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We provide explicit families of tame automorphisms of the complex affine three-space

which degenerate to wild automorphisms. This shows that the tame subgroup of the

group of polynomial automorphisms of C3 is not closed, when the latter is seen as an

infinite-dimensional algebraic group.

1 Introduction

In 1965 [12], Shafarevich introduced the notions of infinite-dimensional varieties and

infinite-dimensional algebraic groups, now usually called ind-varieties and ind-groups.

His main motivation was to study the group GAn(C) of polynomial automorphisms of

complex affine n-spaces An
C

= Cn, which he endowed with an ind-group structure. This

new approach was fruitful, since it allows him to state many nice (and tempting) results

in [12–14]. In the present paper, we are interested in one that claims that the tame auto-

morphisms form a dense subgroup TAn(C) of GAn(C). Unfortunately, Shafarevich’s proof

is based on another result—namely that a closed subgroup H of a connected ind-group

G with the same Lie algebra as G is equal to G –, which turns out to be false, since Furter

and Kraft constructed recently a counterexample to that statement in [7]. Therefore, we

must reconsider the question of the density of the tame subgroup and ask it again.
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Question 1.1. Is TAn(C) dense in GAn(C) in the topology of ind-varieties (for n≥ 3)? �

Moreover, Furter and Kraft also establish the following surprising result: the

subgroup TA2(C[z]) of tame automorphisms of C3 that fix the last coordinate is a closed

subgroup of the group GA2(C[z]) of polynomial automorphisms of C3 that fix the last

coordinate. In light of this, and since there were no known examples of nontame auto-

morphism that belong to the closure of the tame subgroup, we may even ask if the tame

subgroup is closed in GAn(C).

Question 1.2. Is TAn(C) closed in GAn(C) in the topology of ind-varieties (for n≥ 3)? �

We will show that it is not the case, when n= 3 of course, since it is the only

case where the existence of nontame automorphisms is proved. We indeed construct

families of tame automorphisms of C3 of bounded degrees which degenerate to wild

(i.e., nontame) automorphisms. In particular, we will prove that the automorphism ϕ of

C3 defined by

ϕ =
(

x + 3

4
z2y

(
3

2
y2 − 4xz

)
+ 3

8
z5

(
3

2
y2 − 4xz

)2

, y + z3

(
3

2
y2 − 4xz

)
, z

)

is not tame but is in the closure of the tame subgroup of C3. More precisely, ϕ is the

limit, when t → 0, of the tame automorphism σt of A3
C(t), which is given by

σt =
(

x − 3yz

2t
+ z3

2t2
, y − z2

t
, z
)

◦ (x, y, z + t3x2 − t2y3) ◦
(

x + 3yz

2t
+ z3

t2
, y + z2

t
, z
)

and which has all its coefficient in C[t].

This example illustrates a new phenomenon concerning the length of tame auto-

morphisms. Recall that the length of a (tame) automorphism σ of Cn is the minimum

number of triangular automorphisms that occur in a writing of σ as composition of

affine and triangular automorphisms. Recall also that Furter proved in [5] that the length

of automorphisms of the affine plane is lower semicontinuous. That means that an auto-

morphism of C2 of length l can not be obtained as the limit of automorphisms of length

< l. In contrast, in the above example, ϕ is an automorphism of C3 of infinite length

(because it is nontame), which is the limit of the family σt of automorphisms of length 3.

The article is organized as follow. We fix some notation and recall the definition

of tame automorphisms in Section 2. In Section 3, we recall why the group GAn(C) of

polynomial automorphisms of Cn has the structure of an infinite-dimensional affine

algebraic variety and study the subset of GA3(C) which consists of all “limits” of tame
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automorphisms. In particular, we show that the set of tame automorphisms of C3 of

degree at most d is a constructible set in GA3(C) for all d≥ 1. Finally, we give concrete

examples of nontame automorphisms which belong to the closure of the tame subgroup

in Section 4.

