The Innate Immune Signaling System as a Regulator of Disease Resistance and Induced Systemic Resistance Activity Against \textit{Verticillium dahliae}

Danai Gkizi,1 Silke Lehmann,2 Floriane L’Haridon,3 Mario Serrano,4 Epaminondas J. Paplomatas,1 Jean-Pierre Métraux,3 and Sotirios E. Tjamos1*

1Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece; 2School of Life Sciences, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom; 3Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland; and 4Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, México

In the last decades, the plant innate immune responses against pathogens have been extensively studied, while biocontrol interactions between soilborne fungal pathogens and their hosts have received much less attention. Treatment of \textit{Arabidopsis thaliana} with the nonpathogenic bacterium \textit{Paenibacillus alvei} K165 was shown previously to protect against \textit{Verticillium dahliae} by triggering induced systemic resistance (ISR). In the present study, we evaluated the involvement of the innate immune response in the K165-mediated protection of \textit{Arabidopsis} against \textit{V. dahliae}. Tests with \textit{Arabidopsis} mutants impaired in several regulators of the early steps of the innate immune responses, including \textit{fls2}, \textit{efr-1}, \textit{bak1-4}, \textit{mpk3}, \textit{mpk6}, \textit{wrky22}, and \textit{wrky29} showed that \textit{FLS2} and \textit{WRKY22} have a central role in the K165-triggered ISR, while \textit{EFR1}, \textit{MPK3}, and \textit{MPK6} are possible susceptibility factors for \textit{V. dahliae} and \textit{bak1} shows a tolerance phenomenon. The resistance induced by strain K165 is dependent on both salicylate and jasmonate-dependent defense pathways, as evidenced by an increased transient accumulation of \textit{PR1} and \textit{PDF1.2} transcripts in the aerial parts of infected plants treated with strain K165.

\textit{Verticillium dahliae} Kleb. is a widely distributed soilborne pathogen causing vascular wilt on more than 160 plant species. It causes estimated billions of dollars in crop losses annually and worldwide (Pegg and Brady 2002). Colonization of the host plant by \textit{V. dahliae} leads to leaf flaccidity, chlorosis and necrosis, stuntling, vascular discoloration in stems, as well as flower and fruit reduction (Pegg 1981). The pathogen is difficult to control due to the long viability of the resting structures, the broad host range, and the inability of fungicides to affect the fungus once it enters the xylem (Fradin and Thomma 2006). The lack of efficacious pesticides and host resistance for the control of \textit{V. dahliae} has stimulated efforts to develop alternative disease management strategies such as biocontrol agents (BCA).

Interestingly, Tjamos and associates (2004) reported the isolation of a plant growth–promoting rhizobacterium (PGPR), identified as \textit{Paenibacillus alvei} K165, with biocontrol activity against \textit{V. dahliae} in greenhouse and field experiments. The suppression of \textit{Verticillium} disease by \textit{P. alvei} K165 was attributed to induced systemic resistance (ISR) via the salicylic acid (SA)-dependent defense pathway (Tjamos et al. 2005). It is well-established that root colonization by PGPR can result in ISR via the SA or ethylene and jasmonate (ET/JA)-dependent pathway that is accompanied by the accumulation of pathogenesis-related proteins (Iavicoli et al. 2003; Pieterse et al. 1998; Tjamos et al. 2005; Ton et al. 2002). However, little is known about the perception of the BCA by the plant and the cascade of the early signaling events that eventually lead to ISR.

The presence of pathogenic microorganisms is sensed by plants through perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRR) located mostly on the cell surface, leading to the PAMP-triggered immunity (Jones and Dangl 2006; Zipfel 2008). In \textit{Arabidopsis thaliana}, the leucine-rich repeat receptor kinases (LRR-RK) flagellin-sensitive 2 (FLS2) and elongation factor Tu receptor (EFR) act as PRR for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (Gómez-Gómez and Boller 2000; Zipfel et al. 2006). Upon activation with their respective ligands, FLS2 and EFR form heteromeric complexes with the coreceptor BAK1 (Roux et al. 2011). This binding leads to the activation of a mitogen-activated protein kinase cascade, followed by the induction of defense genes, production of reactive oxygen species, callose deposition, and synthesis of SA (Asai et al. 2002; Schwessinger and Zipfel 2008).

Most of the data about bacterial perception by plants have been generated by studying the interaction of \textit{Pseudomonas syringae pv. tomato} DC3000 with \textit{A. thaliana} on leaves. The early events of pathogen or microbe perception have been less studied in roots (Millet et al. 2010). It will, therefore, be informative to investigate how PGPRs are perceived by roots and to determine the early signaling steps that lead to soilborne pathogen resistance.

