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Abstract The novel siderophore cephalosporin cefiderocol
(S-649266) with potent activity against Gram-negative patho-
gens was recently developed (Shionogi & Co., Ltd.). Here, we
evaluated the activity of this new molecule and comparators
against a collection of previously characterized Gram-negative
isolates using broth microdilution panels. A total of 753 clinical
multidrug-resistant Gram-negative isolates collected from hos-
pitals worldwide were tested against cefiderocol and antibiotic
comparators (ceftolozane–tazobactam [CT], meropenem
[MEM], ceftazidime [CAZ], ceftazidime–avibactam [CZA],
colistin [CST], aztreonam [ATM], amikacin [AMK], ciproflox-
acin [CIP], cefepime [FEP], and tigecycline [TGC]) for their
susceptibility. The collection included Escherichia coli
(n = 164), Klebsiella pneumoniae (n = 298), Enterobacter sp.
(n = 159), Pseudomonas aeruginosa (n = 45), and
Acinetobacter baumannii (n = 87). Resistance mechanisms in-
cluded producers of carbapenemases and extended-spectrum
β-lactamases (ESBLs). In addition, a series of colistin-
resistant enterobacterial isolates (n = 74), including 15 MCR-
1 producers, were tested. The MIC90 of cefiderocol was 2 mg/

L, while those of comparative drugs were >64 mg/L for CT,
MEM, CAZ, CZA, and AMK, >32 mg/L for ATM, >16 mg/L
for FEP, 8 mg/L for CST, and 2 mg/L for TGC. The MIC50 of
cefiderocol was 0.5 mg/L, while those of other drugs were
>64 mg/L for CAZ, 64 mg/L for CT, >32 mg/L for ATM,
>16 mg/L for FEP, 8 mg/L for MEM and AMK, >4 mg/L for
CIP, 1 mg/L for CZA, 0.5 mg/L for TGC, and <0.5 mg/L for
CST. Only 20 out of 753 strains showed MIC values of
cefiderocol ≥8 μg/mL. Compared to the other drugs tested,
cefiderocol was more active, with the exception of colistin
and tigecycline showing equivalent activity against certain sub-
groups of bacteria.

Introduction

Gram-negative bacteria that produce extended-spectrum β-
lactamases (ESBLs) are a major concern in healthcare due to
their ability to spread globally [1]. ESBLs are a major group of
enzymes that confer resistance to several generations of β-
lactam antibiotics, including third-generation cephalosporins
[2, 3]. ESBL-encoding genes that are primarily plasmid-
encoded include mostly TEM-, SHV-, and CTX-M-type en-
zymes [4]. Enterobacteriaceae, such as Klebsiella pneumoniae
and Escherichia coli, are the main ESBL producers that have
been reported globally. Carbapenems are mostly used for the
treatment of infections due to ESBL-producing bacteria, but
carbapenemase-producing bacteria are now extensively report-
ed [5, 6]. Polymyxins (e.g., colistin and polymyxin B) are now
more frequently used as last-resort antibiotics for treating pa-
tients with multidrug-resistant bacterial infections [7].
However, a recent report shows that a novel gene (mcr-1) as
a source of plasmid-encoded resistance encoded on a plasmid
in E. coli may quickly spread to other bacterial strains or spe-
cies [8–10]. Therefore, due to the increasing threat of
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multidrug-resistant and pandrug-resistant bacteria, there is a
need for novel molecules. Cefiderocol (CFDC) is a novel par-
enteral siderophore cephalosporin also known as S-649266. It
possesses a unique mechanism for penetrating efficiently into
Gram-negative pathogens. It uses a BTrojan horse^ strategy by
binding free iron and is then actively transported into bacterial
cells across the outer membrane of Gram-negative bacteria by
way of the iron-transport system [11, 12]. Cefiderocol is a
cephalosporin molecule with an attached catechol moiety on
the 3-position side chain which binds to ferric iron [11]. Once
across the outer membrane, the iron dissociates and the cepha-
losporin binds to penicillin-binding proteins (PBP), mainly
PBP3, as other cephalosporins do to disrupt cell wall synthesis
[11, 13], contributing to a potent antimicrobial activity against
Gram-negative bacteria. In addition, this antimicrobial activity
of cefiderocol is enhanced by the high stability of cefiderocol to
hydrolysis by nearly allβ-lactamases, including both the serine
and metallo-carbapenemases [14]. The ability to cross the outer
membrane through the active iron-transport system overcomes
resistance due to porin channel mutations and efflux pump
overproducers. It results that cefiderocol exhibits potent
in vitro and in vivo activity against all species of Gram-
negative bacteria, including carbapenem-resistant strains of
Enterobacteriaceae, Pseudomonas aeruginosa , and
Acinetobacter baumannii, and even Stenotrophomonas
maltophilia [15]. Here, we evaluated the antimicrobial activity
of cefiderocol and other Gram-negative antibiotics (aztreonam,
amikacin, cefepime, ceftazidime, ceftazidime–avibactam,
ceftolozane–tazobactam, ciprofloxacin, meropenem, colistin,
and tigecycline) against a panel of 753 multidrug-resistant bac-
terial isolates from human clinical sources with characterized
antibiotic resistance mechanisms.

