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University of Edinburgh, Grant Institute, The King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK

*Corresponding author. E-mail: Susanne.Skora@erdw.ethz.ch

Received July 26, 2014; Accepted July 24, 2015

ABSTRACT

We have determined experimentally the hydrous phase relations and trace element partitioning be-

haviour of ocean floor basalt protoliths at pressures and temperatures (3 GPa, 750–1000�C) relevant

to melting in subduction zones. To avoid potential complexities associated with trace element dop-

ing of starting materials we have used natural, pristine mid-ocean ridge basalt (MORB from
Kolbeinsey Ridge) and altered oceanic crust (AOC from Deep Sea Drilling Project leg 46, �20�N

Atlantic). Approximately 15 wt % water was added to starting materials to simulate fluid fluxing

from dehydrating serpentinite underlying the oceanic crust. The vapour-saturated solidus is sensi-

tive to basalt K2O content, decreasing from 825 6 25�C in MORB (�0�04 wt % K2O) to �750�C in

AOC (�0�25 wt % K2O). Textural evidence indicates that near-solidus fluids are sub-critical in na-

ture. The residual solid assemblage in both MORB and AOC experiments is dominated by garnet

and clinopyroxene, with accessory kyanite, epidote, Fe–Ti oxide and rutile (plus quartz–coesite,
phengite and apatite below the solidus). Trace element analyses of quenched silica-rich melts

show a strong temperature dependence of key trace elements. In contrast to the trace element-

doped starting materials of previous studies, we do not observe residual allanite. Instead, abundant

residual epidote provides the host for thorium and light rare earth elements (LREE), preventing

LREE from being released (RLREE <3 ppm at 750–900�C). Elevated Ba/Th ratios, characteristic of

many arc basalts, are found to be generated within a narrow temperature field above the break-
down temperature of phengite, but below exhaustion of epidote. Melts with Ba/Th >1500 and La/

SmPUM (where PUM indicates primitive upper mantle) �1, most closely matching the geochemical

signal of arc lavas worldwide, were generated from AOC at 800–850�C.
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INTRODUCTION

Volcanic arc basalts are widely considered to form from

a mantle wedge source region comprising a ternary

mixture of hydrous melt from subducted sediment, hy-

drous fluid (or melt) from (altered) mafic oceanic crust

and depleted mantle peridotite (e.g. Elliott, 2003). The

distinct trace element chemistry of basalts from differ-
ent arcs can be ascribed to differing proportions of

these three components, reflecting a variation both in

inputs to the subduction system and in its thermal

structure. Consequently, the phase relations of the dif-

ferent subducted components are important to

determining under what conditions fluids and melts are

generated beneath arcs. If the pressure–temperature
dependence of the stability of key residual phases in

subducted lithologies can be quantified then potentially

the trace element chemistry of arc basalts can be used

to infer slab-top temperatures beneath volcanic arcs

(e.g. Hermann & Spandler, 2008; Klimm et al., 2008;

Plank et al., 2009; Cooper et al., 2012). The primary
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objective of this study is to explore the trace element

chemistry of hydrous partial melts associated with

ocean floor basalts under subduction zone conditions.

Subducted slabs contain H2O in the form of hydrous

minerals, such as amphibole, epidote, micas and ser-
pentine. The breakdown of these minerals during sub-

duction zone metamorphism leads to progressive

dehydration of the slab, releasing hydrous fluids into

the overlying mantle wedge (e.g. Schmidt & Poli, 1998).

If slab temperatures are high enough, as suggested by

recent models (e.g. van Keken et al., 2002; Syracuse

et al., 2010), dehydration melting of the slab will occur,
giving rise to hydrous, silica-rich melts that may simi-

larly ascend into the wedge. Thus both fluid and melt

may be extracted from the slab depending on the sub-

duction zone geotherm. If each slab lithology behaves

as a closed system during subduction zone metamorph-

ism, the only H2O available in subducted basalt is that
structurally bound in hydrous minerals in the basalt it-

self. Dehydration melting of such basalt occurs at rela-

tively high temperatures that may be achieved only

where the subducted crust is young and therefore hot.