In the present study, we investigated the biocontrol interaction of the BCA \textit{P. alvei} K165 against \textit{V. dahliae} in \textit{A. thaliana}. In particular, we examined the importance of the PAMP receptors FLS2 and EFR and the signaling cascades associated with these receptors, along with the expression of marker genes of the SA and ET/JA-dependent signaling pathways.

Corresponding author: S. E. Tjamos; E-mail: sotiris@aua.gr
RESULTS

FLS2 and WRKY22 are essential factors for the K165-triggered ISR, while EFR1, BAK1, MPK3, and MPK6 are possible susceptibility factors for *V. dahliae*.

The signaling pathway of K165-mediated induced resistance against *V. dahliae* was investigated using the *Arabidopsis* mutants *fls2*, *efr-1*, *bak1-4*, *mpk3*, *mpk6*, *wrky29*, and *wrky22*, as inspired by the model, proposed by Asai and associates (2002), of an innate immune signaling cascade activated by bacterial LRR receptors in *Arabidopsis*.

Verticillium symptoms, mainly in the form of wilting, were rated in the different genotypes from 7 to 25 days postinoculation (dpi) (Figs. 1 and 2; Supplementary Fig. S1). Stunting (determined by length of the leaves) was also observed in the most susceptible genotypes (Col-0, *wrky29*, *fls2*, and *wrky22*); in those genotypes, the disease incidence was 100% at 25 dpi (data not shown).

The pathogenicity experiments revealed that the application of K165 conferred protection to Col-0 and *wrky29*, decreasing disease severity and, consequently, the overall amount of disease, referred to as area under the disease progress curve.

![Fig. 1](http://doc.rero.ch)
(AUDPC) (Fig. 2G and H). Thus, protection appears to be independent of WRKY29.

On the other hand, the application of K165 did not reduce *Verticillium* symptom development in *fls2* and *wrky22* compared with the corresponding controls (Figs. 1A and B and 2E and F). Therefore, functional FLS2 and WRKY22 are required for the development of K165-mediated protection.

The application of K165 did not decrease the percentage of disease severity in *efr-1, bak1-4, mpk3*, and *mpk6* mutants (Figs. 1C, D, E, and F and 2A, B, C, and D). However, EFR, BAK1, MPK3, and MPK6 are unlikely to participate in the K165-triggered plant defense mechanism, since significantly lower AUDPC values were obtained for *Verticillium* wilt symptoms in the control (*V. dahliae*-treated plants) *efr-1*, *bak1-4*, *mpk3*, and *mpk6* mutants.

Fig. 2. Protection against *Verticillium dahliae* induced by *Paenibacillus alvei* K165 in the pattern-recognition receptor–driven defense signaling pathway *Arabidopsis* mutants *mpk3*, *mpk6*, *wrky22*, and *wrky29*, expressed as percentage of diseased leaves. A, C, E, and G, At each disease rating day, columns with different letters are significantly different according to Tukey’s multiple range test at $P < 0.05$. B, D, F, and H, Results expressed as the relative area under the disease progress curve, i.e., the disease level as a percentage of the maximum possible area for the whole period of the experiment. The columns represent the means of 60 plants (two replications with 30 plants per replication and treatment) and the vertical bars indicate standard errors. Columns with different letters are significantly different according to Tukey’s multiple range test at $P < 0.05$.

http://doc.rero.ch
bak1-4, mpk3, and mpk6 mutants compared with the Col-0 controls (Figs. 1C, D, E, and F and 2A, B, C, and D). This partial resistance indicates a hitherto unsuspected role of EFR, BAK1, MPK3, and MPK6 in the interaction of V. dahliae with the host plant.

efr1, mpk3, and mpk6 are partially resistant to Verticillium disease, whereas bak1 is tolerant.

Are the recorded wilt symptoms really reflecting V. dahliae growth and colonization in vascular tissues? To approach this question, the level of fungal colonization was assessed in each

Fig. 3. Relative quantification of the Verticillium dahliae DNA levels in the Arabidopsis mutants fls2, efr-1, bak1-4, mpk3, mpk6, wrky22, wrky29, and wild-type Col-0 plants. Fungal DNA levels were estimated by quantitative polymerase chain reaction using total DNA isolated from the aerial parts of plants at 7 and 21 days postinoculation (dpi). The columns represent the means of two biological repeats (with 10 plants per treatment and repeat) and three technical repeats per biological repeat (total of six reactions per treatment). The vertical bars indicate the standard errors. Col-0 is set to 100%. Columns with different letters are significantly different according to Tukey's multiple range test at $P < 0.05$.

http://doc.rero.ch
genotype and treatment by real-time quantitative polymerase chain reaction (qPCR) at early (7 dpi) and late stages (25 dpi) of the disease.

