C and Cl Isotope Fractionation of 1,2-Dichloroethane Displays Unique $\delta^{13}C/\delta^{37}Cl$ Patterns for Pathway Identification and Reveals Surprising C−Cl Bond Involvement in Microbial Oxidation

Jordi Palau,*† Stefan Cretnik,‡ Orfan Shouakar-Stash,§ Martina Höche,‡ Martin Elsner,‡ and Daniel Hunkeler†

†Centre for Hydrogeology and Geothermics, University of Neuchâtel, 2000 Neuchâtel, Switzerland
‡Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
§Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

ABSTRACT: This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C−H bond (Pseudomonas sp. strain DCA1) versus C−Cl bond cleavage by SN2 reaction (Xanthobacter autotrophicus GJ10 and Anoxybacillus aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (ϵ_{bulk}) was determined by measurements of the same samples in three different laboratories using two gas chromatography–isotope ratio mass spectrometry systems and one gas chromatography–quadrupole mass spectrometry system. Strongly pathway-dependent slopes ($\Delta \delta^{13}C/\Delta \delta^{37}Cl$), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (SN2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different ϵ_{bulk} values [−3.5 ± 0.1‰ (oxidation) and −31.9 ± 0.7 and −32.0 ± 0.9‰ (SN2)], the obtained ϵ_{Cl} values were surprisingly similar for the two pathways: −3.8 ± 0.2‰ (oxidation) and −4.2 ± 0.1 and −4.4 ± 0.2‰ (SN2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, SN2), and 1.0087 ± 0.0002 (37Cl-AKIE, SN2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C−Cl bonds in microbial C−H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.

INTRODUCTION

Chlorinated ethanes are among the most widespread contaminants in groundwater,1 and 1,2-dichloroethane (1,2-DCA) has been found in 36% of 1585 National Priorities List sites identified by the U.S. Environmental Protection Agency.2 The presence of 1,2-DCA, an intermediate in the production of plastics, in groundwater is mainly a consequence of industrial activity.3 A number of laboratory3−9 and field10−11 studies showed 1,2-DCA biodegradation under aerobic3−6 and anaerobic7−11 conditions via different reaction pathways.3 Under aerobic conditions, 1,2-DCA can be degraded either via nucleophilic substitution ($S_{\text{n}2}$)3,6 or via oxidative cleavage of a C−H bond3 catalyzed by a hydrolytic dehalogenase or monooxygenase enzyme, respectively (Scheme 1). Initial products of both reactions, 2-chloroethanol ($S_{\text{n}2}$ reaction) and 1,2-dichloroethanol (oxidation), are further degraded to ubiquitous end products, which hampers a direct identification of degradation pathways from metabolite analysis. Alternative approaches to detecting and identifying 1,2-DCA transformation pathways in the subsurface are therefore warranted.

Scheme 1

Oxidation (C−H cleavage) (Pseudomonas sp. strain DCA1) expected KIEs

\[
\begin{align*}
&\text{CH}_2\text{Cl} \xrightarrow{\text{H}} \text{OH} \xrightarrow{\text{R}} \text{CHCl} \xrightarrow{\text{KIE}} \text{CH}_2\text{Cl} \\
&\text{H} \xrightarrow{\text{KIE}} \text{H} \xrightarrow{\text{OH}} \text{R} \xrightarrow{\text{KIE}} \text{CHCl} \\
&\text{H} \xrightarrow{\text{KIE}} \text{H} \xrightarrow{\text{OH}} \text{R} \xrightarrow{\text{KIE}} \text{CHCl}
\end{align*}
\]

$S_{\text{n}2}$-reaction (X. autotrophicus GJ10 and A. aquaticus AD20)

This is crucial information in environmental field studies for assessing 1,2-DCA natural attenuation.