Consequently, there is a longstanding debate as to

whether sub-solidus fluids or supra-solidus hydrous
melts are the primary agent of slab–wedge chemical

transfer in subduction zones. Such a simple dichotomy

is complicated by the fact that at sufficiently high pres-

sures silicate melts and hydrous fluids are completely

miscible (above the so-called second critical endpoint)

rendering moot any distinction between fluid and melt.

Moreover, the dehydration of serpentine in ultramafic
portions of the slab (Ulmer & Trommsdorff, 1995) may

flux overlying basaltic and sedimentary portions with

H2O, such that dehydration melting of subducted basalt

may not be the only melt-producing mechanism. More

in-depth summaries of subduction zone processes can

be found in the recent reviews of Spandler & Pirard
(2013) and Schmidt & Poli (2014). Our experiments

were designed explicitly to test this flux-melting mech-

anism by using starting materials in which H2O con-

tents exceeded those that could be contained within

hydrous minerals alone. In that sense our experiments

build upon those of Ryabchikov et al. (1996), Prouteau

et al. (1999, 2001), Kessel et al. (2005a, 2005b) and
Klimm et al. (2008).

To replicate experimentally the phase relations of hy-

drous ocean floor basalts it is important to take account

of the chemical effects of alteration that occur on the

sea floor. Subducted basalts range in composition from

pristine mid-ocean ridge basalts (MORB), unmodified
since eruption, to hydrothermally modified, altered oce-

anic crust (AOC) that characterizes the upper pillow

lavas and sheeted dykes (e.g. Alt et al., 1989). The na-

ture of sea-floor alteration depends on the temperature

of hydrothermal interaction (e.g. Humphris &

Thompson, 1978; Mottl, 1983; Thompson, 1983) and, al-

though its chemical signature is spatially variable, both
laterally and vertically (e.g. Kelley et al., 2003), the key

chemical changes relative to MORB are an overall rise

in alkalis and the volatile components sulphur, water

and carbon dioxide, and to a lesser extent uranium (e.g.

Melson, 1968; Staudigel et al., 1981a, 1981b; Mottl,

1983; Gillis & Robinson, 1988; Seyfried et al., 1988;

Staudigel & Plank, 1996; Bach et al., 2003; Kelley et al.,
2003). Previous experimental studies have attempted to

capture this chemical variability by using either syn-

thetic MORB (e.g. K-free MORB: Kessel et al., 2005a,

2005b; KCMASH: Hermann & Green, 2001; anhydrous

MORB: Yasuda et al., 1994; altered MORB: Ryabchikov

et al., 1996; Klimm et al., 2008) or metamorphosed ma-

terial (e.g. amphibolite: Rapp & Watson, 1995; Kogiso
et al., 1997; synthetic eclogite: Klemme et al., 2002;

Pertermann & Hirschmann, 2003). In several cases the

starting materials were doped with trace elements to fa-

cilitate trace element analysis of experimental run prod-

ucts and enhance the stability of accessory phases (e.g.

Klimm et al., 2008). The first aim of our study was to re-
move the uncertainties inherent in the use of synthetic

and/or trace element-doped starting samples by using

natural ocean floor basalts. The second aim was to ex-

plore changes in phase petrology and trace element

partitioning that arises from chemical differences be-

tween MORB and AOC.

METHODS

Starting materials
Sample materials used for this study were splits of rock

powder that were used for other geochemical studies.

The first sample (‘MORB’) is a pristine MORB tholeiite
(37DS-1) from the Kolbeinsey Ridge, retrieved from

67�08�N, 18�75�W between the Tjörnes and Spar frac-

ture zones, at a depth of 170 m (Devey et al., 1994). This

sample is extremely fresh and unaltered, though

slightly lower in TiO2 and more depleted compared

with average MORB given by Hofmann (1988; Table 1).

