
A direct Proof of the Completeness

of SLDNF-resolution

ROBERT ST�ARK, Institute of Informatics, University of Fribourg, Rue

Faucigny 2, CH{1700 Fribourg, Switzerland.

E-mail: robert.staerk@unifr.ch

Abstract

We give a direct proof of the following theorem: if a goal G� is a logical consequence of the partial
completion of an arbitrary normal logic program P , then each fair, non-oundering SLDNF-tree T
for G yields an answer substitution � which is more general than �. If the negation G is a logical
consequence of the partial completion of P , then T is �nitely failed. A tree is fair, if each negative
main branch ends in failure or each literal in the branch is selected at a certain point. A tree is
oundering if it contains a positive node that consists of negative, non-ground literals only.

Keywords: Loigc programming, negation as failure, SLDNF-resolution.

1 Introduction

Most completeness proofs for SLDNF-resolution are of the following kind: if a goal G
and a logic program P have the property that each SLDNF-tree for G with respect
to P is non-oundering, and if the goal G� is a (two- or three-valued) logical conse-
quence of (the completion of) P , then there exists an SLDNF-tree for G with respect
to P which contains a successful branch with an answer substitution that is more
general than �. That all SLDNF-trees for G and P are non-oundering is usually
a consequence of syntactic conditions. For example, if G and P are correct with
respect to a mode assignment in the sense of [11], then each SLDNF-tree for G and P
is non-oundering.
In this paper a direct proof of a stronger theorem is presented. Given a fair, non-

oundering SLDNF-tree of G with respect to the normal logic program P we construct
a term model of the partial completion of P such that, if G� it is true in the model,
then the tree contains a successful branch with an answer substitution that is more
general than � and, if G is true in the model, then the tree is �nitely failed. Hence
we do not require that all SLDNF-trees for G and P are non-oundering, but just the
given, fair SLDNF-tree must have the property.
Similar constructions of term models have been used in the proof of the complete-

ness of the negation-as-failure rule for de�nite programs by Wolfram, Maher and
Lassez in [14] and in the proof of the completeness of SLDNF-resolution for strati�ed,
allowed programs by Cavedon and Lloyd in [5].
What is the di�erence to Drabent's result in [8]? First, our proof is direct and

elementary and does not make a detour via SLDFA-resolution as Drabent's proof
does. Second, we consider an extension of SLDNF-resolution. The extension can be
characterized by the following two rules:

� A succeeds, if A is ground and A fails.

J. Logic Computat., Vol. 9 No. 1, pp. 47{61 1999 c Oxford University Press

A direct Proof of the Completeness of SLDNF-resolution 48

� A fails, if A succeeds with the identity substitution.

Drabent requires that the atom A must be ground in the second rule, too.
Buchholz proves in [4] a similar theorem under the stronger assumption that the

goal G satis�es an additional condition which ensures that all SLDNF-trees for G are
non-oundering. The notion of SLDNF-tree we use in this paper di�ers from that of
Buchholz. We distinguish between positive and negative nodes in SLDNF-trees. A
tree is fair if every negative branch is fair, i.e. ends in failure or each literal is selected
at a certain point. A tree is oundering if it contains a positive node that consists of
negative, non-ground literals only.

2 Basic notions

We assume that for each positive relation symbol R there exists a relation symbol R
of the same arity. Atomic formulas R(~t) are called positive literals or sometimes just
atoms. They are denoted by A, B. Atomic formulas R(~t) are called negative literals.
The complement of a literal L is de�ned as follows:

� If L = R(~t), then L := R(~t).

� If L = R(~t), then L := R(~t).

Finite conjunctions of literals L1^ : : :^Ln are called goals and denoted by G, H . The
empty goal is �. If G is the goal L1 ^ : : : ^ Ln, then G is the formula L1 _ : : : _ Ln.
A clause K is a formula G! A. The clause �! A is identi�ed with the atom A. A
normal logic program P is a �nite set of clauses.
We use small greek letters �, � , �, �, � for substitutions. The identity substitution

is denoted by ". We de�ne

� dom(�) := fx j x 6= x�g,

� ran(�) :=
S
fvars(x�) j x 2 dom(�)g,

� vars(�) := dom(�) [ran(�).

We will use the following well-known properties of substitutions:

� A substitution � is idempotent [� Æ � = �] i� dom(�) \ ran(�) = ;.

� If � is an idempotent, most general uni�er of the two atoms A and B [written
� = mgu(A;B)], then vars(�) � vars(A) [vars(B).

� If � is idempotent, � = mgu(A�;B) and B does not contain variables from A� or
dom(�), then �� is idempotent, too.