Compound-specific isotope analysis (CSIA) is an innovative tool for investigating degradation pathways of organic compounds in the environment. CSIA has been extensively used to investigate the fate and transport of anthropogenic and natural organic compounds in the environment. However, the application of CSIA in environmental studies is limited due to the lack of suitable isotopomer standards and the complexity of the isotope fractionation processes. The study of dual element isotope fractionation during biodegradation of 1,2-DCA provides new insights into the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field.
contaminants. Isotope ratios of individual compounds, measured either by gas chromatography and isotope ratio mass spectrometry (GC–IRMS) or gas chromatography and quadrupole mass spectrometry (GC–qMS), are reported using the delta notation:

$$\delta^E = \frac{R(^{13}E/^{12}E)_{\text{sample}} - 1} {R(^{13}E/^{12}E)_{\text{standard}}} \times 1000$$

where \(R \) is the isotope ratio of heavy \(^{13}E \) and light \(^{12}E \) isotopes of element \(E \) (e.g., \(^{13}C/^{12}C \) and \(^{37}Cl/^{35}Cl \)). The isotope fractionation (\(\epsilon \)) expresses by how much \(E^{13}/E^{12} \) is smaller (negative values) or larger (positive values) in the average of freshly formed products compared to that in the substrate from which they are produced. Transformation-induced isotope fractionation is generally larger than the one related to phase transfer processes such as sorption or volatilization. Bulk (i.e., compound-average) \(\epsilon \) values can be calculated using a modified form of the Rayleigh distillation equation:

$$\ln \frac{R_1}{R_0} = \epsilon_{\text{bulk}} \times \ln f$$

where \(R_0 \) and \(R_1 \) are the current and initial isotope ratios, respectively, and \(f \) is the remaining fraction of the compound.

Previous laboratory experiments showed that for 1,2-DCA different carbon \(\epsilon_{\text{bulk}} \) values of \(-29.2 \) and \(-3.9\% \) reflected different reaction pathways: hydrolytic dehalogenation (C–Cl bond cleavage via S_N2) and oxidation (C–H bond cleavage), respectively (Scheme 1). Knowledge of in situ contaminant biodegradation reactions is essential for evaluating the fate and long-term impact of 1,2-DCA in groundwater. For aerobic biodegradation of 1,2-DCA, isotope data are particularly important as no characteristic products accumulate. However, while isotope fractionation of one element alone can distinguish pathways in laboratory experiments (where mass balances can be established and \(\epsilon_{\text{bulk}} \) values determined), this is not possible under field conditions. Here, evidence of a second element and a dual isotope approach is necessary to distinguish 1,2-DCA degradation pathways. As observed experimentally, isotope discrimination of both elements. Therefore, different slopes are expected from distinct reaction pathways involving different bonds with different elements.

Currently, there is growing interest in dual element isotope analysis for improved differentiation of transformation mechanisms, and several authors pointed out that complementary mechanistic insight for 1,2-DCA aerobic biodegradation reactions could be achieved by the additional analysis of chlorine and/or hydrogen. Therefore, different slopes are expected from distinct reaction pathways involving different bonds with different elements.

During enzymatic degradation, molecules containing the light isotope at the reactive site (e.g., \(^{37}Cl \)) typically exhibit a reaction rate (e.g., \(k_3 \)) higher than the rate of those with a heavy isotope (e.g., \(^{35}Cl \)), resulting in a kinetic isotope effect (KIE) of \(k_2/k_3 \). When a C–Cl bond is broken, a (primary) chlorine leaving group KIE would be expected, whereas in the oxidation reaction, chlorine atoms sit next to the reacting bond so that only a secondary KIE would be expected (Scheme 1). Secondary isotope effects at positions next to the reacting bond are generally much smaller than primary isotope effects. Until recently, CI-CSIA of chlorinated aliphatic compounds was not feasible, however, because a direct method that would produce a suitable Cl-containing measurement gas inside a chromatographic separation gas was lacking. However, new analytical methods were developed on the basis of the measurement of selected isotopeologue ions or isotopeologue ion fragments in unconverted analyte molecules using both continuous flow GC–IRMS and GC–qMS. In addition, a theoretical framework provided the theoretical justification for such evaluation of isotope fractionation from ion current ratios of molecular and fragment ion multiplets. A recent interlaboratory study took the next step and demonstrated that comparable \(\delta^{37}Cl \) values were obtained upon analysis of a set of pure trichlorethene (TCE) standards on eight different instruments. Because the technology is so new, however, a comparative study that shows that comparable \(\epsilon_{Cl} \) values are obtained when analyzing degradation samples on different instruments and in different laboratories would also be desired. No such study has yet been conducted. Most notably, CI-CSIA studies have so far been applied to only few compounds, because two isotopically distinct compound-specific standards are necessary for every new substance. This has restricted applications primarily to chlorinated ethylenes, so that, to the best of our knowledge, dual element isotope data are currently nonexistent for chlorinated ethanes.