Dredged basalts from this site are described as being
mostly glassy with less than 10% (modal) phenocrysts

(olivine and minor plagioclase and spinel for 37DS-1).

The fO2 of MORB is generally around the quartz–

fayalite–magnetite (QFM) buffer, amounting to an

average Fe3þ/Fetot� 0�16 (e.g. Cottrell & Kelley, 2011).

The second sample (‘AOC’) is an altered basalt (15-3,
A3, 83–94 cm) from Deep Sea Drilling Project (DSDP)

leg 46 Hole 396B near the Mid-Atlantic Ridge at a lati-

tude of 23�N and a depth of �240 m. This horizon is not

described in the Ocean Drilling Program (ODP) report,

but comes from a massive lava stream of subunit A3.

Other samples from this subunit are described as por-

phyritic basalts (�15–25% phenocrysts in leg 46 bas-
alts), containing olivine and plagioclase phenocrysts

with Ca-rich clinopyroxene in the groundmass and spi-

nel. The massive lava is similar to overlying pillow bas-

alts, which can show secondary palagonite, Fe–Mn

oxide, smectite, mica, zeolite and carbonate (e.g.

Dungan et al., 1979; Sato et al., 1979). The seafloor-
metasomatized parts of the lava unit exhibit elevated

concentrations of H2O (�2 wt %), K2O (�0�3 wt %), Fe2O3
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(Fe3þ/Fetot�0�3–0�5; fO2 > QFM), as well as some other

elements (e.g. S, Rb) (e.g. Dungan et al., 1979).

Although carbon is also commonly enriched in basalts
during sea-floor alteration, we do not find evidence for

significant amounts of CO2 in our selected samples

(a carbonate phase would be expected at least in the

sub-solidus experiment; e.g. Molina & Poli, 2000).

In Table 1, we compare the major and trace element

composition of our starting materials with average

MORB (Hofmann, 1988) and AOC (Kelley et al., 2003), as
well as with some other experimental starting materials

with which we later compare our results. A significant

contrast between the two starting material compos-

itions is the low K2O content of MORB [roughly compar-

able with that of Kessel et al. (2005b)] versus the order

of magnitude higher K2O content of AOC [roughly com-
parable with that reported by Green & Adam (2003) and

Klimm et al. (2008)]. Other differences are marked by

elevated Na2O and TiO2, as well as reduced MgO con-

tents in the AOC sample.

Experimental techniques
Both starting materials were repeatedly ground with a

mortar and pestle and then dried to produce a homoge-

neous powder. Distilled water (�1�8 ml) was injected into

acid-cleaned and annealed Au (T< 1000�C) or Au80Pd20

(T� 1000�C) capsules using a Hamilton microsyringe
(5ml). Inaccuracies in injecting small quantities of water

are compensated by adjusting the amount of rock pow-

der that is added afterwards such that final H2O con-

tents were around 15 wt %. The capsules were welded

shut using a PUK microwelder. The negligible heating

of the welder ensures that H2O is retained in the cap-
sules, as verified by weighing the water-bearing cap-

sules before and after welding. The experimental cell

Table 1: Starting compositions of basalts used in various experiments in comparison with natural compositions

Comp.: ‘Pristine’ MORB ‘Altered’ MORB (AOC)

Study: TS TS Dev94 Kess05a Kess05b TS TS LEG46 LEG46 Kelley03 Klimm08 G&A03 Hoff88
Syn. Syn. Av. AOC Syn. Oc. Av.