Let � be a new symbol. Goal forms are expressions � of the form G1 ^ � ^ G2. The
symbol � marks a hole in the goal form. If � is the goal form G1 ^ � ^G2, then �[H]
is the goal G1 ^H ^G2; �[] is the goal G1 ^G2; �� is the goal form G1� ^ � ^G2�.
For example, ��[H�] is the goal G1� ^H� ^G2�.
We write G � H , if there exists a substitution � such that G� = H . If G � H ,

then we say that G is more general than H , or that H is an instance of G. We write
F [~x] to indicate that all free variables of the formula F are contained in the list ~x.
8(F) denotes the universal closure of a formula F . For unexplained notions we refer
to [1] and [7].

A direct Proof of the Completeness of SLDNF-resolution 49

3 The partial completion of logic programs

The partial completion of normal logic programs has been introduced in [9, 12]. It is
called doubled program in [13]. The di�erence to Clark's completion in [6] is that the
positive relation symbols R are not the logical complements of the relation symbols R.
For example, the axiom R(~x) _ R(~x) does not belong to the partial completion of
logic programs. The axiom expresses that R(~t) succeeds or fails and this not true
in general. The goal R(~t) can also loop. The partial completion is obtained from
Clark's completion by splitting it into two parts, axioms for R and axioms for R.
The partial completion of P [denoted by pcomp(P)] comprises the universal closures

of the following axioms:

I. Clark's equational theory CET for uni�cation:

(1) x = x.

(2) x = y ! y = x.

(3) x = y ^ y = z ! x = z.

(4) x1 = y1 ^ : : : ^ xn = yn ! f(x1; : : : ; xn) = f(y1; : : : ; yn). [if f is n-ary]

(5) f(x1; : : : ; xn) = f(y1; : : : ; yn)! xi = yi. [if f is n-ary and 1 � i � n]

(6) f(x1; : : : ; xn) 6= g(y1; : : : ; ym). [if f is n-ary, g is m-ary, and f 6= g]

(7) t(x) 6= x. [if t(x) is a term, t(x) 6= x, and x occurs in t(x)]

II. Equality axioms for relation symbols:

(8) x1 = y1 ^ : : : ^ xn = yn ^R(x1; : : : ; xn)! R(y1; : : : ; yn)

(9) x1 = y1 ^ : : : ^ xn = yn ^R(x1; : : : ; xn)! R(y1; : : : ; yn)

III. The clauses in P :

(10) G! A, for each clause (G! A) 2 P .

IV. Axioms for the relation symbols R: Let R be an n-ary relation symbol and
assume that the clauses for R in P are

Li;1[~u] ^ : : : ^ Li;ki [~u]! R(ti;1[~u]; : : : ; ti;n[~u]); for i = 1; : : : ;m.

Then we have the following axiom for R, where ~y is a list of new variables:

(11)

mVV
i=1

8~y
� nVV
j=1

xj = ti;j [~y]!
kiWW
j=1

Li;j [~y]
�!

! R(x1; : : : ; xn).

The left hand side of (11) is obtained by negating Clark's completed de�nition of
a predicate and putting it into negation normal form. Axiom (11) can be read as
follows: if for all clauses in P , such that the head of the clause matches R(~x), one of
the literals in the body fails, then R(~x) fails.

4 SLDNF-resolution

We follow Buchholz' presentation in [4]. We distinguish, however, between positive
and negative nodes in SLDNF-trees. Moreover, we separate the current substitution

A direct Proof of the Completeness of SLDNF-resolution 50

from a goal. This simpli�es the notation in the completeness proof. The nodes of
an SLDNF-tree are not resultants but so-called frames, i.e. triples hS;G; �i such that
S 2 f+;�g, G is a goal and � is an idempotent substitution. The sign S indicates
whether we are looking for a solution for the goal G� or whether we want the goal G�
to fail. The frame is called positive or negative according to its sign S. A oundering

frame is a positive frame h+; G; �i such that G� consists of negative non-ground
literals only.
First we de�ne the notions resolvent and applicable clause.

Definition 4.1

The frame hS;�[H]; ��i is called a resolvent of hS;G; �i with respect to (�;K; �) [in
symbols: hS;G; �i �!(�;K;�) hS;�[H]; ��i], if there exist A and B such that

� G = �[A],

� H ! B is the variant obtained from clause K by adding the index � to each
variable of K, and

� � = mgu(A�;B) [an idempotent most general uni�er].

In the triple (�;K; �) the goal form � indicates the position of the selected literal
in G, K is the input clause of the resolution step and the index � is used to uniquely
rename the variables of K to make them di�erent from any new variable that is used
elsewhere in a computation. If variables with index � do not occur in G or � and the
substitution � of the frame is idempotent, then the substitution �� of the resolvent
is idempotent, too.

Definition 4.2

A clause H ! B is applicable to A if there exist � and � such that A� = B� . We set
P (A) := fK 2 P j K is applicable to Ag.

An SLDNF-tree is a �nitely branching, downward growing (possibly in�nite) tree of
signed frames which is correct with respect to the rules of Table 1. Before we give a
mathematical de�nition of SLDNF-tree, we explain the rules of Table 1 informally:

T1: If the goal of the frame is empty, then the frame is a leaf node.