This study, therefore, aimed (i) to establish for the first time dual element (C and Cl) isotope analysis of the chlorinated ethane 1,2-DCA, (ii) to perform the CI isotopic analysis in three different laboratories (i.e., Waterloo, Munich, and Neuchâtel), using two different GC–IRMS systems and one GC–qMS system, to investigate the consistency of \(\epsilon_{Cl} \) values obtained with different instruments and analytical methods, and (iii) to investigate carbon and chlorine isotope fractionation during aerobic biodegradation of 1,2-DCA with three pure strains to determine whether the dual isotope slopes are sufficiently different to potentially distinguish between hydrolytic dehalogenation (S_N2) and oxidation (C–H bond cleavage) in the field.

MATERIALS AND METHODS

Preparation of Pure Cultures

Three pure strains with known initial biotransformation mechanisms were used for the batch experiments: *Pseudomonas* sp. strain DCA1 (oxidation) and *Xanthobacter autotrophicus* GJ10 and *Ancylobacter aquaticus* AD20 (S_N2 reaction). *X. autotrophicus* GJ10 (DSMZ 8784) and *A. aquaticus* AD20 (DSMZ 9080) were purchased (DSMZ, Braunschweig, Germany), and *Pseudomonas* sp. strain DCA1 was kindly provided by E. Edwards (Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON). The growth medium was prepared as described by Hunkeler and Aravena. Cultures and experiments were prepared in 250 mL glass bottles, which contained 185 mL of medium and were capped with Mininert-Valves (Vici Precision Sampling, Baton Rouge, LA). Cultures were amended with 1,2-DCA (Fluka, ≥99.5% pure) and incubated in the dark at room temperature while being continuously shaken (100 rpm). Headspace 1,2-DCA concentrations were monitored throughout the incubation.
period. Before the experiments were started, the cultures were transferred three times. Each subculture was spiked with pure 1,2-DCA four times before a 15 mL aliquot was transferred to 170 mL of autoclaved fresh medium. The spike volume was 9 μL of pure 1,2-DCA for the first and second subcultures and 22.5 μL for the third, leading to aqueous phase concentrations of 0.6 and 1.5 mM, respectively.

Experiment Sampling. All experiments were conducted in triplicate. Experiments and controls were amended with 22.5 μL of pure 1,2-DCA, corresponding to the chlorine isotopic working standard (δ37Cl-ChYN2 = 0.8 ± 0.1‰), to produce an initial aqueous concentration of 1.5 mM. Bottles were shaken upside down to prevent leakage of the gas phase through the valve. After being shaken for 1 h, samples representing the initial concentration were collected. For concentration and isotopic analysis, aqueous samples (1.5 mL) were taken at selected time points and preserved frozen in 2 mL vials with NaCl (1 g/L). Two abiotic control bottles were prepared with 185 mL of autoclaved mineral medium, and samples were collected and preserved as described for the experiments. For each culture experiment, triplicate samples were shipped frozen to the University of Waterloo and to the Helmholtz Zentrum München for chlorine isotope measurements.

Isotopic and Concentration Analysis. Five pure 1,2-DCA isotopic working standards, one for carbon and four for chlorine, were used for instrument monitoring and external calibration of sample raw δ37Cl values to the international Standard Mean Ocean Chloride (SMOC) scale. The isotopic signature of the carbon standard (δ13Cv-pdb = −29.47 ± 0.05‰) was determined beforehand using an elemental analyzer coupled to an IRMS system. With regard to the chlorine standards, CHYN1 and CHYN2 (δ35Cliso values of 6.30 ± 0.06 and 0.84 ± 0.14‰, respectively) were characterized relative to SMOC in München by IRMS after conversion of 1,2-DCA to methyl chloride according to the method of Holt et al.27 IT2-3001 and IT2-3002 (δ35Cliso values of 0.83 ± 0.09 and −0.19 ± 0.12‰, respectively) were calibrated against the CHYN standards using a GC–IRMS system in Waterloo and a GC–qMS system in Neuchâtel, respectively.

