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ABSTRACT

The ‘Random Mutation Capture’ assay allows for the
sensitive quantitation of DNA mutations at extreme-
ly low mutation frequencies. This method is based
on PCR detection of mutations that render the
mutated target sequence resistant to restriction
enzyme digestion. The original protocol prescribes
an end-point dilution to about 0.1 mutant DNA mol-
ecules per PCR well, such that the mutation burden
can be simply calculated by counting the number of
amplified PCR wells. However, the statistical
aspects associated with the single molecular
nature of this protocol and several other molecular
approaches relying on binary (on/off) output can sig-
nificantly affect the quantification accuracy, and this
issue has so far been ignored. The present work
proposes a design of experiment (DoE) using statis-
tical modeling and Monte Carlo simulations to
obtain a statistically optimal sampling protocol,
one that minimizes the coefficient of variance in
the measurement estimates. Here, the DoE
prescribed a dilution factor at about 1.6 mutant mol-
ecules per well. Theoretical results and experimen-
tal validation revealed an up to 10-fold improvement
in the information obtained per PCR well, i.e. the
optimal protocol achieves the same coefficient of
variation using one-tenth the number of wells used
in the original assay. Additionally, this optimization
equally applies to any method that relies on binary
detection of a small number of templates.

INTRODUCTION

Mutations in nuclear and mitochondrial DNA are
associated with congenital disorders, diseases (e.g.

cancer) and ageing (1). An accurate determination of
tissue level DNA mutation abundance is challenging, but
critical for understanding the impact of these mutations
on cellular and tissue physiology (2–4). Furthermore, the
ability to sensitively detect the frequency of random spon-
taneous mutations of DNA is necessary to define critical
parameters like the mutation rate, which is essential for
understanding the role of genomic mutagenesis in human
diseases and ageing.
Many procedures have been developed based on quan-

tification of point mutation frequency by PCR amplifica-
tion of short fragments of DNA. However these methods
have recently come under criticism, because
mis-incorporation of nucleotides due to the intrinsic
error rate of polymerase enzymes will result in introduc-
tion of spurious mutations during the initial PCR step.
Upon cloning, these mutations become indistinguishable
from true mutations and may provide an overestimation
of the mutation load (5). These artifactual mutations may
be at frequencies exceeding actual in vivo mutation
frequencies, especially when measuring low-level spontan-
eous DNA mutations (�10�6bp�1) (6).
In 2005, Bielas and Loeb (3) developed a novel assay for

quantifying low levels of spontaneous random mutations
in DNA. This method, known as the ‘Random Mutation
Capture’ (RMC) assay, is based on PCR detection of
mutations that render the target sequence resistant to
restriction enzyme digestion (2,4). Following complete
restriction digest, digest resistant mutant templates are
quantified by real-time PCR amplification after dilution
to single molecule level (5). This approach avoids the
need for pre-amplification and associated artifactual mu-
tations due to polymerase error that have confounded
previous methods (2).
Given these advantages, it is not surprising that the

RMC assay has been widely applied. Since it was first
described in 2005 (3), 17 studies reporting original data
based on the RMC method have been published. Data
based on the RMC assay has also been central to some
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very high impact results. For example, RMC data on the
point mutation and deletion burden in the mtDNA of
polymerase gamma ‘mutator mice’ has been cited over
190 times (7,8). Also, application of the RMC assay to
the determination of the mutation frequency in mitochon-
drial DNA (mtDNA) of ageing wild-type mice (7) has
resulted in values about two orders of magnitude lower
than the previous estimates (9,10), a result that has wide
reaching implication in the context of ageing (11). The
RMC assay itself has been widely discussed, with over
21 additional articles and reviews discussing it (see
Supplementary Table S2).
The RMC assay is based on quantification of mutation