T2: (Resolution node) In the frame hS;�[A]; �i, a positive literal A is selected. The
successors of the node are the resolvents using clauses applicable to A�. We
assume that the variables of the input clause Hi ! Bi are new and are not used
elsewhere in the tree for the renaming of input clauses.

T3: (Positive NaF node) In the positive frame h+;�[A]; �i a negative literal A is se-
lected, such that A� is ground. By deleting the literal A in the frame we obtain
the left successor of the node. The right successor is the negative frame h�; A�; "i.

T4: (Negative NaF node) In a negative frame h�;�[A]; �i the literal A� may contain
free variables when it is selected. Therefore it is not deleted in the left successor of
the node. (In a fair computation it must be selected later again, when it is more
instantiated.) The right successor of the node is the positive frame h+; A; �i.

T5: Floundering frames are leaf nodes in the tree.

Each time when a negative literal is selected the sign switches from plus to minus and
vice versa (in the right subtree, only).

A direct Proof of the Completeness of SLDNF-resolution 51

Table 1. Rules for an SLDNF-tree

T1 : hS;�; �i

T2 :

hS;�[A]; �i

. &

hS;�[H1]; ��1i � � � hS;�[Hn]; ��ni

if

8>><
>>:

P (A�) = fK1; : : : ;Kng;

Hi ! Bi a variant of Ki;

�i = mgu(A�;Bi):

T3 :

h+;�[A]; �i

. &

h+;�[]; �i h�; A�; "i

if vars(A�) = ;.

T4 :

h�;�[A]; �i

. &

h�;�[A]; �i h+; A; �i

T5 : h+; A1 ^ : : : ^An; �i if vars(Ai�) 6= ; (1 � i � n).

Definition 4.3

(Cf. Buchholz [4]) Let P be a logic program. An SLDNF-tree for P is a function T
such that

� dom(T) � fh�0; : : : ; �n�1i j n 2 N & �j 2 P [f0; 1g for j < ng,

� dom(T) 6= ;,

� 8h�0; : : : ; �ni 2 dom(T) (h�0; : : : ; �n�1i 2 dom(T)),

� for each � 2 dom(T) and J = f� j � � h�i 2 dom(T)g, T (�) is a signed frame and
one of the conditions T1{T5 is satis�ed:

T1: T (�) = hS;�; �i and J = ;.
T2: T (�) = hS;�[A]; �i, J = P (A�) and

T (�) �!(�;K;��hKi) T (� � hKi) for each K 2 J .

T3: T (�) = h+;�[A]; �i, vars(A�) = ;, J = f0; 1g,
T (� � h0i) = h+;�[]; �i and T (� � h1i) = h�; A�; "i.

T4: T (�) = h�;�[A]; �i, J = f0; 1g,
T (� � h0i) = h�;�[A]; �i and T (� � h1i) = h+; A; �i.

T5: T (�) is oundering and J = ;.

A node � 2 dom(T) is called positive or negative according to whether the frame T (�)
is positive or negative. In cases T1 and T5, � is called a leaf. In case T2, � is called a
resolution node and A is called the selected atom. If J is empty in T2, then � is called
a leaf, too. In cases T3 and T4, � is called a NaF node and A is called the selected

literal. We set � := hi (the root of the tree).

Given an SLDNF-tree T we can de�ne what it means that a node returns an answer.
We de�ne a relation � `̀ X between nodes of T and generalized answers. A generalized

A direct Proof of the Completeness of SLDNF-resolution 52

answer is a substitution or the symbol no. The relation `� `̀ �' is read as `� yields
computed answer �'; the relation `� `̀ no' is read as `� is �nitely failed'. Table 2
makes the following de�nition more transparent.

Definition 4.4

(Cf. Buchholz [4]) Let T be an SLDNF-tree. The relation ``̀ ' is the least relation
between nodes and generalized answers satisfying the following conditions for each
� 2 dom(T) and J = f� j � � h�i 2 dom(T)g:

A1: T (�) = h+;�; �i =) � `̀ �.

A2: � a positive resolution node, 9K 2 J (� � hKi `̀ �) =) � `̀ �.

A3: � a negative resolution node, 8K 2 J (� � hKi `̀ no) =) � `̀ no.

A4: � a positive NaF node, � � h0i `̀ �, � � h1i `̀ no =) � `̀ �.

A5: � a negative NaF node, � � h0i `̀ no =) � `̀ no.

A6: � a negative NaF node, T (� � h1i) = h+; A; �i, � � h1i `̀ �, A� � A� =) � `̀ no.

It is easy to see that for any node �, if T (�) = h+; G; �i and � `̀ �, then there exists
a substitution � such that �� = �. Therefore, in A6, the condition A� � A� implies
that A� is a variant of A�. Rule A6 thus says: if A� succeeds with answer the identity
substitution, then the goal �[A]� fails.