A detailed description of analytical methods is available in the Supporting Information. Carbon isotope ratios were measured by GC–IRMS, and the precision based on the working standard δ13C value reproducibility was 0.5% (1σ). Chlorine isotopic analysis was performed using the following instruments: (1) in Waterloo, a model 6890 GC instrument (Agilent, Santa Clara, CA) coupled to a continuous flow IsoPrime IRMS instrument (Micromass, Manchester, U.K.; currently Isoprime Ltd.); (2) in München, a TRACE GC instrument (Thermo Fisher Scientific, Milan, Italy) directly coupled to a Finnigan MAT 253 IRMS instrument (Thermo Fisher Scientific, Bremen, Germany); and (3) in Neuchâtel, a model 7890A GC instrument coupled to a model 5975C quadrupole MS instrument (Agilent). The instrument used in Neuchâtel will be termed the qMS instrument, and those used in Waterloo and München will be termed IRMS-1 and IRMS-2 instruments, respectively.

For analyzing 1,2-DCA, two ions of the molecular group (m/z 100 and 102) were measured with the IRMS-2 instrument, whereas the two most abundant fragment ions (m/z 62 and 64) were used for the IRMS-1 instrument and the qMS instrument. For 1,2-DCA, the intensities of the most abundant fragment ion peaks are much higher than those of the parent ion peaks. Both ion couples (m/z 100 and 102 and m/z 62 and 64) correspond to isotopologue pairs (35Cl12C2H4 and 37Cl12C2H4, respectively, and 35Cl35Cl12C2H4, respectively) that differ by one heavy chlorine isotope. The isotope ratio (R) can be obtained from the ratio of these isotopologues according to eq 3.27

$$R = \frac{\delta^{37}Cl}{\delta^{35}Cl} = \frac{37p}{35p} = n - k + 1 \times \frac{37Cl(k)\delta^{35}Cl(n-k)}{37Cl(k-1)\delta^{35}Cl(n-k+1)} = 2 \times \frac{102I}{100I} = \frac{64I}{62I} \tag{3}$$

where 37p and 35p are the probabilities of encountering 37Cl and 35Cl, respectively, n is the number of Cl atoms, k is the number of 37Cl isotopes, 37Cl(1)Cl(n-1) and 37Cl(k-1)Cl(n-k+1) represent the isotopologues containing k and k − 1 heavy isotopes, respectively, and I indicates the peak intensity of each ion.

For the qMS instrument, isotope ratios were calculated using eq 3 and raw δ37Cl values were determined by referencing versus an external 1,2-DCA working standard according to eq 1. In this case, the standard was dissolved in water and measured like the samples in the same sequence.28 In the IRMS-1 and IRMS-2 instruments, raw δ37Cl values were determined by automatic evaluation of sample’s target ion peaks against the ion peaks of the 1,2-DCA monitoring gas, which was introduced by a dual inlet system during each sample run providing an anchor between sample measurements.28 Subsequently, a two-point linear calibration of raw δ37Cl values to SMOC scale was performed in each laboratory using two external working standards, i.e., IT2(3001 and 3002) for the IRMS-1 instrument and CHYN(1 and 2) for the IRMS-2 and qMS instruments.28 The analysis schemes applied in each laboratory are available as Supporting Information. For the measurements with the qMS instrument, samples and standards were diluted to a similar concentration and each of them was measured 10 times, leading to a precision (1σ) on the analysis of standards of ±0.3‰. For the IRMS-1 and IRMS-2 instruments, the precision on the analysis of standards was ±0.1‰ (1σ). The δ37Cl of controls remained constant (0.7 ± 0.2‰; n = 12) at δ37Cliso within the analytical uncertainty throughout the experiment.