Col-0 plants treated with K165 displayed a marked reduction of relative DNA levels of V. dahliae compared with untreated controls at both time points (Fig. 3). Therefore, the protective activity of K165 against V. dahliae is based on the activation of plant resistance rather than tolerance mechanisms, since tolerance does not limit infection but, instead, reduces or offsets its negative consequences on fitness (Horns and Hood 2012). The fls2 mutants exhibited high relative levels of V. dahliae DNA in agreement with the observed disease severity recordings at both time points, in contrast to efr-1, in which lower levels of the pathogen were observed relative to Col-0 (Fig. 3A and B). A decoupling between Verticillium wilt symptoms and relative quantification of pathogen DNA was observed in bkap1-4, in which the DNA levels increased substantially with time in contrast to the AUDPC values (Figs. 1E and F and 3C). The situation in bkap1-4 suggests a tolerance phenomenon.

On the other hand, the relative quantification of V. dahliae in mpk3 and mpk6 indicates partial resistance; since, in mpk3 and mpk6, the relative levels of Verticillium DNA were significantly lower than in Col-0 at 21 dpi (Fig. 3E and F). In mpk6, the detected levels of pathogen were significantly lower than in Col-0 at both sampling time points, while in mpk3 the reduction compared with Col-0 was only visible at 21 dpi.

In wrky22, qPCR analysis revealed an increase in the relative amount of the pathogen with time, especially in the case of the K165-treated plants, reflecting the susceptibility of wrky22 to the pathogen and the loss of the K165-mediated plant protection (Figs. 2E and F and 3G). Likewise, in the case of the V. dahliae-treated wrky29, the results of the qPCR showed a considerable increase of the relative levels of V. dahliae DNA with time (Fig. 3D). In agreement with the pathogenicity experiments, the K165-treated wrky29 exhibited lower levels of pathogen DNA than the control plants (V. dahliae–treated wrky29), confirming that WRKY29 is not required in the K165-triggered ISR (Fig. 3D).

The rhizosphere population of K165 in the different genotypes does not influence the disease outcome.

To investigate whether the disease outcome in the K165-treated fls2, efr-1, bkap1-4, mpk3, mpk6, and wrky22 mutants was caused by insufficient colonization of the rhizosphere by strain K165, we determined the titer of the rifampicin-resistant strain K165 in the rhizosphere of the wild types and K165-mediated ISR against V. dahliae. The partial resistance of efr-1 and, therefore, the interplay of the EFR receptor with the pathogenic mechanism of V. dahliae is an intriguing finding, since EFR binds specifically to the ubiquitous bacterial protein EF-Tu (Gómez-Gómez and Boller 2000; Zipfel et al. 2006). Interestingly, V. dahliae possesses a gene (VDAG_01458.1) homologous to EF-Tu that might interfere with EFR and could possibly promote disease, although this would have to be studied further. It is also known that ET modulates EFR-triggered immunity (Tintor et al. 2013). In parallel, the ET receptor ETR1 is a susceptibility factor for V. dahliae and V. longisporum (Johansson et al. 2006; Pantelides et al. 2010). Thus, it is tempting to speculate from those observations that Verticillium takes advantage of components of EFR-regulated immunity to infect the plant.

The fls2 plants were as susceptible to Verticillium disease as the wild types and K165-mediated ISR against V. dahliae was compromised in fls2 (Fig. 1A and B). It is evident that FLS2 has a central role in the recognition of K165 and the triggering of the downstream signaling cascade, as in the interaction of Arabidopsis with Pseudomonas syringae pv. tomato (Asai et al. 2010). The most significant changes in transcript levels of PR1, PR2, and PDF1.2 were observed in the aerial tissues of the K165/V. dahliae–treated plants (Fig. 5B, D, and F). Interestingly, the expression of the monitored genes was suppressed in the aerial tissues of the V. dahliae–treated plants at the early infection stage of 3 dpi (Fig. 5B, D, and F). On the other hand, the pathogen-inoculated K165-treated plants exhibited the highest PR1 and PDF1.2 transcript levels between treatments at all sampling points (Fig. 5B, D, and F). The single application of K165 also resulted in the upregulation of PR1, PR2, and PDF1.2 at all sampling points (Fig. 5B, D, and F).