Materials and methods

Bacterial isolates

A total of 753 clinical multidrug-resistant isolates were eval-
uated in this study (Table 1). They were representative of the
most widespread and broad-spectrum mechanisms of resis-
tance currently observed worldwide in Gram-negative bacte-
ria. The strains were collected from hospitals worldwide (42
countries) from 2000 to 2016, with a majority dating from the
2012–2016 period. They were of various origins (not always
recorded) but mostly from urines, broncho-alveolar speci-
mens, blood, pus, and stools.

In vitro susceptibility test methods

Minimum inhibitory concentrations (MICs) were determined
following the Clinical and Laboratory Standards Institute
(CLSI) broth microdilution (BMD) guidelines [16]. Frozen

96-well broth microdilution panels with pre-loaded antibiot-
ic-growth medium were supplied by International Health
Management Associates, Inc. (Schaumburg, IL, USA).
Cefiderocol was tested in iron-depleted cation-adjusted
Mueller–Hinton broth (ID-CAMHB) [17], as recently ap-
proved by the CLSI (http://clsi.org/standards/micro/
microbiology-files/), whereas comparators were tested in
cation-adjusted Mueller–Hinton broth (CAMHB). Quality

Table 1 Bacterial strains tested in this study

Genus (species) Number of
tested isolates

Characterized resistance

Escherichia coli (164)

43 OXA (-1/48/181/204)

22 VIM (-1/2/4/19), IMP (-1/8)

45 NDM (-1/4/5/6/7)

11 KPC (-2/3)

25 CTX-M (-1/3/15)

15 MCR-1

3 Non-MCR-1 colistin resistant

Klebsiella pneumoniae (298)

101 KPC (-2/3/11)

89 OXA (-48/162/163/181/204/232)a

18 NDMb (-1/4)

20 VIM (-1/4/19), IMP (-1/4/8)

25 CTX-M (-3/15)

45 Colistin R

Enterobacteriaceae (159)

26 OXA (-48/163)

10 NDM-1

5 VIM-1

14 IMP (-1/8)

14 KPC-2

49 CTX-M (-3/15)

7 VEB-1

14 SHV-12

9 Plasmid-mediated AmpC and
overproducer of AmpC

11 Colistin R

Pseudomonas aeruginosa (45)

6 PER-1

9 SHV (-2a/5/12), GES (-1/9)

20 IMP (-1/2/10/13/15/19/29), KPC-2

10 VIM (-1/2), SPM-1, GIM-1

Acinetobacter baumannii (87)

85 OXA-23/40/58/72

2 NDM-1, IMP-4

Total 753

a Five strains are OXA-48 producers and colistin resistant
b Five strains are NDM producers and colistin resistant
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Table 2 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), meropenem
(MEM), ceftazidime (CAZ),
ceftazidime–avibactam (CZA),
colistin (CST), aztreonam (ATM),
amikacin (AMK), ciprofloxacin
(CIP), cefepime (FEP), and
tigecycline (TGC) against E. coli,
K. pneumoniae, Enterobacter sp.,
P. aeruginosa, and A. baumannii