burdens by real-time PCR following dilution to single
molecule level (Figure 1). The advantage of this
approach is that each PCR-amplified well results from
only single mutant molecules because the likelihood of
finding more than a single mutant in a well is negligible
(3,5). However, while at the population level, low sample
size has been shown to negatively affect the conclusion
drawn from DNA mutation studies (12), here we show
that statistical aspects related to protocols necessitating
such high dilution (down to single molecule level) can
also introduce significant noise in the mutation frequency
estimates. Unfortunately, the statistics associated with the
discrete molecular nature of such assays can become
non-trivial, an aspect that was overlooked in the original
protocol and subsequent applications. In this work, a
novel optimization of the RMC assay has been developed
based on statistical modeling techniques. These statistical
techniques are used to investigate the impact of high
dilution endpoints in the RMC assay on the accuracy of
mutation frequency measurements.
The statistically optimized RMC assay developed in this

work not only significantly reduces the extent of measure-
ment variability, facilitating better hypothesis testing, but
also increases the amount of information returned per

sample. Additionally, most PCR assays involving single
molecular dilution protocol, other than the RMC assay,
such as the digital PCR (dPCR) (13–15) or digital
RT-PCR (16) and single molecular PCR (smPCR)
(6,17,18), utilize a DNA template dilution factor of
�50% (one in two wells amplifying). The selection of
this dilution factor is chosen to yield ‘single’ DNA
template per PCR well and with the intention of
maximizing information return per well by assuming
Binomial statistics. However, the analysis in this work
demonstrates that this end-point dilution, while better
than the higher dilution of the RMC assay, may also be
suboptimal with respect to measurement variability. A
more careful and rigorous mathematical analysis, such
as the one presented here, will therefore not only benefit
the RMC assay but may also be equally applicable to
other single molecule assays.

METHODS

Statistical optimization of the RMC assay

The conventional RMC assay (3,5,7) is based on PCR
amplification of a single mutant molecule (restriction
enzyme digest resistant) in the presence of excess copy
numbers of wild-type sequences (digest sensitive). The
mutation frequency is calculated by dividing the fraction
of PCR wells that are amplified by the amount of DNA
per well (3,7). In the conventional RMC assay, intrinsic
variability arises due to the well-to-well and plate-to-plate
variability that can arise from non-uniform sampling
of DNA content to PCR wells at single molecule level
dilutions and from the random number of amplified/
non-amplified wells in a plate, respectively (Figure 1).
The other sources of error (bias) in this protocol are
associated with (i) the assumption that each amplified
well only contains a single mutant molecule, (ii) false

Type of
uncertainties

Homogenized
DNA buffer

Typical RMC assay

Inter-plate variability
(Binomial-

 distribution)

Inter-well variability
(Poisson-

distribution)

type - I errors
(false-amplification)

type - II errors
(mis-

amplification)

Figure 1. Statistical aspects associated with the RMC assay. There are primarily four sources of variability that are important for the sensi-
tive estimation of DNA mutation load using the RMC assay, including: (i) the number of PCR (un)amplified wells among independent
RMC trials (inter-plate variability) even when each PCR well receives same number of DNA templates, (ii) the random molecular count of
mutant DNA in different wells of a single plate (inter-well variability), (iii) false amplification (Type I error) and (iv) mis-amplification (Type II
errors).
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PCR amplification due to contamination or incomplete
digestion (Type I), and (iii) failed PCR amplification
(Type II). Each of these factors contributes in a non-trivial
manner to the statistics of the mutation frequency data,
and has not been addressed previously.

To arrive at the optimal protocol, two types of
statistical analyses were performed. The first involved a
linearized variance propagation of functions of random
variables arising from the variability due to the
non-uniform sampling of DNA content to PCR wells,
while the second used a Monte Carlo approach involving
the function of random variables, that simulates the
protocol a large number of times (n=10000). The opti-
mization was then performed to minimize the coefficient
of variation, by changing the amount of DNA molecules
that were sampled into each well. The details of each
analysis are outlined below.