Type: MORB SD 37DS-1 MORB* MORB AOC SD A3-Av. SD Pacific AOC* tholeiite* MORB

Major elements (wt %)
n 20 20 1 — — 40 40 12 12 117 — — 26
SiO2 49�6 0�3 48�7 53�4 51�7 51�0 0�5 50�5 0�3 50�4 50�0 51�3 50�7
TiO2 0�63 0�02 0�64 1�45 1�52 1�58 0�04 1�66 0�02 1�74 1�17 1�89 1�62
Al2O3 15�5 0�1 15�9 17�2 16�7 15�7 0�3 15�5 0�2 12�3 16�1 14�1 15�3
FeOtot 8�9 0�2 10�1 8�50 9�98 9�6 0�2 10�0 0�2 12�5 11�7 12�2 10�5
MnO 0�18 0�04 0�18 — — 0�13 0�03 0�20 0�01 0�23 0�10 0�19 —
MgO 10�3 0�1 10�1 5�93 7�03 7�4 0�1 7�7 0�3 6�36 7�16 6�55 7�62
CaO 13�0 0�1 12�7 10�2 9�92 11�0 0�1 10�9 0�1 13�3 10�2 10�5 11�4
Na2O 1�83 0�08 1�71 3�24 3�17 3�3 0�1 3�0 0�1 2�35 3�31 2�80 2�69
K2O 0�04 0�01 0�03 — — 0�25 0�02 0�21 0�08 0�63 0�28 0�31 0�11
P2O5 0�05 0�02 0�04 — — n.d. n.d. 0�14 0�01 0�17 — 0�22 —
Sum 100 — 100 100 100 100 — 100 — 100 100 100 100
Mg# 0�67 0�01 0�64 0�55 0�56 0�58 0�01 0�58 0�01 0�48 0�52 0�49 0�56
Trace elements (ppm)
n 5 5 1 — — 5 5 4–12 4–12 117 — — 26
Li 3�39 0�07 — 247 — 33�3 0�1 13 12 14�1 92 82�6 —
Sc 47 1 — 148 — 41�8 0�8 38 1 37�4 83 — 41�4
Ti 3880 60 — 8590 — 9034 248 9822 113 — 7010 11300 9740
V 265 6 — — — 233 4 282 5 338 48 355 —
Rb 0�7 0�2 0�58 84 — 4�4 0�5 1�9 1�1 13�7 — 102 1�26
Sr 56 1 55 113 — 214 3 137 5 109 36 210 113
Y 19�8 0�3 18�6 102 — 34 1 34�8 1�1 40�7 40 159 35�8
Zr 29�2 0�5 28 151 — 107 6 116 3 112 145 227 104
Nb 2�7 0�2 1�69 135 — 2�3 0�2 1�9 0�4 2�89 120 128 3�51
Cs 0�06 0�03 — 87 — 0�32 0�07 — — 0�317 — 80�7 0�014
Ba 7�1 0�2 6�9 97 — 5�1 0�7 — — 15�6 — 176 13�9
La 2�0 0�1 1�00 131 — 3�8 0�2 4�3 0�4 3�4 158 97�0 3�90
Ce 3�4 0�2 2�91 137 — 13 1 11�8 1�5 11�4 167 114 12�0
Nd 3�2 0�3 3�22 176 — 13 1 10�6 1�1 11�3 176 — 11�2
Sm 1�3 0�1 1�33 180 — 3�7 0�3 4�1 0�2 3�95 163 94�3 3�75
Eu 0�57 0�07 0�57 192 — 1�2 0�1 1�32 0�02 1�34 207 — 1�34
Gd 1�26 0�09 2�05 220 — 4�9 0�4 — — 5�55 — — 5�08
Dy 2�7 0�2 3�05 239 — 5�5 0�5 6�5 0�2 6�56 — — 6�30
Lu 0�31 0�04 0�35 143 — 0�55 0�03 0�64 0�03 0�636 133 100 0�589
Hf 0�9 0�2 1�04 231 — 2�6 0�3 3�0 0�1 3�07 39 13�5 2�97
Ta 0�34 0�02 — 120 — 0�17 0�03 0�20 0�01 0�21 36 11�2 0�192
Th 0�13 0�01 — 229 — 0�14 0�03 0�15 0�01 0�173 268 106 0�187
U 0�06 0�03 — 241 — 0�08 0�02 — — 0�390 257 102 0�071P