In roots, the only significant differences in gene expression between treatments were observed for PR1 and PR2 at 14 dpi (Fig. 5A, C, and E). Therefore, a more significant role is suggested for the aerial than the root tissues for the deployment of the K165-triggered ISR upon V. dahliae invasion.

DISCUSSION

In the last decades a number of studies have been devoted to plant-pathogen recognition events and the downstream signaling pathways leading to disease resistance or susceptibility. However, early recognition of BCA that trigger ISR and the subsequent signaling cascade are poorly described. Similarly, the importance of receptor-like kinases such as FLS2 and EFR and of the downstream signaling components in response to root-invasive pathogens is unknown. In the present study, mutants blocked at various steps in the defense-signaling cascade revealed that EFR, MPK3, and MPK6 seem to be susceptibility factors for Verticillium disease, while K165-mediated ISR against V. dahliae depends on FLS2 and WRKY22.

The partial resistance of efr-1 and, therefore, the interplay of the EFR receptor with the pathogenic mechanism of V. dahliae is an intriguing finding, since EFR binds specifically to the ubiquitous bacterial protein EF-Tu (Gómez-Gómez and Boller 2000; Zipfel et al. 2006). Interestingly, V. dahliae possesses a gene (VDAG_01458.1) homologous to EF-Tu that might interfere with EFR and could possibly promote disease, although this would have to be studied further. It is also known that ET modulates EFR-triggered immunity (Tintor et al. 2013). In parallel, the ET receptor ETR1 is a susceptibility factor for V. dahliae and V. longisporum (Johansson et al. 2006; Pantelides et al. 2010). Thus, it is tempting to speculate from those observations that Verticillium takes advantage of components of EFR-regulated immunity to infect the plant.

The fls2 plants were as susceptible to Verticillium disease as the wild types and K165-mediated ISR against V. dahliae was compromised in fls2 (Fig. 1A and B). It is evident that FLS2 has a central role in the recognition of K165 and the triggering of the downstream signaling cascade, as in the interaction of Arabidopsis with Pseudomonas syringae pv. tomato (Asai et al. 2010). The most significant changes in transcript levels of PR1, PR2, and PDF1.2 were observed in the aerial tissues of the K165/V. dahliae–treated plants (Fig. 5B, D, and F). On the other hand, the pathogen-inoculated K165-treated plants exhibited the highest PR1 and PDF1.2 transcript levels between treatments at all sampling points (Fig. 5B, D, and F). The single application of K165 also resulted in the upregulation of PR1, PR2, and PDF1.2 at all sampling points (Fig. 5B, D, and F).

In roots, the only significant differences in gene expression between treatments were observed for PR1 and PR2 at 14 dpi (Fig. 5A, C, and E). Therefore, a more significant role is suggested for the aerial than the root tissues for the deployment of the K165-triggered ISR upon V. dahliae invasion.
The presence of an amino acid sequence (EKLSSGYR-INRAADDAAGLAI) with 67% homology to flg22 (QRLSTG-SRINSAKDDAAGLQIA) translated from the WP021258858 locus of the \(P. \) alvei species (taxid: 44250) suggests a direct interaction of FLS2 with the flagellin subunit of K165. Is this interaction the trigger for the K165-mediated ISR? In previous studies, it has been shown that treatment with flg22 leads to the accumulation of SA and that FLS2 is dynamically regulated by SA (Mishina and Zeier 2007; Tateda et al. 2014; Tsuda et al. 2008).

FLS2 might, indeed, be the crucial receptor in the K165-mediated protection of the plant since K165-triggered ISR is SA-dependent (Tjamos et al. 2005).

Like other PRR, the FLS2 and EFR receptors require BAK1 for function. BAK1 does not have a direct role in elicitor perception but seems to form heteromeric complexes with FLS2 and EFR after microbe-associated molecular pattern (MAMP) detection (Chinchilla et al. 2007; Heese et al. 2007; Schulze et al. 2010). Accumulating experimental evidence points to BAK1 as a central regulator of plant immunity and a target of several effectors of pathogen virulence (Fradin et al. 2011; Shan et al. 2008). In a previous study, Fradin and associates (2011) reported that \(bak1-4 \) shows enhanced susceptibility to \(V. \) dahliae, as documented by a higher pathogen level in the aerial tissues of \(bak1-4 \) than Col-0 at 21 dpi; similar results were also obtained in the present study (Fig. 3C). However, symptom development as well as the relative AUDPC values were much lower in \(bak1-4 \) than in Col-0 (Fig. 1E and F). These results suggest the existence of a tolerance mechanism in \(bak1-4 \). In a pioneering study on molecular quantification of \(Verticillium \) disease in a tolerant tomato cultivar, it has been