First order uncertainty propagation analysis

Assuming that the DNA homogenate for which mutation
frequency is to be determined is well mixed, the probabil-
ity of sampling x number of mutant molecules into a PCR
well, which is associated with the well-to-well variability,
can be described by the Poisson distribution with a mean
of l. This mean is the quantity of interest in this assay as
the point mutation frequency (per bp) can be calculated by
dividing l with the total amount of DNA in a well. Using
the Poisson density function, the probability of sampling
zero mutant template into an PCR well, denoted by p0, is
given by:

p0 ¼ PPoisson x ¼ 0ð Þ ¼ e�l ð1Þ

Furthermore, assuming that p0 is constant and ignoring
the Type I and II errors described earlier, the number of
wells n0 that are not PCR-amplified among a total of nwells
wells is an outcome of Bernoulli trials, similar to coin
flipping. While the number of unamplified wells (n0) has
an expectation value of nwells� p0, the outcome from a
particular RMC assay follows a random Binomial distri-
bution, giving rise to the plate-to-plate variability. In
this case, we can only obtain an estimate of p0, which is
calculated as p̂0 ¼ n0=nwells: Here, we show that the quality
of estimating l depends in non-trivial ways on p0.

An estimate of l can be calculated from p̂0 by
rearranging Equation (1), such that:

l̂ ¼ � log p̂0 ð2Þ

Since p̂0 is an unbiased estimator of p0 (i.e. the expected
value of p̂0 is equal to p0), the variance of l̂ can
approximated by using a Taylor series expansion of
Equation (2) and the coefficient of variation (CV) of l̂
is given by (see Supplementary Data for a detailed
derivation):

CV l̂
� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p0Þ=ðnwellsp0Þ

p
� logðp0Þ

: ð3Þ

Using the above function, the minimum CV is attained at
p�0 ¼ 0:20: That is, the optimal (smallest) CV results from
choosing a template dilution where 80% of wells amplify.

Note that the mutation burden here is computed from the
fraction of PCR wells that are not amplified, as opposed
to counting wells that are PCR-amplified in the conven-
tional RMC assay and other types of single molecular
dilution assays. However, a similar optimization based
on the fraction of amplified wells gave the same optimal
sampling protocol.
Our analysis shows that all methods involving single

molecule protocol relying on binary reading (e.g.
amplified or not amplified), such as the RMC assay,
dPCR and smPCR, are fundamentally quite different
from traditional biochemical assays. In particular we
find that their statistical properties are not trivial. What
the optimal protocol, e.g. in terms of information-
return-per-well and robustness with respect to errors,
should be is not obvious without a thorough statistical
analysis, such as one carried out in this article. It is intui-
tively clear that the ideal percentage of amplified wells
should lie somewhere between zero amplified wells
(no information gained) and 100% of wells amplified
(also no information gained). One could further argue
that counting the number of non-amplified wells is equiva-
lent to counting the number of amplified wells (since both
arise from the same Bernoulli trials), and it might there-
fore be expected that the maximum information per well
should correspond straightforwardly to the points when
half of the wells are amplified (or not amplified). However,
a further careful and detailed analysis shows that this is
not the case. The reason for this lies in the Poissonian
random sampling of DNA templates into the PCR
wells. This leads to l̂ being a logarithmic function of p0
[Equation (2)]. The logarithmic function is significantly
non-linear near 0 and hence, any small differences in the
measured p̂0 near 0 will be disproportionately magnified in
the l̂ estimates (Figure 2A). Consequently, the SD of l̂
increases dramatically at high dilution [see the numerator
of Equation (3)]. On the other hand, increasing the
average number of amplifiable templates per well
beyond the optimal level comes with a diminishing
return in reducing the CV of l̂. In this case, the benefit
of reducing variance by increasing p0 is counterbalanced
by the corresponding decrease in the mean of l̂. This
tradeoff thus explains the skewed optimal point for CV
at p�0 ¼ 0:20:

