat (forêts dévastées suite à l’arrivée des colons européens) et surtout une chasse effrénée. Extrêmement grégaire, l’espèce pouvait être massacrée à grande échelle, tant durant la migration que sur les sites de reproduction où l’on pouvait compter 100 nids sur un seul arbre.

Passé un seuil de densité minimal, l’espèce n’est plus parvenue à se reproduire faute de stimulation, preuve qu’il n’est nul besoin de tuer le dernier couple pour mener une espèce à l’extinction ! Le dernier individu du monde, une femelle nommée Martha, est mort en captivité au zoo de Cincinnati (USA) le 1er septembre 1914.

Un couple est présenté au 1er étage du Muséum.
3. **Emeu de Baudin** (*Dromaius baudinianus*) Casuariiformes

4. **Pic à bec ivoire** (*Campephilus principalis*) Piciformes
5. Huia dimorphe (*Heteralocha acutirostris*) Passeriformes
Le huia dimorphe doit son nom au fait que le mâle et la femelle sont physiquement différents: le mâle a un bec nettement plus court que la femelle. Lors de leur description scientifique en 1836, les deux sexes ont d’ailleurs été considérés comme appartenant à des espèces distinctes. Autrefois présente dans les forêts primaires de l’Île du Nord en Nouvelle-Zélande, cette espèce n’a jamais été commune. Elle était strictement adaptée à cet écosystème complexe. Elle a disparu au début du XXe siècle, suite à une collecte effrénée pour les musées, les riches collectionneurs, ainsi que pour la décoration de chapeaux dans l’artisanat local. L’introduction de prédateurs (rats, chats, etc.) et la déforestation par les Maoris, puis les colons européens arrivés en 1840 ont porté le coup de grâce au huia dimorphe, dont la dernière mention confirmée date du 28 décembre 1907 dans les monts Tararua. En 2010, une rectrice (plume de la queue) de cet oiseau s’est vendue plus de 6200 CHF lors d’une vente aux enchères à Auckland: la plume la plus chère du monde!
Un couple de huias est présenté au 1er étage du Muséum.

6. Grand pingouin (*Pinguinus impennis*) Charadriiformes
Le grand pingouin était un oiseau nordique de la famille des alcidés (pingouins, guillemots, macareux, stariques et mergules). Son plus proche cousin actuel est le pingouin torda, seul pingouin digne de ce nom. Au XVIe siècle déjà, la chasse pour sa chair, la collecte des œufs et la forte demande en Europe pour son duvet avaient mené l’espèce au bord de l’extinction. La dernière colonie de grand pingouin, située sur un îlot de la côte islandaise, ne comptait plus qu’une cinquantaine d’individus en 1835. Puis le 3 juillet 1844, un dernier couple couvant un œuf y a été tué, à la demande d’un marchand.
Cette espèce n’est pas visible dans les galeries.
7. **Dodo** (ou dronte de Maurice) (*Raphus cucullatus*) Columbiformes

Le dodo est l’archétype de l’extinction chez les animaux. Apteré (ne volant pas) et endémique de l’île Maurice (dont la surface équivaut à un peu plus de la moitié de celle du canton de Vaud), c’était un candidat idéal pour l’extinction ! Le dodo était un pigeon terrestre (famille des Columbidae) pesant une douzaine de kilos. Ses plus proches cousins sont le dronte de Rodrigue *Pezophaps solitaria*, également disparu (entre 1730 et 1760) et le nicobar à camail *Caloenas nicobarica*. La première mention du dodo date de 1598. La dernière observation bien documentée a été faite en 1662. Si la disparition éclair de cette espèce est en fait passée relativement inaperçue, le dodo est resté dans les annales comme la première preuve que l’homme pouvait mener une espèce animale à l’extinction. Aucune plume de dodo n’a été conservée et les seuls restes de peau se trouvent sur une tête et une patte séchées conservées à l’Oxford University Museum of Natural History. Tout ce qu’on sait sur l’aspect et le comportement du dodo repose donc sur des écrits et des dessins du XVIIᵉ siècle. Les facteurs principaux qui ont mené à sa disparition sont la chasse par les marins affamés et l’introduction d’animaux domestiques sur l’île Maurice. Cette espèce est présentée au 1ᵉʳ étage du Muséum par une reconstitution des années 1980.

Parmi les disparus, nous retiendrons encore :

L’oiseau-éléphant, *Aepyornis maximus*. Mesurant près de 3 m de haut, c’était l’oiseau le plus lourd au monde (450 kg). L’espèce, qui vivait sur l’île de Madagascar, est éteinte depuis environ 350 ans. La consommation des œufs par les humains, la chasse et l’introduction de prédateurs sont des causes probables de son extinction. Avec une longueur de 33 cm et un volume de près de 8 litres, l’œuf de l’oiseau-éléphant est nettement plus gros que tous ceux des dinosaures trouvés jusqu’ici. Si l’on ignore pourquoi des dinosaures, même énormes, en pondaient de relativement petits, on sait pourquoi il y a une limite supérieure à la taille des œufs : la pression interne et le poids croissent très vite avec l’augmentation du diamètre, ce qui implique un épaississement de la coquille qui constitue une entrave à la sortie du poussin.

