Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks

Moore, Ben ; Diemand, Juerg ; Madau, Piero ; Zemp, Marcel ; Stadel, Joachim

In: Monthly Notices of the Royal Astronomical Society, 2006, vol. 368, no. 2, p. 563-570

Zum persönliche Liste hinzufügen
    The Milky Way contains several distinct old stellar components that provide a fossil record of its formation. We can understand their spatial distribution and kinematics in a hierarchical formation scenario by associating the protogalactic fragments envisaged by Searle & Zinn (1978) with the rare peaks able to cool gas in the cold dark matter density field collapsing at redshift z > 10. We use hierarchical structure formation simulations to explore the kinematics and spatial distribution of these early star-forming structures in galaxy haloes today. Most of the protogalaxies rapidly merge, their stellar contents and dark matter becoming smoothly distributed and forming the inner Galactic halo. The metal-poor globular clusters and old halo stars become tracers of this early evolutionary phase, centrally biased and naturally reproducing the observed steep fall off with radius. The most outlying peaks fall in late and survive to the present day as satellite galaxies. The observed radial velocity dispersion profile and the local radial velocity anisotropy of Milky Way halo stars are successfully reproduced in this model. If this epoch of structure formation coincides with a suppression of further cooling into lower sigma peaks then we can reproduce the rarity, kinematics and spatial distribution of satellite galaxies as suggested by Bullock, Kravtsov & Weinberg (2000). Reionization at z= 12 ± 2 provides a natural solution to the missing satellites problem. Measuring the distribution of globular clusters and halo light on scales from galaxies to clusters could be used to constrain global versus local reionization models. If reionization occurs contemporary, our model predicts a constant frequency of blue globulars relative to the host halo mass, except for dwarf galaxies where the average relative frequencies become smaller