Monte Carlo analysis

The analytical treatment discussed earlier does not
consider false positives and false negatives (Type I or
Type II errors) as described in Figure 1. To better under-
stand the influence of these errors on the mutation fre-
quency estimates, we have also performed Monte Carlo
(MC) simulations of the conventional RMC assay and the
proposed alternative protocol (i.e. counting non-amplified
PCR wells) with and without these errors. When PCR
amplified wells contain exactly 1 mutant molecule,
sequencing of the PCR product can eliminate false posi-
tives and at the same time provide the mutational spectra.
Using a high dilution factor, the conventional RMC assay
assures that most, if not all, of the wells contain 0 or 1
mutant molecule and in this case, Type I error can be
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made negligible by sequencing. Consequently, the Type I
error rate was set to zero in the MC simulations of the
original RMC protocol. In the case of the proposed
optimized RMC assay, since some PCR wells have more
than a single DNA template, the likelihood of finding
more than a single type of allele is higher compared to
the conventional RMC assay. Also, each PCR amplified
wells of the optimized assay would, on an average, contain
two DNA templates (for p�0 ¼ 0:20). While this does not

preclude the usage of sequencing or other more advanced
technologies to exclude Type I errors in the case of
proposed optimal RMC assay, it does make these
controls slightly more challenging. Thus, for the MC
simulations of the optimized assay, we have considered
both the Type I and Type II errors. Type I and Type II
error frequencies for the MC simulations were estimated
from experimental data (see Supplementary Table S1).
It should further be noted that setting Type I errors to
zero in the simulations of the traditional but not the
optimized RMC assay is conservative (favoring the trad-
itional RMC assay).

Each MC simulation emulated the statistical random
sampling of DNA material into each PCR well on a
plate and the PCR amplification experiment. In this
case, such a simulation was performed a large number
of times to obtain the statistics of the mutation frequency
estimates, such as the mean and CV. The pseudo-codes
for the MC algorithms are given in Supplementary
Data. The Monte Carlo algorithms were implemented in
C++on a Linux Platform [CentOS; GNU C++compiler
(v4.1.1)] using a combination of a long period random
number generator (19) and a multiple independent
streams generator (20). In addition, non-uniform
random numbers were generated using algorithms
described elsewhere (21,22). The codes will be made avail-
able upon request.

Validation of RMC optimization

The performance of the proposed optimized protocol was
compared against experimental data from a mock RMC
assay to validate theoretical and simulation predictions.
Briefly, we generated a plasmid containing the target
sequence and a matching TaqMan probe/primer set
based on the TaqMan MGB Probe with 50-6FAM and
30-MGBNFQ dye technology (Applied Biosystems,
Calif.). The plasmids were serially diluted to approximate-
ly either 0.1 or 1.6 molecules per microliter. The former
corresponds to the dilution used in the single molecule
amplification of the original RMC assay (3), while the
latter represents the suggested dilution of the optimized
assay ðl̂� ¼ � log p̂�0 ¼ 1:6Þ. A 1-ml sample of either the
high or the low copy number dilutions were added to a
19 ml of standard TaqMan UDP master-mix (TaqMan
Universal PCR Master Mix, Applied Biosystems, CA,
USA) to each well of a 96-well plate PCR plate (Applied
Biosystems). The wells were subsequently subjected to
PCR amplification and detected using an Applied
Biosystems 7500 real-time PCR system running 60 cycles
of PCR of a modified universal amplification profile (50�C
for 2min, 95�C for 10min followed by 60 cycles of: 95�C
for 45 s, 55�C for 45 s and 72�C for 90 s). Amplification
was monitored at 520 nm (FAM Dye) and under these
conditions single molecules are found to be reliably
amplified (data not shown).

Conceptually, the RMC assay comprises two stages.
During the first stage WT DNA templates are removed
with high efficiency by complete restriction digest, leaving
only low copy numbers mutant templates. In the second
stage (‘quantification stage’), these mutant templates are

