Rapid Polymyxin NP test for the detection of polymyxin resistance mediated by the *mcr-1/mcr-2* genes

Laurent Poirel ^{a,b,c}, Yu Larpin ^{a,b}, Jan Dobias ^a, Roger Stephan ^d, Jean-Winoc Decousser ^{e,f}, Jean-Yves Madec ^g, Patrice Nordmann ^{a,b,c,h,*}

^a Emerging Antibiotic Resistance, Medical and Molecular Microbiology Unit, Department of Medicine, University of Fribourg, Fribourg, Switzerland

^b INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland

- ^c Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
- ^d Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- e Department of Virology, Bacteriology Infection Control, Parasitology Mycology, Assistance Publique Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- ^f IAME, UMR 1137, INSERM, Paris, France
- ^g Agence Nationale de Sécurité Sanitaire (Anses), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
- ^h Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland

The Rapid Polymyxin NP test has been recently developed to rapidly detect polymyxin resistance in Enterobacteriaceae. Here we evaluated this test for detecting MCR-1/MCR-2-producing Enterobacteriaceae using a collection of 70 non-redundant strains either recovered from the environment, animals, or humans. Sensitivity and specificity were found to be 100%.

Keywords: Polymyxin MCR Resistance Enterobacteriaceae Rapid Polymyxin NP test

Polymyxins are becoming the last-resort antibiotics against multidrug resistant Enterobacteriaceae (Poirel et al., 2017). In addition to chromosome encoded-mechanisms of resistance to polymyxins, two transferable polymyxin resistance genes, mcr-1 and mcr-2 have been identified mostly in Escherichia coli since November 2015 among humans, animals, retail meat, and environment (Schwarz and Johnson, 2016; Xavier et al., 2016). Antibiotic susceptibility techniques for determining polymyxin resistance such as E-test and disc diffusion are not reliable due mostly to the poor diffusion of polymyxins in agar (Poirel et al., 2017). The broth microdilution method (BMD) is the reference technique recommended by the Clinical Laboratory Standard Institute (CLSI, 2015) in the US and the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2016) in Europe. However, the BMD technique is time consuming (24 h) and requires precise weighting of the polymyxin powder that may constitute a source of error. Recently, the Rapid Polymyxin NP test has been developed to detect polymyxin resistance in Enterobacteriaceae. It is based on the detection of glucose metabolization associated with bacterial growth in the presence of a given concentration of polymyxin B or colistin. When growth occurs (resistant strain), formation of acid metabolism in less than 2 hours is evidenced by a color change of a pH indicator, red phenol (Nordmann et al., 2016). (See Fig. 1.)

Our aim was to evaluate this Rapid Polymyxin NP test for detecting MCR-1/MCR-2-producing Enterobacteriaceae showing resistance to polymyxins, using a collection of enterobacterial strains either recovered from the environment, animals, or humans. A total of 70 non-duplicate mcr-1- and mcr-2-positive enterobacterial isolates from different origins, isolated between 2011 and 2016, has been studied (Table 1). Among them, 55% were extended-spectrum ß-lactamase (ESBL) producers and 1.5% were carbapenemase producers. The phylogenetic groups of MCR producers Escherichia coli strains have been determined using the Clermont quadruplex PCR (Clermont et al., 2013). This method uses the combination of three genes (chuA, an outer membrane hemin receptor; *yjaA*, coding for an unknown protein; arpA, coding for the Ankyrin repeat protein) and a DNA fragment called TspE4.C2 to divide *E. coli* strains in A, B1, B2, C, D, E, F phylogenetic groups (Clermont et al., 2000, 2013). E. coli harboring the A group colonize various environments (omnivorous mammals, herbivorous mammals, ectothermic and endothermic vertebrates). E. coli group B1

^{*} Corresponding author. Tel.: +41 26 300 9581.

E-mail address: patrice.nordmann@unifr.ch (P. Nordmann).

Solution **Colistin-free** with colistin solution NaCl alone Colistinsusceptible isolate Colistinresistant MCR-1producing isolate

Fig. 1. Representative results of the Rapid Polymyxin NP test. The Rapid Polymyxin NP test was performed with a control (non-inoculated well, first line), a reference colistin-susceptible isolate (second line), and a reference colistin-resistant isolate (third line). The first column is supplemented with colistin, while second column is free of colistin. The photograph was taken after a 1-hour incubation time. The yellow-to-red collar change indicates bacterial growth.

