Learning neighborhoods for metric learning

Wang, Jun ; Woznica, Adam ; Kalousis, Alexandros

In: Machine learning and knowledge discovery in databases, European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part I. Lecture notes in computer science vol. 7523, 2012, p. 223-236

Metric learning methods have been shown to perform well on different learning tasks. Many of them rely on target neighborhood relationships that are computed in the original feature space and remain fixed throughout learning. As a result, the learned metric reflects the original neighborhood relations. We propose a novel formulation of the metric learning problem in which, in addition to the... Plus

Ajouter à la liste personnelle
    Summary
    Metric learning methods have been shown to perform well on different learning tasks. Many of them rely on target neighborhood relationships that are computed in the original feature space and remain fixed throughout learning. As a result, the learned metric reflects the original neighborhood relations. We propose a novel formulation of the metric learning problem in which, in addition to the metric, the target neighborhood relations are also learned in a two-step iterative approach. The new formulation can be seen as a generalization of many existing metric learning methods. The formulation includes a target neighbor assignment rule that assigns different numbers of neighbors to instances according to their quality; ‘high quality’ instances get more neighbors. We experiment with two of its instantiations that correspond to the metric learning algorithms LMNN and MCML and compare it to other metric learning methods on a number of datasets. The experimental results show state-of-the-art performance and provide evidence that learning the neighborhood relations does improve predictive performance.