2 Tame Automorphisms

Let n≥ 1 be an integer and R be a commutative algebra over a field k. We denote by R[n]

the polynomial algebra in nvariables over R. A polynomial map of affine n-space over R,

that is, of An
R = An

k ×Spec(k) Spec(R), is a map f from An
R to itself of the form

f : (x1, . . . , xn) �→ ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where the fi’s belong to the polynomial ring R[x1, . . . , xn]. We will denote by

f = ( f1, . . . , fn) such a map and we define its degree by

deg( f) = max{deg( fi) | i = 1, . . . , n}.

We will also denote by f∗ the corresponding R-algebra endomorphism of R[x1, . . . , xn],

which is given by f∗(P (x1 . . . , xn)) = P ( f1, . . . , fn) for every element P ∈ R[x1, . . . , xn]. Note

in particular that f∗(xi) = fi for all i.

The composition of two polynomial maps f and g is simply defined by g ◦
f = (g1( f1, . . . , fn), . . . , gn( f1, . . . , fn)). We denote by GAn(R) the group of (algebraic) auto-

morphisms of An
R over Spec(R). An element f ∈ GAn(R) is simply an invertible polynomial

map from An
R to An

R whose inverse f−1 is also a polynomial map. We denote by

Affn(R) = { f ∈ GAn(R) | deg( f) = 1}

the affine subgroup of GAn(R) and by

BAn(R) = {( f1, . . . , fn) ∈ GAn(R) | fi ∈ R[xi, . . . , xn] for all i = 1 . . . n}

the subgroup of triangular automorphisms.

The subgroup of tame automorphisms of An
R is denoted by TAn(R). It is the sub-

group of GAn(R) generated by Affn(R) and BAn(R). An element of GAn(R) � TAn(R) is

called wild. The Tame Generators Problem asks for the existence of such automorphisms

in the case where R= k is a field.

Question 2.1 (Tame generators problem). Does it hold that GAn(k) = TAn(k)? �
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When n= 1, the answer is trivially yes. When n= 2, the answer is also positive

by the famous Jung–van der Kulk’s theorem (cf. [9, 10]), which asserts moreover that,

for any field k, the group GA2(k) = TA2(k) is the amalgamated free product of Aff2(k) and

BA2(k) along their intersection.

Note that we can consider GA2(k[z]) as a subgroup of GA3(k) via the map send-

ing an element ( f1, f2) ∈ GA2(k[z]) on to the corresponding automorphism ( f1, f2, z) in

GA3(k), which fixes the last coordinate. Then, Shestakov and Umirbaev [15, 16] proved

the following impressive result.

Theorem 2.2 (Shestakov, Umirbaev, 2004). Let k be a field of characteristic zero. Viewing

GA2(k[z]) and TA2(k[z]) as subgroups of GA3(k), we have

GA2(k[z]) ∩ TA3(k) = TA2(k[z]). �

This answers negatively the Tame Generators Problem in dimension 3 in charac-

teristic zero. For example, the famous Nagata automorphism

(x − 2y(y2 + zx) − z(y2 + zx)2, y + z(y2 + zx), z)

is a wild automorphism of C3. Indeed, the amalgamated free product structure on

GA2(C(z)) gives an algorithm to check if a given element in GA2(C[z]) is in TA2(C[z]) or

not (see [4]), and it turns out that the first two components of Nagata’s automorphism

correspond to an automorphism in GA2(C[z]) � TA2(C[z]). When n≥ 4, Question 2.1 is still

open.

3 Limits of Tame Automorphisms

We will now recall how one can see GAn(C) as an ind-variety (i.e., infinite-dimensional

algebraic variety) and which topology we consider on it. To this purpose, it is convenient

to work with a fixed integer n≥ 2 (for us, it will be n= 3) and to let G = GAn(C). Then, we

consider the filtration on G given by the degree and we define for every d≥ 1 the subset

G≤d = { f ∈ G = GAn(C) | deg( f) ≤ d}

of polynomial automorphisms of degree at most d. More generally, a subset S ⊂ G be

given, we let

S≤d := S ∩ G≤d = { f ∈ S | deg( f) ≤ d}.