Table 1

are found in various environments, but seemed to be able to live more easily outside their host, as a secondary habitat (Gordon and Cowling, 2003; Walk et al., 2007). The strains harboring virulent factors and found in extraintestinal infection are usually from the B2 and D phylogenic groups (F sister group to B2) (Clermont et al., 2013; Johnson et al., 2000). In this study, the retail meat and the environmental E. coli were almost all from the phylogenetic group A and B1 (Table 1). Intestinal infectious strains seemed more likely to be from the A, B1 and D groups (Pupo et al., 1997), which correlates with origin of the strains tested in this study (Table 1). The MCR producers included five invitro obtained MCR-1-positive transconjugants obtained either from E. coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae or Enterobacter aerogenes as donors, and obtained in a previous study (Dénervaud-Tendon et al., 2017). Those transconjugants permitted to test additional enterobacterial species that produce MCR-1. BMD was performed in cation-adjusted Mueller-Hinton broth (MHB-CA, Bio-Rad, Marnes-La-Coquette, France) to precisely determine the minimal inhibitory concentrations (MIC). Colistin sulfate (Sigma-Aldrich, St. Louis, MO, USA) was tested over a range of concentrations (0.12-256 µg/ml). The MIC breakpoints of polymyxins for Enterobacteriaceae are as follows susceptibility ≤2 µg/ml and resistance >2 µg/ml (The European Committee on Antimicrobial Susceptibility Testing, 2017).

MICs of colistin for MCR-1/MCR-2 producers were variable (4–64 µg/ ml), but overall low (Table 1). All resistant strains were detected as being resistant by using the Rapid Polymyxin NP test with a sensitivity of 100% regardless of the species and of the origin of the strains

Strain	Species	Colistin resistance	ESBL or carbapenemase	Phylogenetic group	MIC of colistin (µg/ml)	Rapid Polymyxin NP test	Origin	Isolation date
	esistant strains							
Human st		MCD 1			4		University of the sector of	L.L. 2010
R2911	E. coli	MCR-1	-	A	4	+	Human, Switzerland	July 2016
R2912	E. coli	MCR-1	-	F	8	+	Human, Switzerland	July 2016
R2739	E. coli	MCR-1	-	A	4	+	Human blood, South Africa	August 2015
R2740	E. coli	MCR-1	-	B1	4	+	Human pus, South Africa	August 2015
R2741	E. coli	MCR-1	-	F	8	+	Human urine, South Africa	August 2015
R2742	E. coli	MCR-1	CTX-M	E	4	+	Human wound, South Africa	August 2015
R2743	E. coli	MCR-1	-	B1	8	+	Human urine, South Africa	August 2015
R2744	E. coli	MCR-1	—	F	4	+	Human urine, South Africa	August 2015
R2745	E. coli	MCR-1	CTX-M	A	4	+	Human urine, South Africa	August 2015
R2746	E. coli	MCR-1	_	F	8	+	Human, Switzerland	January 2016
R2747	E. coli	MCR-1	TEM-52	B2	16	+	Human, Switzerland	January 2016
R2748	E. coli	MCR-1	CTX-M	А	4	+	Human, Switzerland	January 2016
R2749	E. coli	MCR-1	CTX-M	А	4	+	Human, Switzerland	January 2016
R2750	E. coli	MCR-1	_	D	4	+	Human, France	March 2016
R2751	E. coli	MCR-1	_	D	8	+	Human, France	March 2016
R2752	E. coli	MCR-1	VIM	A	4	+	Human, Switzerland	November 20
R2757	E. coli	MCR-1	_	A	8	+	Human, France	May 2016
Animal st	rains							
R2768	E. coli	MCR-1	CTX-M	А	4	+	Calf, feces, France	January 2012
R2770	E. coli	MCR-1	CTX-M	D	16	+	Calf, feces, France	March 2011
R2771	E. coli	MCR-1	CTX-M	D	8	+	Calf, respiratory tract, France	May 2011
R2773	E. coli	MCR-1	CTX-M	D	8	+	Calf, feces, France	August 2011
R2776	E. coli	MCR-1	CTX-M	A	64	+	Calf, France	December 201
R2777	E. coli	MCR-1	CTX-M	A	8	+	Calf, France	July 2011
R2778	E. coli	MCR-1	CTX-M	D	16	+	Calf, feces, France	January 2012
R2782	E. coli	MCR-1	CTX-M	D	8	+	Calf, feces, France	February 2011
R2784	E. coli	MCR-1	CTX-M	A	16	+	Calf, feces, France	May 2012
R2786	E. coli E. coli	MCR-1	CTX-M	D	16		Calf, feces, France	March 2012
						+		
R2790	E. coli	MCR-1	CTX-M	D	16	+	Calf, feces, France	February 2012
R2791	E. coli	MCR-1	CTX-M	A	16	+	Calf, feces, France	March 2013
R2794	E. coli	MCR-1	CTX-M	B1	8	+	Calf, feces, France	May 2012
R2795	E. coli	MCR-1	CTX-M	D	8	+	Calf, feces, France	October 2012
R2796	E. coli	MCR-1	CTX-M	А	16	+	Calf, feces, France	December 201
R2797	E. coli	MCR-1	CTX-M	А	8	+	Calf, feces, France	March 2012
R2798	E. coli	MCR-1	CTX-M	А	16	+	Calf, feces, France	February 2012
R2799	E. coli	MCR-1	CTX-M	E	8	+	Calf, intestinal tract, France	May 2012