LREE 9�9 0�4 8�5 624 — 33 2 31 2 30 664 305 31

*Trace element doped compositions.
Experiments: TS, this study; Kess05a, Kessel et al. (2005a); Kess05b, Kessel et al. (2005b); Klimm08, Klimm et al. (2008); G&A03,

Green & Adam (2003). Natural compositions: Dev94, Devey et al. (1994); Hoff88, Hofmann (1988); Kelley03, Kelley et al. (2003);
LEG46-A3-Av: majors, Rb, Sr, Y, Zr, Nb: Dungan et al. (1979); Ti, V, Hf, Ta, Th: Bougault & Cambon (1979); Li, Sc, La, Ce, Nd, Sm, Eu,
Dy, Lu: Emmermann & Puchelt (1979). Major element analyses are recalculated on an anhydrous basis for comparison; trace elem-
ents are given as published. —, either not reported or not added to the experiment; SD, standard deviation; Syn., synthetic; Av.,
average; Oc., oceanic; n.d., not determined;

P
LREE, SUM (La–Sm).
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consisted of inner spacers of crushable alumina, a

graphite furnace, outer sleeve of salt and Pyrex, and a

W95/Re5–W75/Re25 (Type D), alumina-sheathed axial

thermocouple. The friction coefficient for this assembly

is 3% (McDade et al., 2002). No account was taken of
any pressure effect on thermocouple e.m.f.

Experiments were run in 1=2 inch, end-loaded piston-

cylinder apparatus at the University of Bristol using the

‘hot-piston-in’ method. Experiments were conducted at

a pressure (P) of 3 GPa; experimental temperatures (T)

ranged between 750 and 1000�C. The pressure was se-

lected to lie close to the average depth of the Wadati–
Benioff zone worldwide (�105 km; Syracuse & Abers,

2006). Temperatures were selected to bracket the sol-

idus and are in rough agreement with recent thermal

models of slab-top temperatures beneath arcs (e.g. van

Keken et al., 2002; Syracuse et al., 2010; Cooper et al.,

2012). Run durations were 2–7 days, in inverse propor-
tion to temperature. Supra-liquidus runs were carried

out at 1�5 GPa and �1325�C to produce glass from both

starting materials for analysis. Runs were quenched by

turning off the power.

One experiment was repeated at ETH Zürich after the

original showed signs of disequilibrium (AOC 750�C
run, lack of garnet). The same method and furnace as-

sembly were used, but with a different thermocouple

from that used at Bristol (Pt94/Rh6–Pt70/Rh30; Type B).

Most importantly, this run was seeded with 2 wt % of

gem quality garnet (composition�Py56Alm37Gross1

Spess1Andr5; <7 mm fraction).

No attempt was made to control or monitor fO2.
Different pressure-cell assemblies can lead to variable

fO2 conditions in experiments (e.g. Truckenbrodt et al.,

1997), despite the use of a graphite furnace. For our as-

sembly, in-house estimates of the fO2 in Bristol lie in the

range NNOþ 2 (61) (where NNO is nickel–nickel oxide

buffer) for comparable P–T–time conditions.
Conversely, if negligible water is lost to the assembly,

and no iron is lost to the noble metal capsule, the fO2 is

simply a function of the initial Fe3þ/Fetot (e.g. Kagi et al.,

2005). In general, we find that the calculated ferric iron

components in MORB and AOC runs are systematically

different, which suggests that the fO2 is at least partly

controlled by initially different Fe2þ/Fe3þ. Because we
cannot exclude that the initial fO2 was modified during

the experimental runs, we consider that the initial bulk

Fe3þ/Fetot defines a lower fO2 limit (�QFM for MORB,

>QFM for AOC; discussed above), and NNOþ 2 (61) an

upper limit.