Fig. 5. A and B, Relative transcript levels of PR1. C and D, PR2, and E and F, PDF1.2 in the root (A, C, E) and aerial tissues (B, D, F) of \(Arabidopsis \) Col-0 plants in response to infection with \(V. \) dahliae or treatment with \(Paenibacillus \) alvei K165. Total RNA was isolated from plants at 3, 7, and 14 days postinoculation, was converted to cDNA, and was used as template in quantitative polymerase chain reaction assays. Transcript levels of the examined genes were normalized to the expression of At4g26410 measured in the same samples and were expressed relative to the normalized transcript levels in mock-treated plants. The columns represent the means of three biological repeats (with 10 plants per treatment and repeat) and three technical repeats per biological repeat (total of nine reactions per treatment). The vertical bars indicate the standard errors. Columns with different letters are significantly different according to Tukey’s multiple range test at \(P < 0.05. \)
concluded that, in a tolerant host, an active coacting response traps the pathogen as effectively as in a resistant plant, but the amounts of the pathogen remain higher than in resistant plants, suggesting that fungal sporulation and lysis are either delayed in the tolerant interactions or do not occur (Chen et al. 2004). The pathogen is controlled rather than eliminated in the resistant plants, according to different studies (Chen et al. 2004; Heinz et al. 1998; Veronese et al. 2003). A plausible explanation about the tolerance of bak1-4 to V. dahliae could lie on the positive role of brassinosteroids (BR) in ET bio-
synthesis (Arteca 1995; Joo et al. 2006). BAK1 serves as an
enhancer of BR signaling affecting the feedback regulation of
BR biosynthesis (Wang et al. 2008; Yun et al. 2009) and,
and consequently, the effect of BR on ET biosynthesis. ET has been
long-associated with Verticillium wilt symptoms, as the
main contributing factor for the symptoms of epinasty
and wilting (Cronshaw and Pegg 1976; Pegg 1976). Among
these lines, Robison and associates (2001) examined the
effects of reduced ET synthesis on Verticillium wilt of to-
mato by transforming tomato with 1-aminoacyclopropan-
1-carboxylate (ACC) deaminase, which cleaves ACC, the
immediate biosynthetic precursor of ET in plants. It was
observed that reduced ET synthesis results in increased
disease tolerance.

ET might also explain the Verticillium resistance of mpk3 and
mpk6. In Arabidopsis, it has been demonstrated that ACS2 and
ACS6 are substrates of MPK3 and MPK6 (Han et al. 2010; Liu
and Zhang 2004). Phosphorylation of ACS2/ACS6 by MPK3
and MPK6 stabilizes the ACC synthase (ACS) protein in vivo,
resulting in increases in cellular ACS activity and in ET pro-
duction. Interestingly, MPK3 and MPK6 not only function in the
phosphorylation-induced stabilization of ACS2/ACS6 pro-
teins but also signal the ACS2 and ACS6 gene activation after
Botrytis cinerea infection (Li et al. 2012). As proposed earlier,
ET synthesis and perception might have a significant role in
Verticillium pathogenesis and plant resistance or tolerance (Robb
et al. 2007).

In contrast, wrky22 and wrky29 were highly infected by
Verticillium spp. compared with the resistance observed in
mpk3 and mpk6. Notably the V. dahliae–treated wrky29 and
the K165-treated wrky22 harbored the highest pathogen levels
among all the tested genotypes. In the case of K165-treated
wrky22, the high endophytic amounts of the pathogen reflect the
participation of WRKY22 in the K165-mediated ISR. WRKY22
regulates innate immunity genes, defense genes, and
PRR-related genes (Hsu et al. 2013) and its activation is
induced by flg22 and N-acyl-homoserine lactones (AHL)
(Schikora et al. 2011). AHL are involved in bacterial quorum
sensing. Several reports have also provided indirect evid-
cences that AHL play a role in plant immunity (Pang et al.
2009; Schuhegger et al. 2006); however, the molecular basis
of the effect of AHL on the plant immune system remains
unknown. The findings of the present study suggest a crucial
role for WRKY22 in K165-triggered ISR and further studies
are needed to elucidate whether WRKY22 is activated solely upon
perception from K165-derived flagellin or by other compounds
such as AHL.

