On the origin of the radial mass density profile of the Galactic halo globular cluster system

Parmentier, Geneviève ; Grebel, Eva K.

In: Monthly Notices of the Royal Astronomical Society, 2005, vol. 359, no. 2, p. 615-623

Add to personal list
    We investigate what may be the origin of the presently observed spatial distribution of the mass of the Galactic Old Halo globular cluster system. We propose its radial mass density profile to be a relic of the distribution of the cold baryonic material in the protogalaxy. Assuming that this one arises from the profile of the whole protogalaxy minus the contribution of the dark matter (and a small contribution of the hot gas by which the protoglobular clouds were bound), we show that the mass distributions around the Galactic centre of this cold gas and of the Old Halo agree satisfactorily. In order to demonstrate our hypothesis even more conclusively, we simulate the evolution with time, up to an age of 15 Gyr, of a putative globular cluster system whose initial mass distribution in the Galactic halo follows the profile of the cold protogalactic gas. We show that beyond a galactocentric distance of order 2-3 kpc, the initial shape of such a mass density profile is preserved despite the complete destruction of some globular clusters and the partial evaporation of some others. This result is almost independent of the choice of the initial mass function for the globular clusters, which is still ill determined. The shape of these evolved cluster system mass density profiles also agrees with the presently observed profile of the Old Halo globular cluster system, thus strengthening our hypothesis. Our result might suggest that the flattening shown by the Old Halo mass density profile at short distances from the Galactic centre is, at least partly, of primordial origin