One can show (see, e.g., [6]) that each G≤d has the structure of an affine algebraic

variety and is closed in G≤d+1 in the Zariski topology. Therefore, GAn(C) = G =⋃
d≥1 G≤d is
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an ind-variety in the sense of Shafarevich. As usual, we endow it with the ind-topology

in which a subset S ⊂ G is closed if and only if every subset S≤d is closed in G≤d in the

Zariski topology.

In the present paper, we focus our attention on the subset of tame automor-

phisms of affine three-space, which we will denote by T in the sequel. We would like to

investigate which automorphisms of C3 can be obtained as limits of such tame automor-

phisms in the following sense.

Definition 3.1. Let S ⊂ G be a subset and let f ∈ G. We say that f is limit of elements of S

if there exist a positive integer d≥ 1 and a subset U ⊂ S≤d which is locally closed in G≤d

such that f ∈ U .

Following [7], we say that a subset S ⊂ G is weakly closed if S contains all limits

of elements of S. �

Together with a valuative criterion due to Furter [6], Theorem 3.2 allows us to

make this definition of limit more concrete in the case of tame automorphisms of C3 (see

Corollary 3.4). This result follows from the theory of Shestakov and Umirbaev, which

provides an algorithm to decompose every tame automorphism of C3 as a product of

affine and triangular maps.

Theorem 3.2. For each d≥ 1, there exist positive integers m = m(d) and k= k(d),

depending only on d, such that every tame automorphism f ∈ T≤d of C3 of degree at

most d can be written as a composition f = f1 ◦ · · · ◦ fm, where each fi is either affine, or

a triangular automorphism of C3 of degree at most k. �

Proof. The proof is based on Shestakov–Umirbaev theory of reduction of tame auto-

morphisms of C3. These reductions involve affine and elementary automorphisms. Let

us recall that an automorphism f of Cn is called elementary if it is of the form

f = (x1, . . . , xi−1, xi + P , xi+1, . . . , xn)

for some 1 ≤ i ≤ nand some polynomial P ∈ C[x1, . . . , x̂i, . . . , xn] which does not depend on

the variable xi. We denote by E the set of elementary automorphisms of C3 and by E≤d the

subset of those which are of degree at most d. Remark that a triangular automorphism of

C3 of degree d is equal to the composition of one affine automorphism and two elements

of E≤d.

In [16], Shestakov and Umirbaev did not consider the usual degree for a

polynomial automorphism f , but the one that is given by the sum of the degrees
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of the components of f . Let us denote it by sdeg( f). So, we let sdeg(( f1, f2, f3)) =
deg( f1) + deg( f2) + deg( f3) for all automorphisms f = ( f1, f2, f3) of C3. According to the

theory developed in [16], for every tame but not affine automorphism f of C3, one of the

following properties holds:

(1) f admits an elementary reduction, that is, there exists an elementary auto-

morphism e ∈ E such that sdeg(e ◦ f) < sdeg( f).

(2) f admits a reduction of Type I or II and then, by definition, there exist

an elementary automorphism e ∈ E and an affine one a∈ G≤1 such that

sdeg(e ◦ a ◦ f) < sdeg( f).

(3) f admits a reduction of Type III and then, there exist, by definition, an

elementary automorphism e ∈ E , an elementary automorphism e2 ∈ E≤2 of

degree 2, and an affine automorphism a∈ G≤1 such that sdeg(e ◦ e2 ◦ a ◦ f)

< sdeg( f).

Actually, Shestakov and Umirbaev also considered another kind of reduction, called of

Type IV. But Kuroda proved that this one never occurs (see [11]). Thus, any tame auto-

morphism f ∈ T≤d can be reduced to an affine automorphism by using at most 3d− 3

reductions as above. So, to conclude the proof, it only remains to show that all elemen-

tary maps that appear in a decomposition of an element of T≤d can be taken with degrees

bounded by a number k= k(d) which depends only on d.

Let us first consider elementary reductions. Let f = ( f1, f2, f3) ∈ T≤d and sup-

pose that there exists a polynomial P ∈ C[x, y] such that deg( f3 − P ( f1, f2)) < deg( f3).