Organism group/
antimicrobial agent

MIC range (mg/L) No. MIC50
a MIC90

a

All species

CFDC 0.03–64 753 0.5 2

CT 0.03–64 753 64 >64

CAZ 0.03–64 753 >64 >64

CZA 0.03–64 753 1 >64

FEP 0.05–16 753 >16 >16

MEM 0.03–64 753 8 >64

CIP 0.25–4 753 >4 >4

ATM 0.05–32 753 >32 >32

AMK 4–64 753 8 >64

CST 0.5–8 753 ≤0.5 8

TGC 0.25–4 753 0.5 2

Escherichia coli

CFDC 0.03–64 164 0.5 4

CT 0.03–64 164 8 >64

CAZ 0.03–64 164 64 >64

CZA 0.03–64 164 0.5 >64

FEP 0.05–16 164 >16 >16

MEM 0.03–64 164 2 >64

CIP 0.25–4 164 >4 >4

ATM 0.05–32 164 >32 >32

AMK 4–64 164 ≤4 >64

CST 0.5–8 164 ≤0.5 2

TGC 0.25–4 164 ≤0.25 ≤0.25
Klebsiella pneumoniae

CFDC 0.03–64 298 1 2

CT 0.03–64 298 64 >64

CAZ 0.03–64 298 >64 >64

CZA 0.03–64 298 1 >64

FEP 0.05–16 298 >16 >16

MEM 0.03–64 298 16 >64

CIP 0.25–4 298 >4 >4

ATM 0.05–32 298 >32 >32

AMK 4–64 298 8 64

CST 0.5–8 298 ≤0.5 16

TGC 0.25–4 298 0.5 1

Enterobacter sp.

CFDC 0.03–64 159 0.5 4

CT 0.03–64 159 16 >64

CAZ 0.03–64 159 >64 >64

CZA 0.03–64 159 0.5 >64

FEP 0.05–16 159 >16 >16

MEM 0.03–64 159 0.5 16

CIP 0.25–4 159 >4 >4

ATM 0.05–32 159 >32 >32

AMK 4–64 159 ≤4 16

CST 0.5–8 159 ≤0.5 8

TGC 0.25–4 159 0.5 1

3

ht
tp
://
do
c.
re
ro
.c
h



control (QC) strains (E. coli ATCC 25922, K. pneumoniae
ATCC 700603, and P. aeruginosa ATCC 27853) were tested
regularly to ensure the stability of the panels and validity of
the test methods. The acceptable concentration range for QC
strains is 0.06–0.5 mg/L for E. coli and P. aeruginosa and not
yet defined for K. pneumoniae.

All isolates were tested against the following antibiotics for
the given concentration range: cefiderocol (S-649266)
(CFDC, 0.03–64 mg/L), aztreonam (ATM, 0.5–32 mg/L), ce-
fepime (FEP, 0.5–16 mg/L), ceftolozane–tazobactam (CT,
0.03–64 mg/L), meropenem (MEM, 0.03–64 mg/L), ceftazi-
dime (CAZ, 0.03–64 mg/L), ceftazidime–avibactam (CZA,
0.03–64 mg/L), colistin (CST, 0.5–8 mg/L), amikacin
(AMK, 4–64 mg/L), ciprofloxacin (CIP, 0.25–4 mg/L), and
tigecycline (TGC, 0.25–4 mg/L).

The strains were grown overnight on a non-selective agar
medium and two to three colonies were solubilized in 3 mL
sterile 0.85% NaCl. The turbidity was adjusted to 0.5
McFarland with a McFarland densitometer DEN-1B from
Grant Bio (Grant instruments Ltd., Cambridge, UK). One mil-
liliter of inoculum was then diluted in 29 mL of sterile ddH2O
and 10 μL were added to each BMD panel well. The panels
were incubated for 16–20 h at 35 °C. To ensure an even

thermal distribution during incubation, the panels were
stacked no more than four high. The MIC reading was then
done according to the CLSI guidelines [18].