A

B

Figure 2. Optimized RMC assay. (A) Coefficient of variation (CV) of
DNA mutant frequency as a function of p0 (the mean fraction of un-
amplified wells) as predicted by MC simulations and statistical analysis
using assay with 48 wells. The parameter p0 relates to the DNA
template dilution factor, where higher dilution increases p0 (fewer
DNA templates per PCR well). The CV has a minimum value
around p0=0.20, as opposed to the conventional RMC assay of
p0& 0.91. The lower CV in simulations with Type I and Type II
errors comes at the cost of lower accuracy due to bias. (B)
Comparison of the relative errors between optimized and conventional
RMC assays in (X and Y) simulation and (Z) experiment; (nwells=48,
see also Table 1). MC simulations (n=10000 realizations) were per-
formed (X) with and (Y) without Types I and II errors. The Types I
and II errors were determined based mock RMC repeats (n=100 PCR
wells, Supplementary Table S1). For the original RMC assay, Type II
error rate was the same as above, but Type 1 frequency was set to zero,
since existence of mutant DNA in amplified wells is confirmed by
sequencing. Both MC simulations and experimental data confirmed
the superiority of the optimized protocol in terms of CV reduction
and accuracy improvement.
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further diluted to single molecule level (limiting dilution)
and quantified using the discrete RT-PCR step (only in-
formation regarding amplification or no amplification is
used). The first ‘digest’ stage of the RMC protocol
involves methodological challenges of its own, including
digestion efficiency of restriction enzymes, star activity
and template degradation. However, these will vary
from one application to another and can be minimized
without the use of a rigorous statistical analysis. Our
analysis is concerned purely with the second stage, in par-
ticular with the effect of randomness and sampling due to
the single molecule sampling step. Much of the aspects in
the quantification stage of the assay can be captured by
preparing limiting dilution series using plasmids contain-
ing the mutant sequence. In terms of validation of our
modeling claim, the use of plasmids is preferable because
the copy number of plasmids can be very accurately
determined beforehand and identical samples can be
generated each time. The use of whole genome samples,
while possible, would significantly complicate the protocol
without adding additional insight into the question
explored here. In practice, the use of higher mutant tem-
plates per well, as suggested by the optimization, will con-
comitantly increase competing WT DNA copies, which
may possibly affect single molecule detection efficacy.
Detection limit should therefore be validated using appro-
priate control experiments such as spiking pre-digested
WT samples with mutant or uncut WT DNA at known
copy number. Such control should in any case be a part of
assay calibration together with controls to ensure that
only WT sequences are cut during restriction digestion.

RESULTS AND DISCUSSION

Following the derivation in the Method section, the
optimal protocol involves (i) preparation of DNA
sample such that about 1� p�0 fraction of the wells will
be amplified by adjusting the dilution factor and (ii) the
mutation frequency estimate �̂ (mutations per base pairs)
can be computed according to

�̂ ¼
l̂

nbpnDNA
ð4Þ

where nDNA is the total number of DNA molecules in
a single PCR well and nbp is the length restriction site
[nbp=4 for TaqI recognition site (7)]. Figure 2 shows
that the results of statistical optimization using the
linearized analysis and MC approach, and from the
RMC validation experiments. In particular, Figure 2A
and Supplementary Figure S1 suggests that the
minimum CV can be achieved by diluting DNA sample
such that 1� p�0 ¼ 80% of the wells are PCR amplified,
which corresponds to 1.6 mutant molecules per well. This
is in contrast to the original RMC assay that prescribes
end-point dilution down to 0.1 mutant molecules per well.
Importantly, the optimized protocol offers a significant
improvement of the accuracy in mutation estimates
compared to the conventional RMC assay. For example,
Monte Carlo (MC) simulations of RMC assays
(n=10000) on 48 PCR wells (nwells=48) predicted a

53% reduction in coefficient of variation (CV) (from
40% to 19% CV) by using the optimal protocol in place
of the original (Figure 2B). Furthermore, this protocol
provides a more robust estimate of � than the traditional
RMC assay, where the CV is approximately constant for
the values of p0 between 0.1 and 0.4, even in the presence
of experimental artifacts (false positive and false negative
errors) (Figure 2A, Supplementary Figure S1). Even at
much higher false amplification and non-amplification
errors (Type I and Type II errors up to 30%), the
optimized protocol could still provide a significant reduc-
tion in the CV and better overall accuracy of mutation
burden estimates over the conventional RMC assay
(Supplementary Figures S2 and S3).
We tested the theoretical predictions experimentally by

