Faculté des sciences

Photoinduced K-shell hollow atoms

Hoszowska, Joanna ; Dousse, Jean-Claude

In: Journal of Electron Spectroscopy and Related Phenomena, 2012, p. -

The mechanisms leading to the production of hollow K shell atoms via single photon impact were investigated for a variety of light elements with 12 ≤ Z ≤ 23. The double 1s vacancy states were produced by irradiating the samples with intense monoenergetic synchrotron radiation beams. The double-to-single K-shell photoionization probabilities... Plus

Ajouter à la liste personnelle
    Summary
    The mechanisms leading to the production of hollow K shell atoms via single photon impact were investigated for a variety of light elements with 12 ≤ Z ≤ 23. The double 1s vacancy states were produced by irradiating the samples with intense monoenergetic synchrotron radiation beams. The double-to-single K-shell photoionization probabilities PKK and the absolute double K-shell photoionization cross sections σ²⁺ were determined by measuring with a high-resolution bent von Hamos crystal spectrometer the h hypersatellite X-ray emission of the samples. The measurements were performed over a wide range of incoming photon energies from threshold up to energies beyond the broad maximum of the double-to-single photoionization cross section ratios. The PKK and σ²⁺ were determined from the relative yields of the resolved h hypersatellite lines. For Mg, Al and Si, the two-electron one-photon (TEOP) Kααh transitions which represent an alternative but much weaker decay channel for double 1s vacancy states could be also observed, using a highly efficient flat crystal wavelength dispersive spectrometer. This observation of single photon-induced TEOP transitions has shown that the I(h)/I(Kααh) branching ratios are very poorly reproduced by most of existing theoretical models. Besides the relative yields of the hypersatellite and TEOP transitions, the energies and natural linewidths of the h and Kααh X-ray lines were also determined. The energies are found to be in good agreement with different theoretical predictions, whereas the linewidths are significantly underestimated by the calculations, except if non-lifetime broadening effects such as the outer-shell ionization and the open valence configuration are taken into consideration.