Results and discussion

The susceptibility test results are listed in Tables 2–7. The
MIC90 (MIC value that inhibits 90% of the isolates) of
cefiderocol was 2 mg/L (Table 2), while those of comparative
drugs were >64 mg/L for CT, MEM, CAZ, CZA, and AMK,
>32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for CST, and
2 mg/L for TGC. The MIC50 of CFDCwas at 0.5 mg/L, while
those of other drugs were >64mg/L for CAZ, 64mg/L for CT,
>32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for MEM and
AMK, >4 mg/L for CIP, 1 mg/L for CZA, 0.5 mg/L for TGC,
and ≤0.5 mg/L for CST. The addition of 4 μg/mL of
avibactam restored the activities of ceftazidime against the
majority of the tested enterobacterial isolates.

The MIC50 and MIC90 of CFDC for Enterobacteriaceae
producing KPC carbapenemases were ≤1 μg/mL and ≤2 mg/
L, respectively (Table 3). The only competitive comparators
were ceftazidime–avibactam (MIC50/90) (1/4), colistin (≤0.5/

Table 2 (continued)
Organism group/
antimicrobial agent

MIC range (mg/L) No. MIC50
a MIC90

a

Pseudomonas aeruginosa

CFDC 0.03–64 45 0.5 2

CT 0.03–64 45 64 >64

CAZ 0.03–64 45 >64 >64

CZA 0.03–64 45 16 >64

FEP 0.05–16 45 >16 >16

MEM 0.03–64 45 32 >64

CIP 0.25–4 45 >4 >4

ATM 0.05–32 45 16 >32

AMK 4–64 45 8 >64

CST 0.5–8 45 ≤0.5 1

TGC 0.25–4 45 >4 >4

Acinetobacter baumannii

CFDC 0.03–64 87 0.12 4

CT 0.03–64 87 16 >64

CAZ 0.03–64 87 >64 >64

CZA 0.03–64 87 16 64

FEP 0.05–16 87 >16 >16

MEM 0.03–64 87 32 64

CIP 0.25–4 87 >4 >4

ATM 0.05–32 87 >32 >32

AMK 4–64 87 64 >64

CST 0.5–8 87 ≤0.5 1

TGC 0.25–4 87 1 2

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively
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Table 3 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), ceftazidime
(CAZ), ceftazidime–avibactam
(CZA), cefepime (FEP),
meropenem (MEM),
ciprofloxacin (CIP), aztreonam
(ATM), amikacin (AMK), colistin
(CST), and tigecycline (TGC)
against Enterobacteriaceae
(E. coli, K. pneumoniae, and
Enterobacter sp.) producing a
KPC-type carbapenemase

Organism group/antimicrobial agent MIC range (mg/L) No. MIC50
a MIC90

a

Total Enterobacteriaceae

CFDC 0.03–64 127 1 2

CT 0.03–64 127 64 >64

CAZ 0.03–64 127 >64 >64

CZA 0.03–64 127 1 4

FEP 0.05–16 127 >16 >16

MEM 0.03–64 127 32 >64

CIP 0.25–4 127 >4 >4

ATM 0.05–32 127 >32 >32

AMK 4–64 127 16 32

CST 0.5–8 127 ≤0.5 >8

TGC 0.25–4 127 0.5 1

Escherichia coli

CFDC 0.03–64 12 0.5 1

CT 0.03–64 12 32 >64

CAZ 0.03–64 12 64 >64

CZA 0.03–64 12 1 4

FEP 0.05–16 12 >16 >16

MEM 0.03–64 12 8 64

CIP 0.25–4 12 >4 >4

ATM 0.05–32 12 64 64

AMK 4–64 12 ≤4 >64

CST 0.5–8 12 ≤0.5 ≤0.5
TGC 0.25–4 12 ≤0.25 ≤0.25

Klebsiella pneumoniae

CFDC 0.03–64 101 1 2

CT 0.03–64 101 64 >64

CAZ 0.03–64 101 >64 >64

CZA 0.03–64 101 2 4

FEP 0.05–16 101 >16 >16

MEM 0.03–64 101 64 >64

CIP 0.25–4 101 >4 >4

ATM 0.05–32 101 >32 >32

AMK 4–64 101 16 32

CST 0.5–8 101 ≤0.5 >8

TGC 0.25–4 101 0.5 1

Enterobacter sp.