conducting a mock RMC assay using plasmid DNA (see
Method). As expected, at the optimal dilution factor of
p�0 ¼ 0:20, this protocol provides a substantial reduction
of variability with an actual CV reduction of 68% (from
57% to 18% CV) (Figure 2B and Table 1). In other words,
the optimal RMC protocol offers the same information as
the original protocol using only 1/10 the number of wells
and provides significantly higher accuracy. The high vari-
ability due to the discrete molecular nature of the original
assay can lead to a significant uncertainty in measurement
estimates. These findings highlighted that in the quanti-
fication of low-level DNA mutations, the manner in
which samples are prepared for analysis can contribute
non-trivially to the statistics of the measurement data.
Given the increasing utilization of the RMC and similar
limiting dilution assays (8,17), we feel that this insight is
important to maximize information and minimize meas-
urement uncertainty when using these types of assays.
At p�0 ¼ 0:20 a great majority (>98%) of the amplified

wells still contain at most four DNA templates. Although
the conventional sequencing techniques are best applied to
only single DNA template, the sequencing of up to four
mutant molecules in a single well of the RMC assay
should not pose much difficulty, especially considering
that different templates are present at high and ap-
proximately equal number post-PCR amplification.
In addition, as the typical applications of RMC assay
involve point mutation frequencies of 10�6–10�4bp�1,
the probability of having multiple mutations in a single
4-bp restriction site is negligible. Thus, by assuming that
each mutant molecule contains only a single point
mutation, the sequence of each DNA template in the
PCR well can be uniquely and straightforwardly identified
from multiple chromatogram traces in the sequencing
output (23). Alternatively, if more accuracy is required,
a clone and sequence approach can be followed (23).
Finally, more advanced RT-PCR techniques for allelic
discrimination exist that can be used to confirm if any
WT alleles are present in the wells (24).
Additionally, it should be noted that the CV is not a

strong function of the fraction of amplified wells between
30% to 80% positives (0.2� p0� 0.7, see Figure 2A).
Using a value of p0 in this range, it is possible to obtain
improved accuracy of the mutation burden, while
resolving the complexity of DNA sequencing, if this is
desirable. For instance, at a dilution giving 30% amplified
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wells (0.35 molecules per well, p0=0.7), a great majority
of amplified wells (four out of five) will contain only a
single DNA template per well and 99% of amplified
wells contain at most two DNA templates. While the cor-
responding CV is suboptimal, this level of dilution can still
provide 50% reduction in CV from the conventional
RMC assay and also make sequencing easier (see Figure
2A). Therefore, if determining mutation spectra is of a
major interest, an intermediate dilution factor can be
chosen and Figure 2A can be used to estimate the trade
off in information loss.
Applications of the RMC assay in the past have been

for quantifying DNA mutation burden in numerous cell
types and in different organisms (see Supplementary Table
S2). A majority of these applications has been concerned
with age-dependent mutation burden in mitochondrial
DNA. Most of these applications have been used predom-
inantly in the original form. While a modification of the
RMC assay was recently proposed (25), the modified
protocol still used the original DNA dilution and
sampling procedure and did not address the issues high-
lighted earlier. Experimental data in the proposed work
(25) shows that their modified RMC assay using the same
DNA homogenates still exhibited high degree of noise
with half of the repeats having >50% differences and a
quarter have >100% deviations [see Figure 5 in (25)]. As
the measurement of each DNA homogenate was only
repeated once, it is statistically difficult to conclude
further about the reproducibility of their modified assay.
To elucidate the impact of the optimal protocol developed
in this work in reducing the measurement noise and
further improving the quality of data on age-dependent
mtDNA mutation accumulation, we have further per-
formed Monte Carlo simulations of low-level accumula-
tion of mtDNA mutations during ageing and their
measurements using the RMC assay with the original
and the optimal protocol.
Briefly, based on our earlier work (26), the in silico

mouse model tracks for the accumulation of mtDNA
point mutations during two stages of mouse life: develop-
ment and post-development. The model simulates two
mtDNA-related maintenance processes: mitochondrial
turnover, comprising of relaxed replication and

degradation of mitochondrial DNA, and de novo point
mutation during the mtDNA replication. In development,
the replication of the mtDNA during the symmetric
binary cell divisions is simulated, starting with a single
progenitor cell. In the post-natal stage, however, relaxed
replication of the mtDNA in a post-mitotic cardiomyocyte
is simulated (more details are included in Supplementary
Data).