5 Soundness of SLDNF-resolution

The main result of Clark in [6] is that SLDNF-resolution is sound with respect to
the completion of a logic program (which is not so complete as its name suggests).
Clark's completion of a logic program can be obtained from the partial completion
by adding the following axioms for each relation symbol R:

:(R(~x) ^ R(~x)); R(~x) _R(~x):

The axioms say that R is the complement of R. Although the completion is stronger
than the partial completion, Clark's proof works for the partial completion, too. This
means that SLDNF-resolution is sound for the partial completion as well.

Theorem 5.1

(Soundness) Let T be an SLDNF-tree and � 2 dom(T).

(a) If T (�) = h+; G; �i and � `̀ �, then pcomp(P) j= 8(G�).

(b) If T (�) = h�; G; �i and � `̀ no, then pcomp(P) j= 8(G�).

The main purpose of this paper is to prove the converse of this theorem for fair,
non-oundering SLDNF-trees.

6 The completeness proof

Before we start with the proof we have to say what we mean by fair and non-
oundering. We need the notion of a negative main branch. A negative main branch in
an SLDNF-tree consists of negative resolution and negative NaF nodes (T2 and T4).
In a NaF node (T4), the left successor node is chosen. A negative main branch is
in�nite or stops at a leaf node.

A direct Proof of the Completeness of SLDNF-resolution 53

Table 2. Rules for computing answers in an SLDNF-tree

A1 : h+;�; �i `̀ �

A2 :

h+;�[A]; �i `̀ �

"

� � � h+;�[Hi]; ��ii `̀ � � � �

A3 :

h�;�[A]; �i `̀ no

% -

h�;�[H1]; ��1i `̀ no � � � h�;�[Hn]; ��ni `̀ no

A4 :

h+;�[A]; �i `̀ �

% -

h+;�[]; �i `̀ � h�; A�; "i `̀ no

A5 :

h�;�[A]; �i `̀ no

%

h�;�[A]; �i `̀ no � � �

A6 :

h�;�[A]; �i `̀ no

-

� � � h+; A; �i `̀ �

if A� � A�.

Definition 6.1

(Cf. Buchholz [4]) A negative main branch in T is a sequence of negative nodes (�j)j<N
such that 0 < N � ! and for all j < N :

� j + 1 < N =) �j+1 = �j � h�i for some � 2 P [f0g,

� j + 1 = N =) �j is a leaf node in T .

Definition 6.2

A negative main branch (�j)j<N is called fair if

� it terminates in a leaf node � such that � `̀ no, or

� for each literal L in it, after �nitely many steps a descendent of L is selected.

An SLDNF-tree T is called fair if all its negative main branches are fair. The tree T
is called non-oundering if it does not contain a oundering node.

Let T be a fair, non-oundering SLDNF-tree for P . Our goal is to extract from T a
term model M of pcomp(P) with the following properties:

A direct Proof of the Completeness of SLDNF-resolution 54

(1) If T (�) = h+; G; "i and M j= 8(G�), then there exists an answer � such that
� `̀ � and G� � G�.

(2) If T (�) = h�; G; "i and M j= 8(G), then � `̀ no.

Let I be the set of nodes � 2 dom(T) such that T (�) = h�; A; "i, � 6`̀ no and � is the
successor of a positive NaF node, i.e. the right child in a con�guration T3. (Note that
vars(A) = ; in this case.) If T (�) = h�; G; "i and � 6`̀ no, then we include � into I ,
too. For each � 2 I let (��j)j<N�

be a negative main branch in T such that

(3) ��0 = �,

(4) ��j 6`̀ no for each j < N�,

(5) T (��j) = h�; G�
j ; �

�
ji for j < N�.

Such negative main branches always exist. We show how they can be found. Assume
that an initial segment of the branch has been constructed up to ��j and that ��j 6`̀ no.
If ��j is a negative resolution node, then, by rule A3, there exists a K 2 P such that
��j � hKi 6`̀ no and we set ��j+1 := ��j � hKi. If ��j is a negative NaF node, then, by
rule A5, ��j � h0i 6`̀ no and we set ��j+1 := ��j � h0i.
The negative main branches (��j)j<N�

have the following properties:

(6) (��j)j<N�
is a fair branch in T for each � 2 I .

(7) If �; � 2 I and � 6= �, then the set vars(G�
m) [vars(��m) is disjoint from the set

vars(G�
n) [vars(��n) for all m < N� and n < N�.

(8) If �; � 2 I and � 6= �, then ��m Æ ��n = ��n Æ �
�
m for all m < N� and n < N�.

(9) If m � n < N�, then ��m Æ ��n = ��n.

Let SUB be the set of substitutions ��1j1 Æ : : :Æ�
�k
jk

so that k 2 N, �1; : : : ; �k are pairwise
di�erent elements from I and j1 < N�1 ; : : : ; jk < N�k . From (8) and (9) it follows
that the set of substitutions SUB has the following properties:

(10) If � 2 SUB and � 2 SUB, then there exists a substitution � 2 SUB such that
� Æ � = � = � Æ �.