Monnier 1913, Wikimedia Commons
Les oiseaux en questions

Vous avez dit « records » ?

L’oiseau le plus grand et le plus lourd est l’autruche. Le mâle peut atteindre 2,7 m de haut et peser jusqu’à 160 kg.

Le colibri d’Elena est le plus petit. Il a la taille d’un gros bourdon avec ses 4 cm de long (sans le bec).

Le plus petit œuf est celui du colibri et pèse 150 milligrammes ; le plus gros est celui de l’autruche qui pèse 1,3 kilogramme. Le plus gros œuf du monde (9 kg) est celui de l’oiseau-éléphant, aujourd’hui disparu (cf. p. 41).

Pesant 9 à 12 kilos, le condor des Andes est le plus lourd des oiseaux de proie.

Le cygne de Bewick a 25’000 plumes, plus que tout autre oiseau. Quant aux colibris, certains sont si petits qu’ils n’en ont que 1000.

L’oiseau le plus rapide en vol est le faucon pèlerin. Un oiseau apprivoisé a été chronométré en piqué à 398 km/h (voir Quizz)

Certaines espèces de perroquets (gris du Gabon, ara) peuvent vivre jusqu’à 60 ans ou plus. Le record de longévité pour un perroquet est actuellement détenu pas un cacatoès qui a vécu 109 ans et s’est éteint en 1982.

Les sternes arctiques réalisent les plus longues migrations : elles migrent d’un pôle à l’autre, parcourant entre 70’000 et 80’000 km par an.

Les oies à tête barrée franchissent l’Himalaya et volent à plus de 8000 mètres d’altitude.
1. Combien d’espèces d’oiseaux dans le monde ?
Il y a environ 10’000 espèces d’oiseaux connues dans le monde (10’466 espèces vivantes et 145 disparues selon l’Union Ornithologique Internationale). Le nombre exact peut varier selon les sources, certaines sous-espèces étant considérées parfois comme des espèces à part entière, comme les corneilles noires et mantelées.

2. Un colibri suisse, est-ce possible ?
Les colibris ne vivent que sur le continent américain. On n’en a jamais trouvé en Europe. Il existe cependant en Europe un gros papillon de nuit, le moro-sphinx (MacroGLOSSUM STELLATARUM) qui est souvent pris pour un colibri : il vole de jour, butine les fleurs en faisant du sur-place et possède une longue trompe ressemblant au bec fin des colibris.

3. Quel oiseau a les serres les plus puissantes ?
La harpie féroce (Harpia harpyja) est un aigle forestier d’Amérique latine, l’un des plus grands au monde : deux mètres d’envergure et de 7 à 9 kg pour les femelles. La harpie se nourrit principalement de singes et de paresseux qu’elle arrache des branches et tue à l’aide de ses serres puissantes. La plupart de ses proies pèsent près de 7 kg, soit l’équivalent de son propre poids !

4. Quel oiseau pond des œufs en métal ?
Les Shadoks (http://fr.wikipedia.org/wiki/Les_Shadoks), pour que leurs œufs ne se cassent plus en tombant.

5. Quel oiseau a des plumes toxiques ?

6. Sittelle torchepot, pourquoi ce nom ?
La sittelle torchepot (Sitta europaea) est un petit oiseau forestier qui niche dans une cavité. Pour se protéger des prédateurs, elle en rétrécit l’entrée avec de la boue pour ne laisser qu’une petite ouverture, juste à sa taille. Son nom français vient du mélange de boue qu’elle utilise, comme un torchis, pour entourer l’entrée du trou (le pot).
7. **Quel oiseau ne se pose presque jamais ?**
Le martinet noir (*Apus apus*) ne se pose presque jamais : il se nourrit, boit, dort, parade et s’accouple en vol! Voyageant sans cesse entre l’Afrique et l’Europe, il ne se pose que pour pondre et couver ses œufs (20 jours partagés entre le mâle et la femelle) puis quelques fois par jour lors du nourrissage des jeunes (40 jours). Il passe donc le 97,3% de sa vie en vol.

8. **Quel oiseau mange 2 kg en 1 repas ?**
Le condor des Andes (*Vultur gryphus*) est un charognard qui se nourrit principalement sur des carcasses de grands mammifères (bétail, lamas, etc.). Pas facile de trouver une telle nourriture tous les jours! Lorsque le condor trouve enfin un animal mort, il va manger le plus possible, au point que parfois il ne pourra plus s’envoler avant d’avoir digéré son repas.