We denote by a the homogeneous part of highest degree of a polynomial a∈ C[x1, x2, x3].

If f1 and f2 are algebraically independent, then the equality f3 = P ( f1, f2) =
P ( f1, f2) easily implies that deg(P ) ≤ deg( f3) ≤ d. So, let us assume that f1 and f2 are

algebraically dependent. Now, if f1 ∈ C[ f2], then f1 = λ f
α

2 for some λ ∈ C∗ and 1 ≤ α ≤
d. In this case, instead of the elementary reduction e ◦ f of f given by e = (x1, x2, x3 −
P (x1, x2)), we can perform another elementary reduction, namely the one given ẽ = (x1 −
λxα

2 , x2, x3).

Therefore, we can suppose that f1 and f2 are algebraically dependent and

that f1 /∈ C[ f2] and f2 /∈ C[ f1]. A pair ( f1, f2) of such polynomials is called ∗-reduced

in [15, 16]. Without loss of generality, we can assume that d1 = deg( f1) < d2 = deg( f2) ≤ d.

Following [15], we also let p= d1 gcd(d1, d2)
−1, s = d2 gcd(d1, d2)

−1, degx2
(P (x1, x2)) = pq +

r, and degx1
(P (x1, x2)) = sq1 + r1, where 0 ≤ r < p and 0 ≤ r1 < s. Then, [15, Theorem 3]

gives the following inequalities:

deg(P ( f1, f2)) ≥ qN + d2r ≥ q and deg(P ( f1, f2)) ≥ q1 N + d1r1 ≥ q1,
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where N := d1d2 gcd(d1, d2)
−1 − d1 − d2 + deg[ f1, f2] ≥ 2. Since deg(P ( f1, f2)) = deg( f3) ≤ d,

we obtain

degx2
(P (x1, x2)) = pq + r ≤ d1d+ d1 ≤ d(d+ 1)

and

degx1
(P (x1, x2)) = sq1 + r1 ≤ d2d+ d2 ≤ d(d+ 1).

Thus, deg(P ) ≤ 2d(d+ 1) is bounded by a constant depending only on d, as desired.

Finally, it remains to consider the case where f admits a reduction of Type I,

II, or III. Let us write f̃ = (g1, g2, f3) := a ◦ f if f admits a reduction of Type I or II and

f̃ = (g1, g2, f3) := e2 ◦ a ◦ f if f admits a reduction of Type III. Furthermore, it follows

from the precise definitions in [16] that (g1, g2) is a ∗-reduced pair and that f̃ admits an

elementary reduction e ◦ f̃ such that sdeg(e ◦ f̃) < sdeg( f). By the previous discussion,

we can conclude that deg(e) ≤ 4d(2d+ 1). This proves the theorem. �

Theorem 3.2 implies the following fact.

Proposition 3.3. The set T≤d of tame automorphisms of C3 of degree at most d is a

constructible subset (i.e., a finite union of locally closed subsets) of G for every d≥ 1. �

Proof. Let d≥ 1 be fixed, and let m and k be the corresponding integers given by

Theorem 3.2. Denote by B≤k the set of triangular automorphisms of C3 of degree at

most k. Remark that this set is closed in G≤k and thus in G. Consequently, the set S :=
Aff3(C) ∪ B≤k is closed in G. The proposition follows then by Chevalley’s theorem. Indeed,

the composition-map γm : (G≤k)
m → G≤km defined by γm( f1, f2, . . . , fm) = f1 ◦ f2 ◦ · · · ◦ fm

is a morphism of algebraic varieties. Therefore, γm(Sm) is a constructible set in G≤km .

Hence, T≤d = γm(Sm) ∩ G≤d is constructible too. �

As a corollary, we obtain the following description of the set L of all limits of

tame automorphisms of C3.

Corollary 3.4. The set L :=⋃
d≥1 T≤d is weakly closed.