CFDC 0.03–64 14 0.5 1

CT 0.03–64 14 64 >64

CAZ 0.03–64 14 >64 >64

CZA 0.03–64 14 1 2

FEP 0.05–16 14 >16 >16

MEM 0.03–64 14 8 16

CIP 0.25–4 14 >4 >4

ATM 0.05–32 14 >32 >32

AMK 4–64 14 ≤4 ≤4
CST 0.5–8 14 ≤0.5 8

TGC 0.25–4 14 0.5 1

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively
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Table 4 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), ceftazidime
(CAZ), ceftazidime–avibactam
(CZA), cefepime (FEP)
meropenem (MEM),
ciprofloxacin (CIP), aztreonam
(ATM), amikacin (AMK), colistin
(CST), and tigecycline (TGC)
against Enterobacteriaceae
(E. coli, K. pneumoniae, and
Enterobacter sp.) producing an
OXA-48-type carbapenemase

Organism group/antimicrobial agent MIC range (mg/L) No. MIC50
a MIC90

a

Total Enterobacteriaceae

CFDC 0.03–64 154 0.25 2

CT 0.03–64 154 32 >64

CAZ 0.03–64 154 64 >64

CZA 0.03–64 154 0.5 4

FEP 0.05–16 154 >16 >16

MEM 0.03–64 154 1 32

CIP 0.25–4 154 >4 >4

ATM 0.05–32 154 >32 >32

AMK 4–64 154 ≤4 16

CST 0.5–8 154 ≤0.5 1

TGC 0.25–4 154 ≤0.25 1

Escherichia coli

CFDC 0.03–64 42 0.06 0.5

CT 0.03–64 42 2 32

CAZ 0.03–64 42 4 64

CZA 0.03–64 42 0.25 0.5

FEP 0.05–16 42 8 >16

MEM 0.03–64 42 1 4

CIP 0.25–4 42 ≤0.25 >4

ATM 0.05–32 42 32 >32

AMK 4–64 42 ≤4 ≤4
CST 0.5–8 42 ≤0.5 1

TGC 0.25–4 42 ≤0.25 ≤0.25
Klebsiella pneumoniae

CFDC 0.03–64 88 0.25 1

CT 0.03–64 88 64 >64

CAZ 0.03–64 88 64 >64

CZA 0.03–64 88 0.5 >64

FEP 0.05–16 88 >16 >16

MEM 0.03–64 88 1 64

CIP 0.25–4 88 >4 >4

ATM 0.05–32 88 >32 >32

AMK 4–64 88 ≤4 >64

CST 0.5–8 88 ≤0.5 1

TGC 0.25–4 88 0.5 1

Enterobacter sp.

CFDC 0.03–64 24 1 4

CT 0.03–64 24 32 >64

CAZ 0.03–64 24 >64 >64

CZA 0.03–64 24 0.5 2

FEP 0.05–16 24 >16 >16

MEM 0.03–64 24 1 8

CIP 0.25–4 24 >4 >4

ATM 0.05–32 24 >32 >32

AMK 4–64 24 8 8

CST 0.5–8 24 ≤0.5 1

TGC 0.25–4 24 1 1

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively
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Table 5 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), ceftazidime
(CAZ), ceftazidime–avibactam
(CZA), cefepime (FEP),
meropenem (MEM),
ciprofloxacin (CIP), aztreonam
(ATM), amikacin (AMK), colistin
(CST), and tigecycline (TGC)
against Enterobacteriaceae
(E. coli, K. pneumoniae, and
Enterobacter sp.) producing
NDM, VIM, or IMP
carbapenemases