9. **Quel oiseau est le plus rapide ?**
Le recordman chez les oiseaux est sans conteste le faucon pèlerin (*Falco peregrinus*). Il a été chronométré en piqué à 184 km/h dans la nature grâce à un radar. Lâché d’un avion à la poursuite d’un fauconnier en chute libre, un faucon pèlerin d’élevage a plongé à 389 km/h. D’après les calculs, l’espèce pourrait dépasser les 400 km/h.

10. **Quel oiseau a un bec aussi long que son corps ?**
Avec un bec de plus de 10 cm, c’est le colibri porte-épée (*Ensifera ensiferum*). Tous les colibris sont nectarivores et certains, comme le colibri porte-épée, ont évolué avec les fleurs qu’ils pollinisent : le nectar au fond de la corolle ne peut être atteint que par le long bec du colibri, qui en échange transporte le pollen de fleur en fleur.

11. **Quel oiseau est le plus léger ?**
Le colibri d’Elena (*Mellisuga helenae*) est le poids plume de tous les oiseaux : il pèse entre 1,6 et 1,9 g, le mâle étant plus petit que la femelle. Celle-ci pond le plus petit œuf au monde, gros comme un Tic Tac. Le colibri d’Elena vit à Cuba et sur une petite île proche (l’île de la Jeunesse).

12. **Quel oiseau plonge le plus profond ?**
Formidables nageurs, tous les manchots se nourrissent de petits poissons, crustacés et céphalopodes dans les océans. Le record de plongée est détenu par le manchot empereur (*Aptenodytes forsteri*), dont un individu équipé d’une balise a dépassé 500 m de profondeur. Le record humain en apnée est de 273 m.
Pour en savoir plus

Bibliographie

Dossiers pédagogiques

Ciel ! où sont nos oiseaux ? La Chaux-de-Fonds 2012

Et l’écaille devint plume, Fribourg 2008

Fais comme l’oiseau, Ministère de région wallonne, sans date,

http://environnement.wallonie.be/publi/education/fais_comme_1_oiseau.pdf

Poussins, Fribourg 2009,

Ornitho.ch est le site où les ornithologues de tous niveaux déposent leurs observations d’oiseaux, souvent accompagnées de photographies, faites en Suisse et aux alentours. C’est également un outil de travail pour l’élaboration d’atlas. Ornitho.ch est la plate-forme officielle des ornithologues et observateurs d’oiseaux de Suisse et des régions limitrophes, placée sous l’égide de Nos Oiseaux et de sa Centrale ornithologique romande, de la Station ornithologique suisse, de Ficedula et de l’Ala.

avibase.bsc-eoc.org : Le meilleur site pour rechercher des informations sur les noms d’oiseaux dans toutes les langues, mais aussi leur distribution, taxinomie, etc. Plus de 9 millions de mentions sur 10’000 espèces et 22’000 sous-espèces aujourd’hui.

ibc.lynxeds.com : L’Internet bird collection (IBC) est un site de partage de photos (100’000), de vidéos (80’000) et de sons (11’000) couvrant aujourd’hui plus de 93% des espèces d’oiseau du monde.

xeno-canto.org : Site de partage d’enregistrements de chants d’oiseaux du monde entier (environ 150’000 enregistrements de près de 9000 espèces). Accès, blog et chargement gratuits, avec possibilité de faire des sonagrammes en ligne.
Quelques adresses utiles

Nos Oiseaux
Société romande pour l’étude et la protection des oiseaux
http://www.nosoiseaux.ch/

Station ornithologique suisse
6204 Sempach
Tél 041 462 97 00
http://www.vogelwarte.ch/les-oiseaux-de-suisse.html

ASPO / BirdLife Suisse
Association suisse pour la protection des oiseaux
La Sauge
1588 Cudrefin
http://www.birdlife.ch/fr

GOBG
Groupe Ornithologique de Lausanne
43 ch. des Bouveries
1284 Chancy
http://www.gobg.ch

Centre ornithologique de réadaptation
47, ch. des Chênes
1294 Genthod
Urgence et sauvetage d’oiseaux
079 424 33 07

CRR
Centre de réadaptation des rapaces
2, chemin du Rouet
1257 Bardonnex

COL
Cercle ornithologique de Lausanne
CP 5544
1002 Lausanne
http://oiseau.ch
route de malagnou 1 - 1208 genève
tél: +41 (0)22 418 63 00
fax: +41 (0)22 418 63 01
www.ville-ge.ch/mhng

du mardi au dimanche
de 10h à 17h – accès facilité pour les personnes handicapées
caféteria-boutique-bibliothèque

bus: 5, arrêt muséum ou
1-8, arrêts tranchées et muséum
tram: 12, arrêt villereuse
parking: villereuse