Furthermore, an automorphism f ∈ G belongs to L if and only if there exists a

family ϕt = ((ϕt)1, (ϕt)2, (ϕt)3) indexed by t ∈ C such that

(1) (ϕt)i ∈ C[[t]][x1, x2, x3] for all 1 ≤ i ≤ 3;

(2) ϕt defines a tame automorphism of A3
C((t));

(3) ϕ0 = f . �
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Proof. By Proposition 3.3, we can write every set T≤k as a finite union T≤k =⋃n(k)
i=1 Uk,i of

locally closed sets. In particular, the equality T≤k =⋃n(k)
i=1 Uk,i holds for every k≥ 1. Now,

let U ⊂L≤d be locally closed in G≤d. Remark that

U =
⋃
k≥1

T≤k ∩ U =
⋃
k≥1

(
n(k)⋃
i=1

Uk,i ∩ U

)
=
⋃
k≥1

Sk,

where all Sk :=⋃n(k)
i=1 Uk,i ∩ U are constructible subsets of G≤d. This implies (see, e.g., [7])

that there exists a k0 ≥ 1 such that U =⋃k0
k=1 Sk. Thus, U ⊂ T≤k0 and so U ⊂ T≤k0 ⊂L. This

proves that L is weakly closed.

The second assertion of the corollary is a direct application of a valuative crite-

rion due to Furter [6]. �

To sum up, we have the three following inclusions involving T , L, and G:

T ⊂L⊂ T ⊂ G.

The next section is devoted to the proof that the first inclusion is a strict one, that

is, T �L. Since we do not know whether the two others are strict or not, we would like

to ask two natural questions.

Question 3.5. Is L closed in G? In other words, does the equality T =L hold? �

Question 3.6. Is T dense in G? �

Note that these two questions are independent. Of course, L could be closed and

not equal to the whole G. But, more surprisingly, even if T would be dense in G, there

may be some automorphisms of C3 which do not belong to L, that is, which we can not

obtain as limits of tame automorphisms of bounded degree.

Finally, it is worth mentioning that L and T are subgroups of G. Indeed, let

us recall that, as shown by Shafarevich in [13], G is an infinite-dimensional algebraic

group (ind-group for short). That means that the multiplication map μ : G × G → G and

the inverse map ι : G → G are morphisms of ind-varieties, where a map ϕ : X =⋃
d X≤d →

Y =⋃
d Y≤d between two ind-varieties is called morphism, if for any n≥ 1 there is an

m ≥ 1 such that ϕ(X≤n) ⊂ Y≤m and ϕ|X≤n → Y≤m is a morphism of algebraic varieties. With

exactly the same arguments as for the classical case of algebraic groups (see, e.g., [8,

Section 7.4]), one checks that the following result remains true in the context of ind-

groups.
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Lemma 3.7. Let G be an ind-group and let H ⊂ G be a subgroup. Then, the closure H of

H is a subgroup of G. �

Corollary 3.8. The sets L and T are subgroups of GA3(C). �

Proof. By Lemma 3.7, T is a subgroup of G. On one hand, it follows from Corollary 3.4

that L is closed under composition. On the other hand, by a result due to Gabber (see [1,

Corollary 1.4]), we have ι(T≤d) ⊂ T≤d2 for all d≥ 1, where ι : G → G denotes the inversion

map. Therefore, ι(T≤d) ⊂ T≤d2 for all d≥ 1. This is a consequence of the fact that the inver-

sion map is a morphism of ind-groups and of the following elementary topological argu-

ment: if f : X → Y is a continuous map between two topological spaces and if f(A) ⊂ B

for some subsets A⊂ X and B ⊂ Y, then f(A) ⊂ B. Hence, L is closed under inversion. �

4 Examples of Wild Limits

Notation 4.1. Let n, m ≥ 1 be positive integers. We consider the triangular derivation δ′

of C[x, y, z] defined by

δ′ = zn ∂

∂y
− (m + 1)ymzn−1 ∂

∂x
.