(11) If � 2 SUB then � Æ � = �.

The algebraic part of the model M is de�ned in the following way:

(12) The universe jMj is the set of all terms (with variables).

(13) fM(a1; : : : ; an) := f(a1; : : : ; an) for a1; : : : ; an 2 jMj.

(14) s =M t :() 9� 2 SUB(s� = t�).

Equality is not interpreted as identity but by the equivalence relation =M. For
~s = s1; : : : ; sn and ~t = t1; : : : ; tn we write ~s =M ~t, if si =

M ti for i = 1; : : : ; n.

Lemma 6.3

M j= CET.

Proof. The set SUB is directed (cf. [1] or [3]).

For � 2 I we de�ne LIT� := fL j 9j < N� (L occurs in G�
j)g. Moreover, we set

LIT :=
[
�2I

LIT�:

A direct Proof of the Completeness of SLDNF-resolution 55

The set LIT is in general not a model of P , since it need not satisfy clauses which are
never used in a negative main branch of the tree. It is, however, supported by P in
the sense of Apt, Blair and Walker [2] as the following lemma shows.

Lemma 6.4

If R(~s) 2 LIT, then there exists an instance L1 ^ : : : ^ Ln ! R(~t) of a clause of P

such that ~s =M ~t and fL1; : : : ; Lng � LIT.

Proof. Assume that R(~s) 2 LIT. There exists a � 2 I such that R(~s) 2 LIT�. There
exists an m < N� such that R(~s) occurs in G�

m. Since the negative main branch
(��j)j<N�

is fair, there exists a k � m such that R(~s) is selected at ��k . This means

that T (��k) = h�;�[R(~s)]; ��ki and there exists a variant H ! R(~t) of a clause K of P
such that

� dom(��k) \ vars(R(~t)) = ;,

� � = mgu(R(~s)��k ; R(~t)),

� ��k+1 = ��k � hKi and

� T (��k+1) = h�;�[H]; ��k�i.

We have ��k+1 = ��k� and R(~s)��k+1 = R(~t)��k+1. Since �
�
k+1 2 SUB, we obtain that

~s =M ~t. Since G�
k+1 = �[H], all the literals of the body H belong to LIT.

Since we want the structure M to have property (2), we have to ensure that, if
R(~t) is in LIT, then R(~t) is not true in M. This is the motivation for the following
interpretation of the relation symbols R in M:

(15) R
M

:= fh~t i j 8~s (~t =M ~s =) R(~s) =2 LIT)g.

Since =M is transitive, we immediately obtain:

(16)M j= x1 = y1 ^ : : : ^ xn = yn ^ R(x1; : : : ; xn)! R(y1; : : : ; yn).

Since, by (11), ~t� =M ~t for each substitution � 2 SUB, we obtain:

(17) If h~t i 2 R
M

and � 2 SUB, then h~t�i 2 R
M
.

Since we want that M is a model of the clauses of P , each positive literal, which
can be derived from negative, true literals in M using clauses from P , has to be true
in M, too. To make this more clear we need the notion of an implication tree (cf. [2]
and [10]).

Definition 6.5

Implication trees (w.r.t. to P and M) are generated as follows:

� If h~t i 2 R
M
, then R(~t) is an implication tree for R(~t).

� If Fj is an implication tree for Lj (1 � j � n) and L1^ : : :^Ln ! A is an instance
of a clause of P , then A(F1; : : : ; Fn) is an implication tree for A.

We say that L has an implication tree, if there exists an implication tree for L.

Let IMP := fL j L has an implication treeg. The set IMP is closed under substitu-
tions from SUB:

A direct Proof of the Completeness of SLDNF-resolution 56

(18) If L 2 IMP and � 2 SUB, then L� 2 IMP.

The interpretations of the relation symbols R in M are de�ned by:

(19) RM := fh~t i j 9� 2 SUB (R(~t)� 2 IMP)g.

The structure M is now fully de�ned and we have:

Lemma 6.6

M j= x1 = y1 ^ : : : ^ xn = yn ^ R(x1; : : : ; xn)! R(y1; : : : ; yn).

Proof. Assume that ~s =M ~t and h~s i 2 RM. According to (19), there exists a
substitution � 2 SUB such that R(~s)� 2 IMP. Moreover, by (10), there exists
a substitution � 2 SUB such that ~s� = ~t� and �� = �. It follows, by (18), that
R(~s)�� 2 IMP. Thus R(~t)� 2 IMP and, by (19), h~t i 2 RM.

Lemma 6.7

Assume that �0 is an arbitrary node of T and T (�0) = h+; G0; �0i. Assume that � is
a substitution such that every literal of G0�0� has an implication tree. Then there
exists an answer �n such that �0 `̀ �n and G0�n � G0�0�.