Analytical techniques
Carbon-coated, polished run products were imaged

using a Hitachi S-3500N scanning electron microscope

(SEM). Major element electron microprobe analysis

(EMPA) was performed in Bristol on a five-spectrometer

Cameca SX100 system, with 15 kV acceleration voltage
and 15 nA sample current. The 750�C repeat experiment

was measured at ETH on a five-spectrometer JEOL

8200 Superprobe, using similar conditions. A focused

electron beam was used for minerals; for glasses, a de-

focused beam, and reduced sample current (4 nA) were

used to reduce Na loss, with Na being counted first for

5 s only. Owing to size issues, a focused beam was
applied for the quantification of ‘fish egg’ textured

spherules (see below), which are also glassy in nature.

These analyses thus probably are affected by loss of

volatile elements such as Na2O, and concomitant pas-

sive enrichment in other major elements.

Secondary ion mass spectrometry (SIMS) analysis of

trace elements in experimental glasses was performed
at the NERC facility at the University of Edinburgh using

a Cameca IMS-4f ion microprobe. The following set-

tings were applied: primary beam of 14�5 kV O– ions; 5

nA beam current; �15 mm diameter beam. NIST SRM

610 glass (Pearce et al., 1997) was used to calibrate rela-

tive ion yields; all data were ratioed to Si as determined
by EMPA. A 75 6 20 V energy filter was applied to posi-

tive secondary ions accelerated at 4�5 keV to reduce

transmission of molecular ions. Subsurface inclusions

were monitored in a count-rate versus time diagram

and excluded from the averaging procedure. Molecular

interferences were removed by conventional peak-
stripping using in-house ION6 software. Matrix-

dependent ion-yield differences between the calibrant

(SRM 610) and natural glasses were evaluated by meas-

uring different standards (MPI DING glasses: STHS, T1,

ATHO; USGS glasses: GSD, BCR, BIR; standard values

are taken from GeoRem: http://georem.mpch-mainz.

gwdg.de) three times each over 4 days. Calculated
Pearson correlation coefficients of calibration curves

obtained from these standards are 0�97 or better (see

Supplementary Data, file 1; supplementary data are

available for downloading at http://www.petrology.

oxfordjournals.org), despite the slope of the correlation

being offset from unity, similar to what was found by
Skora & Blundy (2012). The corrected bulk-rock data

measured on the supra-solidus glasses agree well with

trace element data given by Devey et al. (1994) for the

MORB sample, and average Leg 46, 396B-#3A basalts

for the AOC sample (Bougault & Cambon, 1979;

Dungan et al., 1979; Emmermann & Puchelt, 1979)

(Table 1).
Trace elements in glasses from the repeat experi-

ment (AOC 750�C) were measured by laser ablation

inductively coupled plasma mass spectrometry (LA-

ICP-MS) at ETH Zürich, using a Resonetics excimer laser

(193 nm) coupled to a Thermo Element 2 ICP-MS sys-

tem. The following settings were applied: spot size
30mm; frequency 5 Hz; fluency 3�5 J cm–2; acquisition

time 30 s (blank) and 40 s (peak); standards were NIST

SRM 612 (external), Ca (internal) and GSD-1G (second-

ary). Data were reduced using the Sills software

(Guillong et al., 2008), and mineral inclusions were

excluded from the glass data via inspection of a count-

rate versus time diagram.
To verify the consistency of the SIMS and LA-ICP-MS

method we re-analysed all AOC experiments by

1588 Journal of Petrology, 2015, Vol. 56, No. 8

http://georem.mpch-mainz.gwdg.de
http://georem.mpch-mainz.gwdg.de
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://www.petrology.oxfordjournals.org
http://www.petrology.oxfordjournals.org


LA-ICP-MS. There is general agreement between both

datasets to mostly better than 620% except for elem-

ents with low overall abundances (<0�1 ppm). A

comparison of SIMS and LA-ICP-MS analyses for the

supra-liquidus runs is given in Supplementary Data file
1. In 800–900�C runs where melt segregation was

incomplete the LA-ICP-MS technique encountered prob-

lems with numerous subsurface inclusions. We there-

fore prefer to report SIMS data wherever possible.