Concentrations of 1,2-DCA were measured by headspace analysis using a TRACE GC-DSQII MS instrument (Thermo Fisher Scientific, Waltham, MA) in single-ion mode (m/z 51, 62, 64, 98, and 100). Concentrations were determined using a five-point calibration curve. The estimated total relative error on analysis of external standards interspersed along the sequence was ±4%. Concentrations were corrected for 1,2-DCA volatilization to the bottle headspace using Henry’s law and Henry coefficients.28 An aqueous phase 1,2-DCA concentration decrease of ≤5%, caused by a change in the headspace to solution ratio during the experiment, was estimated. The average concentration of controls remained constant throughout the experiments (1.55 ± 0.03 mM, ±1σ; n = 12), indicating that losses of the compound through the valves and caps during the shaking of bottles and preservation of samples were insignificant.

Calculation of Apparent Kinetic Isotope Effects (AKIES). Kinetic isotope effects are position-specific, whereas ϵ_{bulk} values are calculated from compound-average isotope data.
Therefore, observable $\varepsilon_{\text{bulk}}$ values have to be converted into AKIEs to obtain information about the underlying reaction mechanisms.21 For the calculation of AKIEs, a hypothesis about the reaction mechanism, or assumed reaction mechanism, is necessary. The effects of nonreacting positions within the molecule, as well as of intramolecular competition, are then taken into account using eqs 4 and 521 respectively

$$e_p \approx \frac{n}{x} \times \varepsilon_{\text{bulk}}$$

where e_p is the isotopic fractionation at the reactive position, n is the number of atoms of the element considered, x is the number of reactive sites, and z is the number of identical reactive sites undergoing intramolecular competition. In symmetric molecules such as 1,2-DCA, all atoms are in equivalent reactive positions $({\text{n} = x})$, and therefore, e_p is directly obtained from eq 2.21 The isotope fractionation values were quantified by least-squares linear regression according to eq 2 without forcing the regression to the origin.39 As demonstrated by Elsner and Hunkeler,27 the Rayleigh equation (eq 2) can also be applied to calculate the isotopic fractionation of chlorine despite the natural abundance of 35Cl being higher than that of 13C.

RESULTS AND DISCUSSION

Chlorine Isotope Fractionation Values from Different Instruments. Chlorine isotope fractionation values ($\varepsilon_{\text{bulk}}^{\text{Cl}}$) measured with different instruments are compared in Table 1. Results show excellent regressions (i.e., $r^2 \geq 0.95$) for the data from triplicate experiments when measured on the same instrument (entries in Table 1). In contrast, the variation was greater when data from different instruments were compared. The $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values from different instruments were compared using paired t tests conducted with SigmaPlot. The p values were above a significant level of 0.05, with the exception of the p value for $X. \text{autotrophicus}$ between the IRMS-1 ($\varepsilon_{\text{bulk}}^{\text{Cl}} = -4.3\%e$) and IRMS-2 ($\varepsilon_{\text{bulk}}^{\text{Cl}} = -4.0\%e$) instruments (Table 1). This result indicates that, in general, there is no statistically significant difference in $\varepsilon_{\text{bulk}}^{\text{Cl}}$ values at the 95% confidence level. The comparison of p values for different instrument pairs does not show systematic differences, suggesting that the variation in $\varepsilon_{\text{bulk}}^{\text{Cl}}$ between laboratories could be in part related to minor effects during sample handling. The effect of scatter in data points at late stages of reaction on calculated $\varepsilon_{\text{bulk}}^{\text{Cl}}$ (Figure 1) could also explain the small differences.40 However, removing these data points did not significantly improve the agreement.