Proof. (See also [10].) Let n be the total number of literals in the implication trees
for the literals in G0�0�. By induction on i � n, we show that there exists a branch
�0; : : : ; �i in T and sequences G0; : : : ; Gi, �0; : : : ; �i, �0; : : : ; �i such that the following
conditions are satis�ed:

(a) T (�i) = h+; Gi; �ii.

(b) G0�i�i = G0�0�.

(c) Each literal in Gi�i�i has an implication tree, such that the total number of literals
in the trees is equal to n� i.

(d) If 0 < i and �i�1 is a NaF node, then �i�1 � h1i `̀ no and �i = �i�1 � h0i.

Assume that i < n and that (a){(d) are satis�ed. We show that there exist suitable
�i+1, Gi+1, �i+1 and �i+1. Since the SLDNF-tree T is not oundered, we have the
following two cases:

Case I. �i is a resolution node, i.e. Gi = �[A] and A is the selected literal in Gi.
There exists a clause K = (H ! B) in P and a substitution � such that A�i�i = B�
and each literal in ��i�i[H�] has an implication tree such that the total number of
literals in the implication trees is equal to n � (i + 1). The clause K is applicable
to A�i. Let �i+1 := �i � hKi. Let H 0 ! B0 be the variant of K that is used in the
resolution step from �i to �i+1. Let � = mgu(A�i; B

0), Gi+1 = �[H 0] and �i+1 = �i� .
Let

V := vars(G0�i) [vars(Gi�i) [dom(�i):

Then we have vars(H 0 ! B0)\V = ;, since the variables of H 0 ! B0 carry the index
�i�hKi whereas the indices of variables in V are initial segments of �i. We can assume
that dom(�i) � V . Let �0 be the substitution with

(H ! B)� = (H 0 ! B0)�0 and dom(�0) � vars(H 0 ! B0):

Let �i+1 := �i [�0. Then

A�i�i+1 = A�i�i = B� = B0�0 = B0�i+1:

A direct Proof of the Completeness of SLDNF-resolution 57

Thus �i+1 is a uni�er of A�i and B0. Since � is an idempotent most general uni�er
of A�i and B0, we obtain that ��i+1 = �i+1.

(a) T (�i+1) = h+; Gi+1; �i+1i.

(b) G0�i+1�i+1 = G0�i��i+1 = G0�i�i+1 = G0�i�i = G0�0�.

(c) Gi+1�i+1�i+1 = �[H 0]�i��i+1 = ��i�i+1[H
0�i+1] = ��i�i[H

0�0].

Since �i is not a NaF node, condition (d) is trivially satis�ed.
Case II. �i is a NaF node, i.e. Gi = �[A], A is the selected literal in Gi and

vars(A�i) = ;. Then

T (�i � h0i) = h+;�[]; �ii and T (�i � h1i) = h�; A�i; "i:

Let �i+1 := �i � h0i, Gi+1 := �[], �i+1 := �i and �i+1 := �i. Then conditions (a){(c)
are satis�ed. Assume that A = R(~t). Since vars(A�i) = ;, we have A�i = A�i�i.
From assumption (c) we obtain that R(~t)�i has an implication tree. By de�nition,

this means that h~t�ii 2 R
M
. Suppose that �i � h1i 6`̀ no. Then �i � h1i 2 I and

R(~t�i) 2 LIT. Thus h~t�ii =2 R
M
. Contradiction. Thus �i �h1i `̀ no and condition (d)

is satis�ed.
Finally, consider the branch (�i)i�n. By (c), the goal Gn must be the empty goal.

By (d) and rules A2 and A4 for propagating answers in an SLDNF-tree, we obtain
�i `̀ �n for all i � n. Hence, �0 `̀ �n and, by (b), G0�n�n = G0�0�.

We write M j= L [id], if the literal L is true in the structure M under the trivial
variable assignment that assigns the element x 2 jMj to each variable x. We have:

(20)M j= R(~t) [id] () h~t i 2 RM () 9� 2 SUB (R(~t)� 2 IMP).

(21)M j= R(~t) [id] () h~t i 2 R
M

() R(~t) 2 IMP.

Lemma 6.8

L 2 LIT =) M 6j= L [id].

Proof. Case I. L is positive. Assume that R(~t) 2 LIT. By (15), h~t i =2 R
M
. Thus

M 6j= R(~t) [id].
Case II. L is negative. Suppose that R(~t) 2 LIT andM j= R(~t) [id]. By de�nition,

this means that there exists a � 2 I such that R(~t) 2 LIT� and that there exists a
� 2 SUB such that R(~t)� 2 IMP. There exists an m < N� such that R(~t) occurs
in G�

m. By (7), there exists an n < N� such that R(~t)� = R(~t)��n. (If the substitution
� 2 SUB contains a component with superscript �, then we take this component,
otherwise we take ��0 = ".) Consider the negative main branch (��j)j<N�

. Since the

branch is fair, there exists a k � max(m;n) such that the negative literal R(~t) is
selected in node ��k. This means that

T (��k) = h�;�[R(~t)]; ��ki and T (��k � h1i) = h+; R(~t); ��ki:

Since R(~t)��n 2 IMP, it follows, by (18), that R(~t)��n�
�
k 2 IMP. Since n � k, we

obtain, by (9), that ��n Æ �
�
k = ��k and thus R(~t)��k 2 IMP. By Lemma 6.7, it follows

that there exists an answer � such that ��k �h1i `̀ � and R(~t)� � R(~t)��k . This implies
��k `̀ no according to rule A6. Hence we have a contradiction to (4).