Organism group/antimicrobial agent MIC range (mg/L) No. MIC50
a MIC90

a

Total Enterobacteriaceae

CFDC 0.03–64 134 1 4

CT 0.03–64 134 >64 >64

CAZ 0.03–64 134 >64 >64

CZA 0.03–64 134 >64 >64

FEP 0.05–16 134 >16 >16

MEM 0.03–64 134 32 >64

CIP 0.25–4 134 >4 >4

ATM 0.05–32 134 >32 >32

AMK 4–64 134 8 >64

CST 0.5–8 134 ≤0.5 1

TGC 0.25–4 134 ≤0.25 1

Escherichia coli

CFDC 0.03–64 67 1 16

CT 0.03–64 67 >64 >64

CAZ 0.03–64 67 >64 >64

CZA 0.03–64 67 >64 >64

FEP 0.05–16 67 >16 >16

MEM 0.03–64 67 64 >64

CIP 0.25–4 67 >4 >4

ATM 0.05–32 67 >32 >32

AMK 4–64 67 8 >64

CST 0.5–8 67 ≤0.5 1

TGC 0.25–4 67 ≤0.25 ≤0.25
Klebsiella pneumoniae

CFDC 0.03–64 38 1 4

CT 0.03–64 38 >64 >64

CAZ 0.03–64 38 >64 >64

CZA 0.03–64 38 >64 >64

FEP 0.05–16 38 >16 >16

MEM 0.03–64 38 32 >64

CIP 0.25–4 38 >4 >4

ATM 0.05–32 38 >32 >32

AMK 4–64 38 16 >64

CST 0.5–8 38 ≤0.5 1

TGC 0.25–4 38 1 2

Enterobacter sp.

CFDC 0.03–64 29 1 4

CT 0.03–64 29 >64 >64

CAZ 0.03–64 29 >64 >64

CZA 0.03–64 29 >64 >64

FEP 0.05–16 29 >16 >16

MEM 0.03–64 29 16 64

CIP 0.25–4 29 1 >4

ATM 0.05–32 29 16 >32

AMK 4–64 29 ≤4 >64

CST 0.5–8 29 ≤0.5 ≤0.5
TGC 0.25–4 29 0.5 1

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively
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≥8), and tigecycline (≤0.5/≤1). Elevated MIC90 values for co-
listin were noted for 17 out of 101 strains for K. pneumoniae
and 2 out of 14 strains for Enterobacter sp. For all other
antibiotics, the MIC50/90 were superior or equal to the upper
limit of the concentration range.

OXA-48-like producing Enterobacteriaceae were suscepti-
ble to a larger number of antibiotics compared to the KPC
producers (Table 4). Again, cefiderocol is one of the antibi-
otics with the lowest MIC50/90 values, at 0.25 and 2 μg/mL,
respectively. Direct competitors were ceftazidime–avibactam
(0.5/4), meropenem (1/32), amikacin (≤4/16), colistin (≤0.5/
1), and tigecycline (≤0.5/≤1). Again, for Klebsiella sp., the
MIC90 of CZA and MEM were affected by outliers and the
MIC50 values should be considered instead.

For the enterobacterial isolates producing NDM, VIM, or
IMP carbapenemases (Table 5), the only antibiotics that had
strong activity (MIC50/90) were cefiderocol (1/4), colistin
(≤0.5/≤1), and tigecycline (≤0.25/≤1).

Colistin-resistant strains, mainly Enterobacteriaceae, had
high susceptibility to cefiderocol (≤0.5/≤2) and some activity
for ceftolozane–tazobactam in the case of E. coli (0.25/>64),
ceftazidime–avibactam (0.5/>64), meropenem (0.12/64),
amikacin (≤4/16), and tigecycline (≤1/≤1). Except for
cefiderocol and tigecycline, the MIC90 values were close to
or above the upper limit of the concentration range of the
tested antibiotics for the Enterobacteriaceae being resistant
to colistin. This could be explained by additional resistance
traits, such as expression of genes encoding carbapenemases
and ESBLs, in particular for K. pneumoniae and Enterobacter
sp. The level of resistance to colistin (MIC90 = 2) and of
meropenem (MIC90 = 1) was lower for E. coli than that noted
for K. pneumoniae and Enterobacter sp.