The observed decoupling between disease severity and the
estimated relative quantity of the pathogen observed in some
treatments (V. dahliae–treated fls2 at 21 dpi and wrky29 at 21 dpi;
K165 + V. dahliae–treated wrky22 at 21 dpi and wrky22 at 21 dpi)
can be attributed to the cyclical periods of fungal elimination that
characterize the lifestyle of V. dahliae in the vascular system of
plants such as tomato and oilseed rape (Chen et al. 2004; Eynick
et al. 2007; Heinz et al. 1998). Also, the levels of DNA of the
pathogen reflect numbers of propagules more than actual bio-
mass; spores are small, relative to mycelial cells, but have the
same DNA content (Chen et al. 2004). This disparity between
pathogen proliferation and symptom development has also been
observed in bacterial (Bent et al. 1992; Lund et al. 1998;
O’Donnell et al., 2001) and viral (Cecchini et al. 2002) plant-
pathogen interactions, and it has been partly explained by the
possibility that symptoms can result from pathogen-induced
signals that cause changes in normal plant growth and develop-
ment (Cecchini et al. 2002; Dietrich et al. 1994; Lund et al. 1998;
O’Donnell et al. 2011; Pillof et al. 2002). It is evident that, in
vascular wilts in which phytohormones, such as ET, are involved
in the development of disease symptoms, both symptoms and
pathogen quantification need to be measured to draw reliable
conclusions about resistance, tolerance, or susceptibility.

It has been long-stated that, for Verticillium-caused wilt dis-
eases, the resistance or susceptibility of the host plant is generally
considered to be determined mainly by the cellular interactions
between the plant and the fungus occurring in the stem (Robb
et al. 2007). The present study also showed most striking dif-
ferences in the expression of PR1, PR2, and PDF1.2 between
treatments in the aerial tissues after K165 and V. dahliae treat-
ment or V. dahliae treatment of Col-0 plants. The strong acti-
vation of defense-associated genes observed after pathogen
inoculation of K165-treated plants suggests the existence of a
priming mechanism. Interestingly, the application of K165 in-
duced the expression of markers for SA (PR1 and PR2) and
ET/IA (PDF1.2) signaling pathways. The upregulation of PR1 in
the aerial parts of the K165- and V. dahliae–treated plants can be
crucial for restricting the pathogen at the early infection
stages, when V. dahliae follows a biotrophic life style (Thaler
et al. 2004). The importance of PR1 during the biotrophic
stages of plant infection by V. dahliae has also been proposed
by Zhang and associates (2013). In addition, a previous study
has already highlighted the significance of the SA-dependent
defense pathway in the K165-mediated ISR against V. dahliae
(Tjamos et al. 2005). The triggering of the PDF1.2 expression
by K165 is consistent with the data showing that PGPR-primed
plants often display JA-dependent defense responses upon path-
ogen invasion (Pieterse et al. 1998; Pozo et al. 2008; van Hulten
et al. 2006). However, since JA-related mutants did not show
changes in disease severity caused by V. dahliae or V. longisporum,
JA-signaling might be of less importance in the presently studied
system (Johansson et al. 2006; Pantelides et al. 2010; Veronese
et al. 2003). JA/ET-mediated defense responses are consid-
ered as more effective against necrotrophic than biotrophic patho-
gen (Glazerbrook 2005) and, although most reports indicate a
mutually antagonistic interaction between SA- and JA-dependent
signaling, synergistic interactions have been described as well
(Mur et al. 2006). Therefore, we cannot completely exclude a
role for the JA pathway in the K165-mediated plant protection,
especially at the later necrotrrophic stages of the disease.

Furthermore, the qPCR analysis revealed that V. dahliae sup-
pressed the plant immune system, since the expression of PR1,
PR2, and PDF1.2 was downregulated in the aerial tissues of
the V. dahliae–treated plants at the early infection stages (3 dpi).
Similarly, a substantial suppression of PAL mRNA levels occurred
after inoculation of a tomato line susceptible to Verticillium albo-
atum, while the suppression was absent or substantially reduced
in a resistant line (Lee et al. 1992). The suppression of the immune
system and, mainly, the SA-dependent defenses could be a strat-
ey of V. dahliae to promote disease, since it would allow the
pathogen to overcome the plant defense responses during its initial
biotrophic stage. The use ofEFR, MPK3, and MPK6 as sus-
cceptibility factors from V. dahliae highlights the interplay of the
pathogen with the plant defense signaling pathway.

In summary, this study shows the involvement of FLS2
and WRKY22 in a BCA-mediated ISR in A. thaliana (Fig. 6).
The results also suggest that EFR, MPK3, and MPK6 are
susceptibility factors for *V. dahliae* (Fig. 7) and help promote disease development.

MATERIALS AND METHODS

Fungal culture.