A direct Proof of the Completeness of SLDNF-resolution 58

Lemma 6.9

M j= pcomp(P).

Proof. Let R be an n-ary relation symbol and assume that the clauses for R in P
are

Li;1[~u] ^ : : : ^ Li;ki [~u]! R(ti;1[~u]; : : : ; ti;n[~u]) (�)

for i = 1; : : : ;m. We have to show that M is a model of (�) and that

M j=

m̂̂

i=1

8~y
� n̂̂

j=1

xj = ti;j [~y]!
ki__
j=1

Li;j [~y]
�!

! R(x1; : : : ; xn): (��)

To show that the clauses (�) are true in M we assume that ~a 2 jMj and

M j= Li;j [~a] [id] for j = 1; : : : ; ki.

By (20) and (21), there exist substitutions �j 2 SUB such that

Li;j [~a]�j 2 IMP for j = 1; : : : ; ki:

By (10) and (18), there exists a substitution � 2 SUB such that

Li;j [~a]� 2 IMP for j = 1; : : : ; ki.

By the de�nition of implication tree, it follows that

R(ti;1[~a]; : : : ; ti;n[~a])� 2 IMP:

By (20), we obtain that

M j= R(ti;1[~a]; : : : ; ti;n[~a]) [id]:

Thus M is a model of clause (�).
In order to show (��) we assume that M 6j= R(a1; : : : ; an) [id]. We have to show

that

M 6j=
m̂̂

i=1

8~y
� n̂̂

j=1

aj = ti;j [~y]!
ki__
j=1

Li;j [~y]
�
[id]:

Since ha1; : : : ; ani =2 R
M
, by the de�nition of R in (15), there exist s1; : : : ; sn such

that aj =
M sj for j = 1; : : : ; n and R(s1; : : : ; sn) 2 LIT. By Lemma 6.4, there exists

an i and terms ~b such that 1 � i � m and

sj =
M ti;j [~b] for j = 1; : : : ; n and Li;j [~b] 2 LIT for j = 1; : : : ; ki.

By Lemma 6.8, it follows that

M 6j= Li;j [~b] [id] for j = 1; : : : ; ki.

Hence we have

M j=
n̂̂

j=1

aj = ti;j [~b] [id] and M 6j=
ki__
j=1

Li;j [~b] [id]:

Thus (��) is shown.

A direct Proof of the Completeness of SLDNF-resolution 59

Finally, we can turn to properties (1) and (2).
For property (1) assume that T (�) = h+; G; "i and M j= 8(G�). Then we have

M j= G� [id]. We can assume that vars(G�) \ dom(�) = ; for all � 2 SUB. By
(20) and (21), it follows that each literal of G� has an implication tree. So we can
apply Lemma 6.7 and obtain a substitution � such that � `̀ � and G� � G�.
To show (2) we assume that T (�) = h�; G; "i and � 6`̀ no. Then � 2 I and all

literals of G belong to LIT. By Lemma 6.8, we obtain that M 6j= L [id] for each
literal L of G. Hence, M 6j= G [id] and M 6j= 8(G).
So we have proved the following theorem:

Theorem 6.10

Let T be a non-oundering, fair SLDNF-tree for G with respect to P . Then we have:

(a) If pcomp(P) j= 8(G�) and T (�) = h+; G; "i, then there exists a substitution �
such that � `̀ � and G� � G�.

(b) If pcomp(P) j= 8(G) and T (�) = h�; G; "i, then � `̀ no.

7 Discussion

The model M constructed in the completeness proof is not very intuitive, since the

denotations RM and R
M

need not be disjoint in general. It is, however, always
possible to add to pcomp(P) the axioms

8~x:
�
R(~x) ^ R(~x)

�
(�)

without increasing its deductive power as far as positive formulas are concerned. The
reason is that for each model of the partial completion there exists always a smaller
model satisfying the axioms (�) (cf. Theorem 6.1 in [12]).
Why is fairness required in negative branches only? This is because to get the

answer no, it suÆces that one literal fails, and the other literals can be discarded. An
unfair computation would never consider this literal. In a positive branch, all literals
are considered eventually to reach a solution �.
Why do we keep �[A] in the left child instead of the more plausible �[] in rule T4?