2

Table 1 (co	ntinued)
-------------	----------

S	Strain	Species	Colistin resistance	ESBL or carbapenemase	Phylogenetic group	MIC of colistin (µg/ml)	Rapid Polymyxin NP test	Origin	Isolation date
F	R2800	E. coli	MCR-1	CTX-M	А	8	+	Calf, feces, France	August 2012
F	R2801	E. coli	MCR-1	CTX-M	А	8	+	Calf, feces, France	November 201
F	R2803	E. coli	MCR-1	CTX-M	D	8	+	Calf, intestinal tract, France	July 2012
	R2804	E. coli	MCR-1	CTX-M	А	8	+	Calf, intestinal tract, France	October 2012
	R2805	E. coli	MCR-1	CTX-M	A	16	+	Calf, sepsis, France	July 2012
	R2806	E. coli	MCR-1	CTX-M	A	8	+	Calf, feces, France	May 2012
	R2807	E. coli	MCR-1	CTX-M	B1	8	+	Calf, intestinal tract, France	October 2012
		E. coli		CTX-M	F	8 16			
	R2810		MCR-1				+	Calf, sepsis, France	April 2012
	R2812	E. coli	MCR-2	_	A	8	+	Pig, Belgium	August 2016
	R2984	K. pneumoniae	MCR-1	_	NA	8	+	Pig, Portugal	July 2016
	R2985	K. pneumoniae	MCR-1	_	NA	32	+	Pig, Portugal	July 2016
F	R2986	K. pneumoniae	MCR-1	_	NA	64	+	Pig, Portugal	July 2016
F	Food strai	ns							
F	R2897	E. coli	MCR-1	-	Α	8	+	Chicken retail meat, Germany	August 2016
F	R2898	E. coli	MCR-1	-	A	8	+	Chicken retail meat, Germany	August 2016
F	R2899	E. coli	MCR-1	-	B1	8	+	Chicken retail meat, Germany	August 2016
F	R2900	E. coli	MCR-1	_	А	4	+	Chicken retail meat, Italy	August 2016
F	R2901	E. coli	MCR-1	_	B1	4	+	Chicken retail meat, Germany	August 2016
	R2902	E. coli	MCR-1	_	A	8	+	Chicken retail meat, Germany	August 2016
	R2903	E. coli	MCR-1	SHV-12	B1	4	+	Chicken retail meat, Germany	July 2015
	R2904	E. coli	MCR-1	CTX-M	B1	4	+	Chicken retail meat, Italy	July 2015
		E. coli		-		4		Turkey retail meat, Germany	
	R2905		MCR-1		B1		+	· · ·	August 2016
	R2906	E. coli	MCR-1	_	B1	4	+	Turkey retail meat, Germany	August 2016
	R2907	E. coli	MCR-1	_	B2	8	+	Turkey retail meat, Germany	August 2016
	R2908	E. coli	MCR-1	-	A	8	+	Turkey retail meat, Germany	August 2016
	R2753	S. enterica	MCR-1	_	NA	16	+	Pig retail meat, Portugal	January 2011
	R2754	S. enterica	MCR-1	CTX-M	NA	8	+	Pig retail meat, Portugal	January 2011
F	R2755	S. enterica	MCR-1	-	NA	8	+	Chicken retail meat, Portugal	January 2011
	R2756	S. enterica	MCR-1	_	NA	8	+	Calf retail meat, Portugal	January 2012
E F	Environm	ental strains							
	R2910	E. coli	MCR-1	CTX-M	А	8	+	Cha-om Plant, Thailand	2014
F	R2913	E. coli	MCR-1	SHV-12	B1	8	+	River water, Switzerland	2012
Т	Transconj	ugants							
F	P6-20	E. aerogenes	MCR-1	-	NA	4	+	In-vitro obtained	NA
F	P6-24	E. cloacae	MCR-1	-	NA	16	+	In-vitro obtained	NA
F	P6-27	K. oxytoca	MCR-1	_	NA	16	+	In-vitro obtained	NA
	P6-30	K. pneumoniae	MCR-1	_	NA	64	+	In-vitro obtained	NA
F	P6-39	E. coli J53	MCR-1	_	NA	8	+	In-vitro obtained	NA
0	Colistin Su	sceptible strains							
	R110	E. coli J53	_	-	ND	0.25	-	Human, France	November, 20
C	C349	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
	C352	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
	C353	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
) (C355	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
) (C358	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
0	C359	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
C	C360	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C361	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C363	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C365	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C368	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C369	E. coli	_	_	ND	0.12	_	Human, Switzerland	
			_					-	February 201
	C371	E. coli		_	ND	0.12	_	Human, Switzerland	February 201
	C372	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C373	E. coli	-	-	ND	0.12	_	Human, Switzerland	February 201
	C374	E. coli	_	-	ND	0.12	_	Human, Switzerland	February 201
	C375	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
	C376	E. coli	-	-	ND	0.12	-	Human, Switzerland	February 201
C	C377	E. coli	_	-	ND	0.12	-	Human, Switzerland	February 201
C	C378	E. coli	_	_	ND	0.12	_	Human, Switzerland	February 201
	C354	K. pneumoniae	_	_	NA	0.12	_	Human, Switzerland	February 201
	C362	K. pneumoniae	_	_	NA	0.12	_	Human, Switzerland	February 201
	C364	K. pneumoniae	_	_	NA	0.12	_	Human, Switzerland	February 201
	C367	K. pneumoniae	_	_	NA	0.12	_	Human, Switzerland	February 201
	C370	K. pneumoniae	_	_	NA	0.12	_	Human, Switzerland	February 201
	C379	*	_		NA	0.12	_	Human, Switzerland	
		K. pneumoniae		_					February 201
	C382	K. pneumoniae	_	—	NA	0.12	_	Human, Switzerland	February 201
		K. oxytoca	_	_	NA	0.12	-	Human, Switzerland	February 201
C	C351				D.T.A.				
0	C356 C384	K. oxytoca K. oxytoca	_	_	NA NA	0.12 0.12	_	Human, Switzerland Human, Switzerland	February 2016 February 2016