V. dahliae isolated from *Raphanus sativus* L. (provided by E. Ligoxygakis, National Agricultural Research Institute, Crete, Greece), with known pathogenicity against *A. thaliana* plants (Tjamos et al. 2005), was used in the experiments. The fungal strain was cryopreserved by freezing a conidial suspension in 25% aqueous glycerol at −80°C (Maniatis et al. 1982). Before being used, the fungus was transferred to potato dextrose agar (Merck, Darmstadt, Germany) at 24°C for 5 days. For the bioassays, a suspension of 10^7 conidia of distilled sterile water per milliliter was prepared from a culture grown for 5 days at 24°C in sucrose sodium nitrate liquid medium (Sinha and Wood 1968).

Bacterial culture.

A K165 rifampicin-resistant mutant (Tjamos et al. 2004) was used throughout the experiments. The K165 strain was cryopreserved by freezing a 1 × 10^8 CFU/ml suspension in 25% aqueous glycerol at −80°C (Maniatis et al. 1982). Before being used, K165 was transferred to nutrient broth agar plus glycerol (NAG) at 28°C for 2 days. For the bioassays, bacterial cells were prepared in nutrient broth plus glycerol in an orbital incubator at 180 rpm and 28°C for 2 days. Suspensions were centrifuged at 5,600 × g at 20°C for 10 min and were resuspended in sterile distilled water before treatment of the plants.

Plant material and growth conditions.

A. thaliana ecotype Columbia (Col-0) was used as the wild-type control. The mutant lines used in this study are *fls2* (Zipfel et al. 2004), *bak1-4* (Chinchilla et al. 2007), *mpk3* (Beckers et al. 2009), *mpk6* (Beckers et al. 2009), *wrky29* (GK-311E07.01), and *efr-1* (Zipfel et al. 2006). All seeds were stored at 4°C. *A. thaliana* seeds were sown in 9 × 9 × 10-cm pots containing pasteurized soil mix of humus and perlite (3:1) and were maintained at 25°C with a 12-h photoperiod at 60 to 70% relative humidity in a controlled-environment growth chamber. After 10 days, the plants were singed to plastic pots containing approximately 80 cm^3 of pasteurized soil mix of humus and perlite (3:1).

K165–*V. dahliae* bioassays.

Eighteen-day-old plants were inoculated with K165 by root drenching, using 10 ml of 1 × 10^8 CFU/ml. After 5 days, the plants were challenge-inoculated with *V. dahliae* by root drenching with 10 ml of a suspension of 1 × 10^7 conidia per milliliter of sterile distilled water (Tjamos et al. 2005). Control plants were mock-inoculated with 10 ml of sterile distilled water. Disease severity at each observation was calculated from the number of leaves that showed wilting as a percentage of the total number of leaves of each plant and was periodically recorded for 25 days after inoculation. Disease ratings were plotted over time to generate disease progression curves. AUDPC was calculated by the trapezoidal integration method (Campbell and Madden 1990). Disease was expressed as a percentage of the maximum possible area for the whole period of the experiment, which is referred to as the relative AUDPC. The experiment was repeated twice with 30 plants per treatment and plant genotype (a total of 60 plants).

Fig. 6. Proposed model for the *Paenibacillus alvei* K165 induced systemic resistance signaling pathway leading to plant protection against *Verticillium dahliae*. K165 is perceived by the FLS2 receptor, leading to increased PR1 transcripts in the aerial plant parts. The loss of the K165 protective activity in *wrky22* suggests the participation of the WRKY22 transcription factor in the K165-triggered signaling cascade. In a previous study, the suppression of *V. dahliae* by *P. alvei* K165 was attributed to the induction of systemic resistance via the salicylic acid (SA)-dependent defense pathway (Tjamos et al. 2005). It is known that flg22 treatment results to SA accumulation, so the FLS2 binding with K165 flagellin subunit may trigger the SA-dependent plant defense mechanism. Dashed lines represent the results of this study, whereas solid lines represent the results of Tjamos and associates (2005) and the presumed connection between FLS2 and the SA-dependent defense.

Fig. 7. Proposed model for a signaling pathway mediating *Verticillium dahliae* susceptibility. The *efr1, mpk3*, and *mpk6* mutants showed resistance to *V. dahliae* colonization and symptom development. Therefore, it is suggested that *V. dahliae* hijacks EFR1, MPK3, and MPK6 to promote disease.
Rhizosphere population of K165.

Colonization of the rhizosphere of wild-type and mutant plants by rifampicin-resistant K165 bacteria was determined at 10 and 20 days after the application of the bacterial strain. To estimate rhizosphere populations, 2 g of rhizosphere soil (soil particles in close contact with roots within a distance of approximately 1 to 5 mm) was collected and shaken for 45 min in 50 mM phosphate buffer, pH 7.0, containing 0.02% Tween 20, and the suspension was plated onto NAG medium supplemented with cycloheximide (100 μg/ml) and rifampicin (100 μg/ml). After 48 h of incubation at 28°C, the number of bacterial CFU per gram of rhizosphere soil was determined.