Figure 3A shows the intrinsic variability in the levels of
mtDNA mutations among heart tissues from a population
of mice that may arise from random drift of mtDNA
point mutations. The underlying density function of this
uncertainty is represented as g(y) where y is the mtDNA
mutation frequency. The variability of RMC mutation
burden data in this population is a combination of the
intrinsic variability above and the uncertainty associated
with the RMC assay protocol (original and optimized),
which can be calculated by:

hðmÞ ¼
X

g �ð Þ 	 f mj�ð Þ ð5Þ

where f(m|y) is the probability of obtaining a mutation
burden reading of m by RMC assay, when the true
mutation frequency is y (26, 27). When using the
original RMC assay, the additional variability (noise)
from suboptimal sampling of the original RMC assay pre-
vents any definitive conclusion regarding the dynamics of
mtDNA mutation accumulation, as shown in Figure 3B.
On the other hand, the reduction in the sampling variabil-
ity offered by the optimal protocol provides a much more
definitive insight into the mutation dynamics (Figure 3C),
which is important in deducing mechanisms of age-related
mtDNA mutations (26).

CONCLUSIONS

Methods for quantifying extremely low levels of mutation
frequency (�10�6bp�1), like the RMC assay (3), represent
an important technological advance. Our findings reveal
that the statistics associated with the sample preparation
in these assays are of great importance, but often over-
looked. Consequently, sampling protocols need to be care-
fully designed to maximize signal-to-noise ratio. Here we

Table 1. Mock RMC experimental results using the optimized and original protocol

Optimized protocol (�=1.6) Original protocol (�=0.1)

Fraction of
amplified wells
ð1� p̂0Þ

Average mutant
molecules per well
� ¼ � logðp̂0Þ

Fraction of
amplified wells
ð1� p̂0Þ

Average mutant
molecules per well
ð� ¼ 1� p̂0Þ

Run # 1 36/48 1.39 Run # 1 1/48 0.02
Run # 2 39/48 1.67 Run # 2 6/48 0.13
Run # 3 38/48 1.57 Run # 3 10/48 0.23
Run # 4 35/48 1.31 Run # 4 7/48 0.16
Run # 5 36/48 1.39 Run # 5 6/48 0.13
Run # 6 42/48 2.08 Run # 6 3/48 0.06

Average (molecule per well) 1.5668 Average (molecule per well) 0.1146
SD (molecule per well) 0.2854 SD (molecule per well) 0.0656
CV 0.1822 CV 0.5721
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show that a sensitive and more robust estimate of
mutation frequency can be obtained by a simple modifi-
cation of the original assays (3,5,7) based on statistical
analysis. While the original procedure prescribes a
dilution factor of about 0.1 molecules of mutant per well
and the counting of amplified wells, we found, however,
that the maximum signal-to-noise ratio corresponds to a
lesser dilution factor of 1.6 molecules per well and quan-
tifying the fraction of unamplified wells. The optimized
assay is predicted and confirmed by experimental data,
to substantially reduce the measurement variability, and
thus provide significantly more accurate estimates of
mutation frequency, for instance in age-dependent
mutation dynamics. While the work developed here
pertains to the RMC assay, the statistics related to
sample preparation and sampling protocol maybe more
generally applicable to other DNA quantification tech-
niques requiring high dilution to obtain single molecule
end point dilutions.
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mental RMC data are shown in red circles (7). The simulated percentile
curves in the plots give the maximum mutation frequency that a given
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population harbor mutation frequency up to and including the level
indicated by the 99th percentile line). The percentiles of point mutation
frequency distribution in mouse heart tissues as a result of (A) random
drift of mtDNA mutation; (B) random drift and sampling variability
from the original RMC assay; and (C) random drift and sampling
variability from the optimized RMC protocol. The comparison of
overall data variability indicates that the optimized protocol developed
in this work provides a substantial reduction in the measurement vari-
ability and provides a better estimate of the underlying age-dependent
mtDNA mutation accumulation dynamics.
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