This is because we have to delay the computation of A until it is instantiated enough.
If we do not, then we lose completeness. Consider the program P := fR(c)g, where c
is a constant. Then

pcomp(P) j= 8x (R(x) _ R(x)):

Hence, by our completeness theorem, for each fair and non-oundering SLDNF-tree
T with T (�) = h�; R(x) ^ R(x); "i it must be that � `̀ no. If we changed rule T4
and deleted the negative literal in the left child, then the following would be a fair
non-oundering SLDNF-tree:

h�; R(x) ^ R(x); "i

. &

h�; R(x); "i h+; R(x); "i

#

h�;�; fc=xgi h+;�; fc=xgi

A direct Proof of the Completeness of SLDNF-resolution 60

For this tree, however, we do not have � `̀ no, since R(c) 6� R(x) and we cannot
apply rule A6. Changing rule A6 would destroy the soundness of SLDNF-resolution.
What is the di�erence to Buchholz' notion of SLDNF-tree in [4]? First, we cannot

de�ne resolvents locally without a `standardizing apart condition' on the variables
of input clauses, since in the completeness proof we use the fact that variables oc-
curring in input clauses of di�erent negative main branches of the SLDNF-tree are
disjoint. Therefore we rename input clauses by attaching the address of the node
where the clause is used as an index to the variables of the clause. This comes close
to implementations where renaming of clauses means allocating a new unused block
on the stack. The address of the block corresponds to the address of a node in an
SLDNF-tree.
In Buchholz' notion of SLDNF-tree there are no signs S 2 f+;�g. In Table 1 he

applies rule T3 if A� is ground, and rule T4 otherwise. Rule T5 is therefore not
needed in Buchholz' de�nition. His notion of fairness is stronger, since each main
branch of the tree has to be fair, whereas our condition requires only negative main
branches to be fair. Nevertheless the following theorem is true for Buchholz' notion
of SLDNF-tree.

Theorem 7.1

Let T be a fair SLDNF-tree for G (in the sense of [4]). A node � 2 dom(T) is called
positive if the number of 1s in � is even, otherwise � is called negative. A node
� 2 dom(T) is called oundering if T (�) = G ! H such that G consists of negative
non-ground literals only.

(a) If pcomp(P) j= 8(G�) and no positive node � of T is oundering, then there exists
a substitution � such that T `̀ � and G� � G�.

(b) If pcomp(P) j= 8(G) and no negative node � of T is oundering, then T `̀ no.

Acknowledgement

I am grateful to the anonymous referees for their valuable comments.

References

[1] K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science, Volume B,
chapter 10, J. van Leeuwen, ed. pp. 495{574. Elsevier, 1990.

[2] K. R. Apt, H. A. Blair and A. Walker. Towards a theory of declarative knowledge. In Foundations
of Deductive Databases and Logic Programming, J. Minker, ed. pp. 89{148. Morgan Kaufmann,
Los Altos, 1987.

[3] H. A. Blair and A. L. Brown. De�nite clause programs are canonical (over a suitable domain).
Annals of Mathematics and Arti�cial Intelligence, 1, 1{19, 1990.

[4] W. Buchholz. A note on SLDNF-resolution. Journal of Logic and Computation, 8, 159{168,
1998.

[5] L. Cavedon and J. W. Lloyd. A completeness theorem for SLDNF-resolution. Journal of Logic
Programming, 7, 177{191, 1989.

[6] K. L. Clark. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker, eds. pp.
293{322. Plenum Press, New York, 1978.

[7] K. Doets. From Logic to Logic Programming. The MIT Press, Cambridge, MA, 1994.

[8] W. Drabent. Completeness of SLDNF-resolution for non-oundering queries. Journal of Logic
Programming, 27, 89{106, 1996.

A direct Proof of the Completeness of SLDNF-resolution 61

[9] G. J�ager and R. F. St�ark. A proof-theoretic framework for logic programming. In Handbook of

Proof Theory, S. R. Buss, ed. pp. 639{682. Elsevier, 1998.

[10] R. F. St�ark. A direct proof for the completeness of SLD-resolution. In Computer Science Logic,

selected papers from CSL '89, E. B�orger, H. Kleine B�uning and M. M. Richter, eds. pp. 382{383.
Springer-Verlag, Lecture Notes in Computer Science 440, 1990.

[11] R. F. St�ark. Input/output dependencies of normal logic programs. Journal of Logic and Com-

putation, 4, 249{262, 1994.

[12] R. F. St�ark. From logic programs to inductive de�nitions. In Logic: From Foundations to

Applications, European Logic Colloquium '93, W. A. Hodges et al., eds. pp. 453{481. Clarendon
Press, Oxford, 1996.

[13] A. Van Gelder and J. S. Schlipf. Commonsense axiomatizations for logic programs. J. of Logic
Programming, 17, 161{195, 1993.

[14] D. A. Wolfram, M. J. Maher and J.-L. Lassez. A uni�ed treatment of resolution strategies for
logic programs. In Proc. 2nd International Conference on Logic Programming, pp. 263{276,
Uppsala, Sweden, 1984.

Received 11 July 1997