Note that Δ := zx + ym+1 is in the kernel of δ′. Thus, δ = Δδ′ is a locally nilpotent of

C[x, y, z] whose exponential map is a polynomial automorphism of C3. Actually, it is

an element of GA2(C[z]) and we have

ϕλ = exp(λδ) =
(

x −
m+1∑
k=1

(
m + 1

k

)
λkΔkym+1−kznk−1, y + λΔzn, z

)

for all λ ∈ C. Moreover, by the main result of [16], ϕλ is a wild automorphism of C3, if

λ �= 0, since its second component is actually a wild coordinate of C[z][x, y] (see, e.g., [2,

Proposition 2]). �

We can now state the main result of our paper as follows.

Theorem 4.2. If n= 2m + 1, then

ϕλ = exp(λδ) =
(

x −
m+1∑
k=1

(
m + 1

k

)
λkΔkym+1−kznk−1, y + λΔzn, z

)

is, for all λ �= 0, a wild automorphism of C3, which belongs to the closure of TA3(C). �

As a corollary, we thus obtain the following result.
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Corollary 4.3. The tame automorphism subgroup is not (weakly) closed in GA3(C). �

Before proving our main result, let us make two remarks. First, note that the

famous Nagata automorphism

N = (x − 2y(y2 + zx) − z(y2 + zx)2, y + z(y2 + zx), z)

corresponds to the case n= m = 1 (and λ = 1), which does not satisfy the condition

n= 2m + 1. Therefore, the following question naturally shows up.

Question 4.4. Does the Nagata automorphism belong to the closure of the tame auto-

morphism subgroup of C3? �

Let us also point out that every tame automorphism of C3 can be easily obtained

as a limit of wild automorphisms.

Proposition 4.5. The set GA3(C) � TA3(C) of wild automorphisms of C3 is dense in

GA3(C). �

Proof. Let σ be a tame automorphism of C3 and let σt be the family of automorphisms

of C3 defined by σt := ϕt ◦ σ for all t ∈ C, where ϕt is the exponential map of the locally

nilpotent derivation δ described above. Since ϕ0 is simply equal to the identity map, σt

converges to σ , when t → 0. Thus, σ is a limit of wild automorphisms. �

In order to prove Theorem 4.2, we need to introduce some other notation. For

every positive integer m ≥ 1, we let

Pm(U ) =
m∑

k=0

⎛
⎝m + 1

2
k

⎞
⎠Uk ∈ Q[U ].

Note that the polynomial Pm(U ) is equal to the formal power series of (1 + U )m+ 1
2 trun-

cated at the order m. We consider also the two following triangular (tame) automor-

phisms of A3
C(t).

Ft = (x, y, z + tm+1(tx2 − y2m+1)) and Gt =
(

x + z2m+1

tm+1
Pm

(
ty

z2

)
, y + z2

t
, z
)

.

Remark that Gt indeed defines an automorphism of A3
C(t), since

z2m+1

tm+1
Pm

(
ty

z2

)
=

m∑
k=0

⎛
⎝m + 1

2
k

⎞
⎠ t−(m+1−k)ykz2m+1−2k
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is an element of C(t)[y, z]. Finally, we set σt = G−1
t ◦ Ft ◦ Gt ∈ GA3(C(t)). It turns out that

the map σt has all its coefficients in C[t]. More precisely, we have the following result.

Theorem 4.6. Let σt be the tame automorphism of A3
C(t) defined above. Then all three

components of σt are elements of C[t][x, y, z]. Moreover, putting t = 0 in their formu-

las, we get a wild polynomial automorphism of C3, whose last two components are

y − 4z2m+1(xz −
(

m+ 1
2

m+1

)
ym+1) and z, respectively. �

Proof. Remark that the inverse G−1
t of Gt is given by

G−1
t =

(
x − z2m+1

tm+1
Pm

(
ty − z2

z2

)
, y − z2

t
, z
)

.

Note that z2m+1 Pm(
ty−z2

z2 ) ∈ C[t][x, y, z]. In particular, the components of σt = G−1
t ◦ Ft ◦ Gt

are all elements of C[t, t−1][x, y, z]. Let us denote them by X := σ ∗
t (x), Y := σ ∗

t (y), and Z :=
σ ∗

t (z), respectively. By construction, it is clear that σt is a tame automorphism of A3
C(t).

We will further prove the following assertions:

(1) X, Y, Z ∈ C[t, x, y, z].