C and Cl Isotope Fractionation and Dual Isotope Slopes. Degradation experiments lasted between 12 h ($A. \text{aquaticus}$) and 21 h ($X. \text{autotrophicus}$), and 1,2-DCA transformation above 90% was reached for all the replicates. Carbon and chlorine $\varepsilon_{\text{bulk}}$ values ($r^2 \geq 0.95$ (Figure 1) were
determined as indicated above (eq 2). Transformation of 1,2-DCA by *A. aquaticus* and *X. autotrophicus* by a haloalkane hydrolytic dehalogenase reaction resulted in the strong enrichment of 13C in the remaining substrate, showing a Δ31C shift of approximately 98‰ at 95% degradation. The obtained ε13C values for both cultures are the same within 95% confidence intervals, and ε37Cl values fall within the ranges determined from previous studies2,6,33,41 (Table 2). Compared with that of carbon, a lower ε37Cl value of approximately −4.3‰ was determined for both cultures (ε37Cl/ε13C = 7.4). Degradation of 1,2-DCA by *Pseudomonas* sp. strain DCA1 in an enzymatic monooxygenase reaction resulted in a smaller carbon ε13C (−3.5‰) compared to that of the nucleophilic (S2) reaction (Figure 1). This result is consistent with the previously reported value (Table 2).16 For Cl, a ε37Cl value close to those associated with primary Cl isotopic effects was measured (ε37Cl/ε13C = 0.9). This value is unusually high given that from a known mechanism a secondary isotope effect is expected (see further discussion in the next section).

A linear relation between Δ31C and Δ37Cl was obtained for all the strains (R2 ≥ 0.97), and strongly different slopes (Λ = Δ31C/Δ37Cl ≥ ε13C/ε37Cl) were determined for the S2 reaction (Λ = 7.7 ± 0.2) and oxidation (Λ = 0.78 ± 0.03) (Figure 2). The slopes obtained from *X. autotrophicus* and *A. aquaticus* degradation experiments were the same within 95% confidence intervals. Therefore, the large difference in Λ among the investigated reactions allows the use of a dual isotope approach to identify the different pathways in the field. In contrast, a single element approach based only on carbon isotopic data would lead to ambiguous interpretations because a certain extent of isotopic fractionation (e.g., Δ31C) could have been caused by a strongly isotope fractionating reaction that has proceeded little, or a weakly isotope fractionating reaction that has proceeded further (or an unknown combination of both). Unlike in lab experiments in which ε37Cl values can be determined,16 insight into pathways would therefore be elusive in the field. The starkly contrasting trends of Figure 2 show how isotopic analysis of chlorine as a second element can resolve this issue. The large difference between determined slopes also allows the determination of whether both pathways occur in the field. In ideal situations, the proportion of both competing pathways could be estimated on the basis of dual isotope data.42,43 A dual isotope analysis can also be helpful in microbial laboratory experiments for substantiating conclusions about prevailing mechanisms.

Table 2. Measured Carbon and Chlorine Isotopic Fractionation Values (in ‰) and Apparent Kinetic Isotope Effects

<table>
<thead>
<tr>
<th>Reaction Mechanism</th>
<th>ε13C Bulk</th>
<th>31C-AKIE</th>
<th>ε37Cl Bulk</th>
<th>37Cl-AKIE</th>
<th>Reported ε37Cl Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aquaticus S2</td>
<td>−32.0 ± 0.9</td>
<td>1.068 ± 0.002</td>
<td>−4.4 ± 0.2</td>
<td>1.0089 ± 0.0004</td>
<td>−31.9 to −32.416</td>
</tr>
<tr>
<td>X. autotrophicus S2</td>
<td>−31.9 ± 0.7</td>
<td>1.068 ± 0.002</td>
<td>−4.2 ± 0.1</td>
<td>1.0085 ± 0.0002</td>
<td>−28.7 to −33.035,41</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>C–H bond cleavage</td>
<td>−3.5 ± 0.1</td>
<td>1.0070 ± 0.0002</td>
<td>−3.8 ± 0.2</td>
<td>1.0038 ± 0.0002</td>
</tr>
</tbody>
</table>

See Rayleigh plots in Figure 1. The uncertainty corresponds to the 95% confidence interval calculated from the standard deviation of the regression slope. Calculated according eq 5. The uncertainty was estimated by error propagation.