The experiment was repeated three times with 10 replicates per experiment.

DNA extraction and qPCR for fungal quantification.

The aerial parts of 10 plants from each treatment were harvested for real-time qPCR analysis at 7 and 21 dpi. In brief, the aerial parts were cut at soil level, were pooled, were rinsed with sterile distilled water, and were ground to a fine powder, using an autoclaved mortar and pestle in the presence of liquid nitrogen.

Total DNA was isolated according to Dellaporta and associates (1983) and was quantified by spectrophotometry. qPCR assays for the quantification of V. dahliae were conducted as described previously by Fradin and associates (2011), using the primer pair ITS1-F 5’-AAATTTATGTTGGTGCCGAA3’ (Gardes and Bruns 1993) and ST-VE1-R 5’-CTTGGTCATTTAAGGAACTAA3’ (Livesens et al. 2006). qPCR was performed in a Stratagene MX3005P thermocycler and, for the amplification reactions, Quantifast SYBR Green PCR (Qiagen, Valencia, CA, U.S.A.) master mix was used. The results were analyzed with MxPro qPCR software.

For sample calibration, the Arabidopsis gene At4g26410, previously described as a stable reference gene (Czechowski et al. 2005), was targeted, using the primer pair F 5’-GAGGCTCTCCATGAC-3’ and R 5’-GGTCCGACATCATCCCA TGATCC-3’. PCR cycling started with an initial step of denaturation at 95°C for 5 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. PCR efficiency for each amplicon was calculated by employing the linear regression method on log (fluorescence) per cycle number data, using Lin-RegPCR software (Ramakers et al. 2003). The qPCR assays were performed in triplicates. The absence of nonspecific products and primer dimers was confirmed by the analysis of melting curves.

The experiment was repeated two times with 10 plants per treatment and plant genotype (a total of 20 plants).

Determination of transcript levels using reverse transcription-qPCR assay.

Aerial and root tissues, shortly rinsed with water to remove soil particles, were collected for RNA analysis. Samples were collected from 10 Col-0 plants per treatment (K165-, K165 + V. dahliae-, and V. dahliae- and mock-inoculated plants) at 3, 7, and 14 dpi and were immediately frozen in liquid nitrogen and were stored at −80°C. For each sample, total RNA was extracted from 100 mg of tissue ground with liquid nitrogen, using Trizol reagent (Invitrogen, Paisley, U.K.) according to the manufacturer’s instructions. The RNA samples were treated with DNase I (Invitrogen) to eliminate traces of contaminating genomic DNA. The RNA concentration was measured on a Nanodrop ND-1000 spectrophotometer (Saveen Werner, Malmö, Sweden). First-strand cDNA was synthesized, using SuperScript II (Invitrogen) following the manufacturer’s procedure. For the amplification of PR1 (At2g19990), PDF1.2 (At5g44420), and PR2 (At3g57260), the primer sets designed by Trusov and associates (2009) and Pantelides and associates (2010) were used. The qPCR assays were performed in triplicate. Normalization of gene expression, PCR efficiency, absence of nonspecific products and primer dimers, and data analysis were performed as described previously in the qPCR fungal quantification procedure. Under the experimental infection conditions, the gene expression of At4g26410, used for normalization of gene expression, was stable between treatments, with cycle threshold values equal to approximately 19.5. The experiment was repeated three times with 10 plants per treatment and plant genotype (a total of 30 plants).

Statistics.

Data on relative AUDPC, K165 rhizosphere population, V. dahliae DNA quantification, and gene expression were transformed with the χ² + 1 transformation before analysis of variance was applied. When a significant (P < 0.05) F test was obtained for treatments, data were subjected to means separation by Tukey’s multiple range test.

ACKNOWLEDGMENTS

We thank T. Boller (University of Basel, Switzerland) for fts2 seeds, C. Zipfel (The Sainsbury Laboratory, U.K.) for bak1–1 seeds, F. Mauch (University of Fribourg, Switzerland) for erf-1 seeds and U. Conrath (RWTH Aachen University, Germany) for mpk3 and mpk6 seeds. Parts of this work were made possible by funds to J.-P. Métraux (University of Fribourg, Switzerland) from the Swiss National Science Foundation.

LITERATURE CITED

Campbell, C. L., and Madden, L. V. 1990. Introduction to plant disease epidemiology. Wiley, New York, USA.