(2) Z ≡ z mod (t).

(3) Y ≡ y − 4z2m+1
(

xz −
(

m+ 1
2

m+1

)
ym+1

)
mod (t).

(4) σ̃ := (X|t=0, Y|t=0, Z |t=0) is a wild automorphism of C3.

Let us first compute Z . Setting T = ty
z2 , we get y + z2

t = z2

t (1 + T), and thus

Z = z + tm+1

(
t
(

x + z2m+1

tm+1
Pm(T)

)2

−
(

z2

t
(1 + T)

)2m+1
)

(�)

= z + tm+2x2 + 2txz2m+1 Pm(T) + z4m+2

tm

(
Pm(T)2 − (1 + T)2m+1) .

Since Pm(U ) is the formal power series of (1 + U )m+ 1
2 truncated at the order m, we

have Pm(U )2 ≡ (1 + U )2m+1 modulo (Um+1). So, Pm(T)2 ≡ (1 + T)2m+1 modulo (tm+1) and

we obtain therefore that Z = σ ∗
t (z) ∈ C[t, x, y, z] and Z |t=0 = z. This proves Assertion (2).

Now, Y = σ ∗
t (y) = y + z2

t − Z2

t = y − (Z + z) Z−z
t . Since the formal power series of

(1 + U )m+ 1
2 truncated at the order m + 1 is equal to Pm(U ) +

(
m+ 1

2
m+1

)
Um+1, we have

Pm(U )2 ≡ (1 + U )2m+1 − 2
(

m+ 1
2

m+1

)
Um+1 mod (Um+2). From this, we deduce that Pm(T)2 ≡

(1 + T)2m+1 − 2
(

m+ 1
2

m+1

)
Tm+1 modulo (tm+2), where T = ty

z2 . Thus, together with line (�)
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above,

Z ≡ z + 2txz2m+1 Pm(T) + z4m+2

tm

⎛
⎝−2

⎛
⎝m + 1

2
m + 1

⎞
⎠Tm+1

⎞
⎠ mod (t2)

≡ z + 2txz2m+1 − 2

⎛
⎝m + 1

2
m + 1

⎞
⎠tym+1z2m mod (t2).

Therefore, σ ∗
t (y) = y − (Z + z) Z−z

t ∈ C[t][x, y, z] and

Y|t=0 = y − 4z2m+1

⎛
⎝xz −

⎛
⎝m + 1

2
m + 1

⎞
⎠ ym+1

⎞
⎠ .

This proves Assertion (3). For X = σ ∗
t (x), we have

X = x + z2m+1

tm+1
Pm

(
ty

z2

)
− Z2m+1

tm+1
Pm

(
ty + z2 − Z2

Z2

)

= x + 1

tm+1

(
z2m+1 Pm

(
ty

z2

)
− Z2m+1 Pm

(
tY

Z2

))

= x + 1

tm+1

m∑
k=0

⎛
⎝m + 1

2
k

⎞
⎠ tk(ykz2m+1−2k − YkZ2m+1−2k).

We will prove that z2m+1 Pm(
ty
z2 ) − Z2m+1 Pm( tY

Z2 ), which is an element of C[x, y, z, t],

is congruent to 0 modulo (tm+1). It suffices to prove that

(
z2m+1 Pm

(
ty

z2

))2

−
(

Z2m+1 Pm

(
tY

Z2

))2

≡ 0 mod (tm+1)

and that

z2m+1 Pm

(
ty

z2

)
+ Z2m+1 Pm

(
tY

Z2

)
�≡ 0 mod (t).

The second assertion holds since z2m+1 Pm(
ty
z2 ) ≡ z2m+1 and Z2m+1 Pm( tY

Z2 ) ≡ Z2m+1 ≡
z2m+1 modulo (t). For the first one, recall that Pm(U )2 is congruent to (1 + U )2m+1

modulo (Um+1). Therefore, we have the following congruences modulo (tm+1):

(
z2m+1 Pm

(
ty

z2

))2

≡ (z2)2m+1

(
1 + ty

z2

)2m+1

≡ (z2 + ty)2m+1

and (
Z2m+1 Pm

(
tY

Z2

))2

≡ (Z2 + tY)2m+1 = (z2 + ty)2m+1.
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This implies the desired result, and so Assertion (1) follows.