Careful inspection of SIMS and LA-ICP-MS data further

suggested a minor surface contamination of Ba from

sample preparation. Owing to the vesicular nature of
the glasses, surface contamination can penetrate into

the uppermost few micrometres, which is beyond the

sputtering depth of SIMS. For this reason we report LA-

ICP-MS Ba concentrations instead, given that the latter

method integrates the signal from a much greater depth

(�20 mm).

RESULTS

Phase relations
All experiments but one (Bristol AOC run at 750�C, no

garnet) produced an eclogitic residual assemblage (gar-

net, omphacitic clinopyroxene) along with some minor
and accessory phases (e.g. kyanite, epidote, rutile,

Fe–Ti oxide). Owing to the water-rich nature of these ex-

periments, all run products contain abundant glass

(quenched, supra-solidus melt) that often exhibits evi-

dence for the presence of a coexisting vapour phase in

the form of large vapour bubbles. These are sometimes
decorated with ‘fish egg’ textured spherules, thought to

represent the quenched silicate fraction of a vapour

phase rich in dissolved silicates [see Adam et al. (1997);

discussed below in more detail]. Melt–fluid segregation

towards the top of the capsule occurred in most runs.

All phase proportions (Fig. 1 and Table 2) were deter-

mined by least-squares regression for average compos-
itions of major phases only, recalculated on an

anhydrous basis. Water is reintegrated into the mass

balance at a later stage (e.g. Klimm et al., 2008). It

should be noted that owing to the presence of two im-

miscible fluids (hydrous melt and siliceous vapour) we

cannot calculate the H2O content of the melt phase, be-
cause the fraction of the vapour phase is unconstrained.

Thus the calculated liquid fraction in Table 2 represents

the bulk liquid (meltþ vapour), and not just the melt

fraction.

Mineral textures and phase petrology vary slightly

between MORB and AOC run products. Selected SEM

images are given in Fig. 2. In general, MORB experi-
ments at 800–900�C contain phases that tend to be rela-

tively fine-grained (5–20 mm diameter). Garnets are

inclusion-poor and chemically homogeneous when

compared with many other experimental studies. At

1000�C, in contrast, garnets are relatively coarse

grained (20–40mm), inclusion-rich and zoned.
The sub-solidus MORB experiment (800�C) contains

garnet, clinopyroxene, kyanite, epidote, quartz–coesite,

rutile, and abundant vapour (no melt). Neither apatite

nor phengite was observed owing to low bulk K2O and

P2O5 respectively (Table 1). Glass and additional garnet

replace quartz–coesite, kyanite and some clinoyproxene
in the 850�C experiment. Iron–Ti oxide also appears

above the solidus. Importantly, epidote remains present

above the solidus and does not change in composition

to allanite [rare earth element (REE)-rich epidote-group

mineral] as observed in the doped experiments of

Klimm et al. (2008). Glasses at 850–900�C exhibit two
distinct types of vesicles: microvesicles (approximately

submicrometre to 1 mm) and large (�10–100 mm), irregu-

lar vesicles that may or may not contain ‘fish eggs’.

Microvesicles are common in quenched glasses in

water-rich experiments (e.g. Klimm et al., 2008) and are

typically ascribed to the fact that the maximum amount

of water that can be quenched into room temperature
glasses is only 8–10 wt % (e.g. McMillan & Holloway,

1987), whereas the solubility of water in melts at run

conditions is significantly higher (>35 wt % at P�4 GPa;

e.g. Kessel et al., 2005b). The second, larger set of ves-

icles is thought to represent a siliceous vapour phase

that coexisted with melt at run conditions, exsolving the
silicate fraction upon quench to form ‘fish eggs’. At