Carbapenemase-producing P. aeruginosa were susceptible
only to cefiderocol (0.5/2) and colistin (≤0.5/1) (Table 6). The
same resistance trend was observed for carbapenemase-
producing A. baumannii strains [CFDC (0.12/4) and CST

Table 6 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), meropenem
(MEM), ceftazidime (CAZ),
ceftazidime–avibactam (CZA),
colistin (CST), aztreonam (ATM),
amikacin (AMK), ciprofloxacin
(CIP), cefepime (FEP), and
tigecycline (TGC) against
P. aeruginosa producing a
carbapenemase (either IMP, KPC,
VIM, SPM, or GIM)

Organism group/antimicrobial agent MIC range (mg/L) No. MIC50
a MIC90

a

Pseudomonas aeruginosa

CFDC 0.03–64 30 0.5 2

CT 0.03–64 30 >64 >64

CAZ 0.03–64 30 >64 >64

CZA 0.03–64 30 >64 >64

FEP 0.05–16 30 >16 >16

MEM 0.03–64 30 64 >64

CIP 0.25–4 30 >4 >4

ATM 0.05–32 30 8 64

AMK 4–64 30 8 >64

CST 0.5–8 30 ≤0.5 1

TGC 0.25–4 30 8 >4

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively

Table 7 In vitro activities of
cefiderocol (CFDC), ceftolozane–
tazobactam (CT), meropenem
(MEM), ceftazidime (CAZ),
ceftazidime–avibactam (CZA),
colistin (CST), aztreonam (ATM),
amikacin (AMK), ciprofloxacin
(CIP), cefepime (FEP), and
tigecycline (TGC) against
A. baumannii producing anOXA-
type carbapenemase (either OXA-
23, -40, -58, or -72)

Organism group/antimicrobial agent MIC range (mg/L) No. MIC50
a MIC90

a

Acinetobacter baumannii

CFDC 0.03–64 85 0.12 4

CT 0.03–64 85 16 >64

CAZ 0.03–64 85 >64 >64

CZA 0.03–64 85 16 64

FEP 0.05–16 85 >16 >16

MEM 0.03–64 85 32 64

CIP 0.25–4 85 >4 >4

ATM 0.05–32 85 >32 >32

AMK 4–64 85 64 >64

CST 0.5–8 85 0.5 1

TGC 0.25–4 85 1 2

aMIC, minimum inhibitory concentration; MIC50/90, MIC that inhibits 50% and 90% of the isolates, respectively
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(0.5/1)], except that they were also susceptible to tigecycline
(1/2) (Table 7). The only unexpected result is the overall low
activity of ceftolozane–tazobactam against those P. aeruginosa
isolates.

Among the 753 isolates tested, only 24 isolates exhibited an
MIC value of cefiderocol ≥8 μg/mL, among which 45% were
NDM producers (n = 11), 30% were OXA-23-producing
A. baumannii (n = 7), and two VEB-, one SHV-, one VIM-,
and one OXA-48-like producers among K. pneumoniae,
P. aeruginosa, and Enterobacter sp. Noteworthy, cefiderocol
was active against 68 out of 79 NDM producers, while most of
the NDM producers co-produced other β-lactam resistance
mechanisms, such as ESBLs (mostly CTX-M-15), porin de-
fect, plasmid-mediated cephalosporinases, and other
carbapenemases (data not shown). Cefiderocol wasmore active
(MIC90 2–4mg/L) than the comparators (MIC90 >4 to >64 mg/
L) (cephalosporins, carbapenem, fluoroquinolone, and
monobactam) against all the tested strains. The only compara-
tors with equal activity were colistin and tigecycline, with the
limitation that tigecycline was not active against P. aeruginosa.
Finally, it should be emphasized that cefiderocol displays much
favorable pharmacokinetic parameters (tissue diffusion and use
in renal impairment) than colistin and tigecycline [19], which
will be an important factor for choosing adequate therapy of
infections due to multidrug infections.
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