![Figure 2](image) Carbon and chlorine δ isotope values from triplicate experiments and all used instruments (i.e., IRMS-1, IRMS-2, and qMS) were combined in a dual isotope plot. Symbols are as follows: blue for *A. aquaticus*, red for *X. autotrophicus*, green for *Pseudomonas* sp., circles for the IRMS-1 instrument, squares for the IRMS-2 instrument, and diamonds for the qMS instrument. The slopes of the linear regression lines (―) give the Λ values (±95% confidence intervals), and the dashed lines correspond to the 95% confidence intervals. Error bars of Δ31C values are smaller than the symbols.
and 1-chlorobutane (1.0066) dechlorination catalyzed by haloalkane hydrolytic dehalogenase (extracted from X. autotrophicus GJ10). In this former study, the experimental 37Cl-AKIE was determined by the isotopic analysis of the released Cl$^-$ during 1,2-DCA dechlorination, and therefore, it represents the primary 37Cl-AKIE. According to Lewandowicz et al. and Paneth, an explanation for the 37Cl-AKIE of 1,2-DCA being lower than that of 1-chlorobutane could be that the dehalogenation step is reversible and the hydrolysis of the enzyme-bound intermediate is responsible for the overall irreversibility of the reaction. In addition, in a recent study that investigated biodegradation of 1,1-dichloroethane and 1,1,1-trichloroethane by whole cell and cell free extract systems, 13C-AKIEs for both chlorinated ethanes during dechlorination by cell free extracts were unexpectedly lower than those determined in whole cell experiments. The higher 37Cl-AKIE of 1.009 compared to the theoretical primary 37Cl-AKIE could be explained by the contribution of a β-secondary isotopic effect given that, in our study, the 37Cl/35Cl ratios were measured in the remaining 1,2-DCA and secondary isotopic effects were neglected in the primary AKIE calculation (eq 5). The magnitude of the β-secondary 37Cl-AKIE can be estimated from the average of KIE in both Cl molecular positions according to eq 6.12

\[
\varepsilon_{\text{bulk}} \approx \frac{1}{2} \left(\frac{1}{\text{KIE}_{\text{primary}}} + \frac{1}{\text{KIE}_{\text{secondary}}} \right) - 1
\] (6)

Plugging in the $\varepsilon_{\text{bulk}}$ value measured in our study (−4.3 ‰) and the reported theoretical primary Cl isotopic effect of 1.0065,46,47 we estimated a β-secondary 37Cl-AKIE of 1.0021. Equation 6 assumes that $\varepsilon_{\text{bulk}}$ is not significantly masked by nonfractionating rate-limiting processes preceding the reaction step. This is a likely assumption in our case judging by the relatively high carbon and chlorine AKIEs (see the discussion presented above and Table 2). Secondary 13C-AKIEs are generally much smaller than primary isotopic effects, and therefore, they are usually omitted from 13C-AKIE calculations.21 However, for chlorine, secondary KIEs as large as primary isotope effects have been recently determined theoretically during S_n2 reactions that proceed with the transfer of chlorine between two heavy atoms.45 In addition, in a recent experimental study of TCE multi-isotope fractionation during biotic reductive dechlorination,32 daughter products depleted of 37Cl relative to their immediate parent compounds were interpreted as evidence of significant secondary Cl effects related to the nucleophilic substitution reaction. The conclusions of these recent studies32,46 support the hypothesis that a large β-secondary 37Cl-AKIE occurs during this study.

Oxidative C–H Bond Cleavage. As in the hydrolytic reaction, during oxidation both C atoms also compete for reaction, and thus, the 13C-AKIE was calculated using $z = 2$ in eq 5 (Table 2). The obtained 13C-AKIE agrees well with the typical 13C-KIE for C–H bond cleavage (1.01–1.03)21 (Scheme 1). Primary 13C-KIEs generally increase with an increasing mass of the bonding partner (i.e., 13C-KIE$_{C-H} < ^{13}$C-KIE$_{C-Cl}$).21 For Cl, the unexpectedly high $\varepsilon_{\text{bulk}}$ suggests the contribution of secondary 37Cl-AKIEs from both Cl atoms. In the absence of a primary chlorine isotope effect, the secondary 37Cl-AKIE can also be evaluated using eq 5. In this case, $z = 1$ because no specific bond containing Cl is broken, and there is, therefore, no intramolecular competition for this bond. The resultant secondary 37Cl-AKIE (1.004) represents the average secondary isotope effect of all positions. This result supports the large β-secondary 37Cl-AKIE estimated above for the nucleophilic reaction. This finding suggests that significant secondary 37Cl-KIEs are also associated with enzymatic oxidation via C–H bond cleavage. Until now, oxidative cleavage of a C–H bond has been believed to affect primarily the C–H bond and to leave chlorine substituents largely unchanged. This common assumption is challenged by the observed large chlorine isotope fractionation in C–H bond cleavage, where the involvement of a C–Cl bond would not be expected. This indicates an intriguing role of the chlorine atoms that remains to be resolved. The hypothetical contribution of chlorine isotope fractionation during binding of 1,2-DCA molecules to the enzyme could be an additional explanation.