It remains to show Assertion (4). To check that σ̃ is a polynomial automorphism

of C3, we can consider the natural extension of Ft and Gt as birational maps of C4
t,x,y,z

fixing the first coordinate. Note that their Jacobian determinants are both equal to 1.

Thus, the endomorphism ϕ of C4
t,x,y,z defined by ϕ = (t, X, Y, Z) is also of Jacobian deter-

minant 1 and it is a birational map. This implies (see, e.g., [3, Corollary 1.1.34]) that ϕ is a

polynomial automorphism of C4. In particular, σ̃ is an automorphism of C3. By Assertion

(2), σ̃ is an element of GA2(C[z]). Finally, Assertion (3) and the main result of [16] allow

us to conclude that σ̃ is a wild automorphism of C3, since Y|t=0 is a wild coordinate of

C[z][x, y] (see, e.g., [2, Proposition 2]). �

Example 4.7. For m = 1, we obtain that

σt =
(

x − 3yz

2t
+ z3

2t2
, y − z2

t
, z
)

◦ (x, y, z + t3x2 − t2y3) ◦
(

x + 3yz

2t
+ z3

t2
, y + z2

t
, z
)

is a tame automorphism of A3
C(t) which has all its coefficient in C[t]. Computing explic-

itly these coefficients and letting t = 0 in the formulas, we find then the following wild

automorphism of C3, which is the limit when t → 0 of the family (σt)t�=0 of tame automor-

phisms of C3.

σ̃ =
(

x + 9

8
y3z2 − 3xyz3 + 27

32
y4z5 − 9

2
xy2z6 + 6x2z7, y + 3

2
y2z3 − 4xz4, z

)

=
(

x + 3

4
z2y

(
3

2
y2 − 4xz

)
+ 3

8
z5

(
3

2
y2 − 4xz

)2

, y + z3

(
3

2
y2 − 4xz

)
, z

)
. �

Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. Let m ≥ 1 be a fixed integer. For every λ ∈ C∗, let Ψλ be the

affine automorphism of C3 defined by Ψλ = (ax, by, cz), where a, b, c ∈ C∗ are chosen such

that −
(

m+ 1
2

m+1

)
bm+1 = 1, −4c2m+1 = λb, and ac = 1. Then, consider the automorphism αt

of A3
C(t) given by αt = Ψ −1

λ ◦ σt ◦ Ψλ, where σt denotes the automorphism defined before

Theorem 4.6. By Theorem 4.6, we have that (αt)t∈C∗ is a family of tame automorphisms

of C3, which converges to a wild automorphism α of C3, when t → 0. Moreover, the two

last components of α are equal to y + λ(xz + ym+1)z2m+1 and z, respectively. Note that

these two are also the last components of ϕλ = exp(λδ) in the case n= 2m + 1. Therefore,

there exists a tame polynomial automorphism f of C3 of the form f = (dx + P (y, z), y, z)

with d∈ C∗ and P (y, z) ∈ C[y, z] such that f ◦ α = ϕλ. Thus, ( f ◦ αt)t�=0 is a family of tame

automorphisms, which converges to ϕλ for t → 0. This proves the theorem. �



On the Closure of the Tame Automorphism Group 9749

Funding

This research was supported in part by the ANR Grant BirPol ANR-11-JS01-004-01.

Acknowledgements

We are very grateful to Jean-Philippe Furter and Hanspeter Kraft for sharing with us preliminary

version of their upcoming paper about the geometry of the automorphism group of affine n-space,

and for fruitful discussions, which helped us to understand some subtleties of the topology of

ind-groups.

References
[1] Bass, H., E. H. Connell, and D. Wright. “The Jacobian conjecture: reduction of degree and

formal expansion of the inverse.” American Mathematical Society. Bulletin. New Series 7,

no. 2 (1982): 287–330.
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