NOTES 525

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b \\ d \end{bmatrix}. \quad \text{So} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} t \\ u \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix} t + \begin{bmatrix} b \\ d \end{bmatrix} u, \quad M \quad \text{maps the first}$ (positive) quadrant Q to MQ the sector bounded by the two half-lines generated by the two (positive) columns of $M: Q \supset MQ$. We let U denote the unit circle in the plane and $K = Q \cap U$. K is a line segment. We define $f: K \to K$ by $f(z) = Mz / \|Mz\|$. Then f is a continuous function. So f has a fixed point p: f(p) = p ([1, Theorem 9.1 p. 60]). This means that $Mp = \|Mp\| p$, so p is an eigenvector of M.

References

1. W. G. Chinn and N. E. Steenrod, *First concepts of topology*, Random House, New York (1966).

doi:10.1017/mag.2015.92

KUNG-WEI YANG

Vi at La Jolla Village, Apt 609, 8515 Costa Verde Blvd, San Diego, CA 92122, USA

e-mail: kungwei.yang@gmail.com

99.31 A generalisation of Proizvolov's identity

Theorem: Take a sequence of real numbers $c_1 \le c_2 \le ... \le c_{2n}$ and split it into non-decreasing and non-increasing sequences of length n

$$a_1 = c_{j_1} \leq a_2 = c_{j_2} \leq \ldots \leq a_n = c_{j_n}$$

and

$$b_1 = c_{k_1} \ge b_2 = c_{k_2} \ge ... \ge b_n = c_{k_n}$$

with

$${j_1, \ldots, j_n} \cup {k_1, \ldots, k_n} = {1, \ldots, 2n}.$$

[This is equivalent to choosing any n elements of the sequence, putting them in non-decreasing order and the other n elements in non-increasing order.]

Then the sum of the distances $|a_{\ell} - b_{\ell}|$ is independent of the chosen split and equals the difference between the sums of the upper and lower halves of the given sequence, that is

$$\sum_{\ell=1}^{n} |a_{\ell} - b_{\ell}| = \sum_{i=n+1}^{2n} c_{i} - \sum_{i=1}^{n} c_{i}.$$

The original identity, proposed by Proizvolov as a problem in the 1985 USSR Mathematical Olympiad, refers only to the integer sequence $1 < 2 < \ldots < 2n$ and provides the constant distance sum $\sum_{i=n+1}^{2n} i - \sum_{i=1}^{n} i = n^2$ [1, pp. 52, 69-71], [2, pp. 66-69] and [3]. We found no trace of a generalisation in the literature.

Proof: There is no pair (a_{ℓ}, b_{ℓ}) where both elements are (strictly) smaller than c_{n+1} or greater than c_n . Otherwise, there would be $\ell + (n+1-\ell) = n+1$ numbers smaller than c_{n+1} or greater than c_n in the sequence, a contradiction.

In the case $c_n < c_{n+1}$, each distance $|a_\ell - b_\ell|$ is thus equal to $c_m - c_p$ for different m, p with $m > n \ge p$ and the assertion is proven.

We now turn to the case $c_n = c_{n+1} = c$. We can suppose without loss of generality that the terms c_i equal to c appear with increasing indices j in the sequence (a_ℓ) and with greater and decreasing indices k in (b_ℓ) (they may appear in only one sequence). Replace now for i > n the terms c_i equal to c with $c + \varepsilon$, where $\varepsilon > 0$ is small enough to leave the order $c_1 \le \ldots \le c_{2n}$ unchanged. The orders $a_1 \le \ldots \le a_n$ and $b_1 \ge \ldots \ge b_n$ also remain the same. The sum of the distances $|a_\ell - b_\ell|$ changes by no more than $\pm n\varepsilon$ and is now, as the new c_{n+1} is greater than c_n , the difference between the sums of the upper and lower halves of the new sequence (c_i) , which surpasses the old difference by no more than $n\varepsilon$. Letting ε tend to 0^+ proves the result.

References

- V. V. Proizvolov, Zadachi na vyrost. Miros, Moscow, 1995, ISBN 5708401133.
- S. Savchev and T. Andreescu, *Mathematical miniatures*. Anneli Lax New Mathematical Library, Vol. 43, Mathematical Association of America, Washington, DC, 2003.
- 3. A. Bogomolny, Proizvolov's identity in a game format, *Interactive mathematics miscellany and puzzles*, accessed 26 April 2015.

http://www.cut-the-knot.org/Curriculum/Games/ProizvolovGame.shtml doi:10.1017/mag.2015.93 GRÉGOIRE NICOLLIER

> University of Applied Sciences of Western Switzerland Route du Rawyl 47, CH-1950 Sion, Switzerland e-mail: gregoire.nicollier@hevs.ch

99.32 On the square wave series

The trigonometric series

$$f(x) = \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \frac{\sin 7x}{7} + \dots$$
 (1)

converges in $(0, \pi)$ by Dirichlet's test since the reciprocals form a positive null sequence and the sum of the first n odd sines (that is, $\sin^2 nx / \sin x$) is bounded.

In this note we will show that $f(x) = \pi/4$ in $(0, \pi)$ without the use of Fourier series, thus demonstrating a square wave pattern by periodicity.

Note in passing that the derivative series of unattenuated cosine terms diverges despite its convergence 'in the mean'.