Further insight might be obtained in future studies that address 2H/1H isotope analysis. Recently, Shouakar-Stash and Drimme49 developed an on-line methodology for H-CSIA of TCE and 1,2-dichloroethane; however, this analytical method has not been implemented for chlorinated ethanes.

Implications for the Application of CSIA to Environmental Studies. One of the main applications of CSIA to field studies is the estimation of the extent and rate of contaminant biodegradation.5,44,50 For this purpose, compound-specific $\varepsilon_{\text{bulk}}$ values from laboratory experiments are necessary. For a given compound, different $\varepsilon_{\text{bulk}}$ values are generally associated with distinct biodegradation pathways, which in turn are sometimes related to different subsurface redox environments. Therefore, redox conditions are usually used as criteria to constrain the range of reported $\varepsilon_{\text{bulk}}$ values. However, for 1,2-DCA, different degradation pathways associated with distinct $\varepsilon_{\text{bulk}}$ values may even be active under aerobic conditions. In addition, the hydrolytic dehalogenation pathway of 1,2-DCA has been observed under oxygen and nitrate reducing conditions alike (see above).9 In this context, the identification of the active degradation pathway in the field is crucial for choosing the appropriate $\varepsilon_{\text{bulk}}$ value for the quantification of degradation. This study demonstrates that dual isotope slopes are strongly different for nucleophilic substitution (S_n2) and oxidation (C–H bond cleavage) reactions, which opens the possibility of identifying them using a dual isotope approach. Following this approach, isotopic data from the field site can be directly and intuitively interpreted.

Significant secondary chlorine isotope effects were determined for the investigated reactions. These results indicate that primary 37Cl-AKIEs derived from CSIA could be higher than reported primary 37Cl-KIEs (e.g., from computational studies) if secondary isotopic effects are omitted in the calculations. Hence, mechanistic interpretations based on the comparison with primary 37Cl-KIEs should be made with caution.

Finally, chlorine $\varepsilon_{\text{bulk}}$ values measured with three different instruments, two GC–IRMS instruments and one GC–qMS instrument, showed a fairly good agreement varying at most by ±3.8% (standard deviation of the mean). Even though the agreement was not perfect, these results lend confidence to the methods used and encourage the application of Cl-CSIA to investigate the fate of chlorinated compounds at contaminated sites. However, further research and methodological developments are still required to improve the agreement of Cl-CSIA data between different laboratories.
contaminated groundwater. dichloroeliminans

Environ. Microbiol.

natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane.

Kinetics of 1,2-Dichloroethane and 1,2-Dibromoethane Biodegradation

Henderson, J. K.; Bagwell, C. E.; Brigmon, R. L.; Freedman, D. L.

(3) Hage, J. C.; Hartmans, S. Monoxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1.

(4) Klecka, G. M.; Carpenter, C. L.; Gonsior, S. J. Biological dechlorination of 1,2-dichloroethane.

water-soluble organic contaminants for carbon isotope analysis. During aerobic mineralization of 1,2-dichloroethane by isotope fractionation among substrate, inorganic carbon, and biomass.

fractured bedrock aquifer contaminated by chlorinated ethenes.

Ground Water Isotope Analysis.

2013. J.

contributions to biodegradation in aquifers based on dual isotope (1), (18)

GJ10. Xanthobacter autotrophicus isotope fractionation during biodegradation of chlorinated alkanes by biodegradation.

competing isotope fractionating pathways to improve quantification of CSIA: Carbon, Chlorine, and Hydrogen Isotope Fractionation in chlorinated ethene degradation in a large scale contaminant plume by Westergaard, C.; Jacobsen, C. S.; Aravena, R.; Bjerg, P. L. Assessing

Hydrol.

chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J. Contam.