(continued on next page)

Table 1 (continued)

Strain	Species	Colistin resistance	ESBL or carbapenemase	Phylogenetic group	MIC of colistin (µg/ml)	Rapid Polymyxin NP test	Origin	Isolation date
C350	E. cloacae	_	_	NA	0.12	_	Human, Switzerland	February 2016
C366	E. cloacae	_	_	NA	0.12	_	Human, Switzerland	February 2016
C393	E. cloacae	_	_	NA	0.12	_	Human, Switzerland	February 2016
C357	E. aerogenes	_	_	NA	0.12	-	Human, Switzerland	February 2016

NA, not applicable; ND, not determined; +, positive; -, negative.

(Table 1). Also, regardless of the phylogenetic group the E. coli strains belonged to, all resistant ones were detected by using the Rapid Polymyxin NP test. This test would be useful in many situations including the screening of polymyxin resistant isolates from animal husbandry and the environment. The five E. coli transconjugants expressing MCR-1 were also detected by the Rapid Polymyxin NP. The specificity of the Rapid Polymyxin NP was 100% in the present study, although 35 MCR-negative strains had been included (Table 1). The Rapid Polymyxin NP test showed excellent sensibility and specificity toward all kind of Enterobacteriaceae tested and that corresponded to a large collection of MCR producers.

Funding

This work has been funded by the University of Fribourg, by grants from the ANIWHA ERA-NET project, Switzerland, by the OFSP, Bern, Switzerland (grant n°16,009,294), and by the Novartis Foundation for medical-biological Research.

Medical-biological Research. Declaration of Interest An international patent form has been filed on behalf of the University of Fribourg, Switzerland corresponding to the Rapid Polymyxin NP test. Acknowledgments We are grateful to S. Kumar-Malhotra for the gift of the MCR-2-producing *E. coli* strain, and G. Jorge da Silva for the gift of the MCR-1-producing *Salmonella* isolates.

References

Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:4555-8.

- Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylotyping method revisited : improvement of specificity and detection of new phylogroups. Environ Microbiol Rep 2013;5:58-65.
- Clinical and Laboratory Strandards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard. Document M07-A10. Tenth edition. Wayne (PA): The Institute; 2015.
- Dénervaud-Tendon V, Poirel L, Nordmann P. Transferability of the mcr-1 colistin resistance gene. Microb Drug Resist 2017;23:813–4.
- Gordon DM, Cowling A. The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 2003;149:3575-86.
- Johnson JR, Delavari P, Kuskowski M, Stell AL. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 2000;183: 78-88
- Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis 2016;22:1038-43.
- Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017:30:557-96
- Pupo GM, Karaolis DKR, Lan R, Reeves PR. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 1997;65: 2685-92
- Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 2016;71:2066-70.
- The European Committee on Antimicrobial Susceptibility Testing. Recommendations for MIC determination of colistin (polymyxin E) As recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. www.eucast.org, 2016.
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters Version 7.1. http://www.eucast. org, 2017
- Walk ST, Alm EW, Calhoun LM, Mladonicky JM, Whittam TS. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ Microbiol 2007:9:2274-88
- Xavier BB, Lammens C, Ruhal R, Butaye P, Goossens H. Identification of a novel plasmidmediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 2016;21:1-5.