1000�C epidote and rutile melted out, but a variety of

quench crystals (phengite and other, unidentified, very

small phases) are present. In addition, there is no tex-

tural evidence for an additional vapour phase at 1000�C.
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Fig. 1. Phase proportions in experiments on MORB and
AOC (Table 2). grt, garnet; cpx, clinopyroxene; qtz/coe, quartz–
coesite; ky, kyanite; *, trace epidote; þ, trace Fe–Ti oxide;
^, trace rutile.
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Major phases in AOC run products at 800–1000�C are

relatively coarse-grained (20–80mm). Minor phases (e.g.

rutile, etc.) are fine-grained (5–20mm). The coarse-

grained garnets are often inclusion-rich, and exhibit typ-

ical growth zoning. In contrast, the AOC 750�C repeat

experiment exhibits many small garnets owing to the
presence of garnet seeds in this run (Fig. 2). In clinopyr-

oxenes, we find that omphacitic rims often overgrow

smaller, Na-poor cores, which are probably magmatic

relicts, given that their compositions are similar to

those in the ODP report of Sato et al. (1979). Igneous

clinopyroxenes apparently provided nuclei for high-
pressure experimental clinopyroxenes. Fortunately, rel-

ict clinopyroxene cores in AOC experiments are of

minor volumetric abundance compared with their

omphacitic rims.

One AOC experiment (Bristol, 750�C) contains clino-

pyroxene, staurolite, phengite, epidote, quartz–coesite,

rutile, Fe–Ti oxide, apatite and vapour with abundant
‘fish eggs’. Garnet and clear evidence for melt are lack-

ing. Repeating this experiment at ETH with garnet seeds

produced abundant garnet, as growth rims (Fig. 2),

clinopyroxene, glass and rutile, as well as fine-grained

epidote–clinozoisite; we interpret this repeat run as a

more close approach to equilibrium (see detailed dis-
cussion below). Changes in phase assemblages and

proportions are fairly consistent with increasing tem-

perature. Glass, garnet, clinopyroxene and some trace

phases (rutile, Fe–Ti oxide, epidote, kyanite) remain pre-

sent up to 900�C. Apatite is either melted out above the

solidus or too small to observe. Similar to MORB

experiments, a vesicular glass coexists with an add-

itional fluid phase (large vesicles with or without fish

eggs) at 750–850�C. The 900�C run product visually dif-

fers from the 850�C run product by having a slightly

increased glass fraction and no clear evidence for the

second fluid phase. At 1000�C glass, with quench crys-
tals, is abundant (>40%), and epidote, rutile and kyanite

are melted out.

Approach to equilibrium
It is straightforward to show that near-equilibrium con-

ditions were reached with our MORB starting material,

which was a glassy basalt with less than 10% olivine

and minor plagioclase and spinel. All igneous phases

were fully replaced by an eclogitic assemblage (garnet,

clinopyroxene, other minor and accessory phases, as
well as melt above the solidus), which is relatively

homogeneous and comparable with the results of other

studies (Supplementary Data file 2). The AOC run prod-

ucts exhibit broadly similar phase assemblages, as well

as melt and mineral compositions that are comparable

with MORB run products (Supplementary Data file 2).

This suggests that near-equilibrium conditions were
reached in all but a single Bristol AOC run at 750�C,

which lacked garnet. The failure of garnet to nucleate

can be explained by its sluggish nucleation kinetics in

high-pressure experiments. This conclusion is consist-

ent with the presence of garnet overgrowth rims in the

garnet-seeded, repeat experiment at ETH Zürich,
indicating that garnet belongs to the high-pressure

sub-solidus assemblage at 3 GPa, 750�C. Other AOC run

Table 2: Run conditions and phase proportions

Run Time T Major phases (%)

(days) (�C) grt cpx qtz–coe (st*)–ky Fe–Ti phen liq vapour glass trace phases

MORB
LC2 7 800 29�1 44�9 4�7 6�2 — — 15�0 XþFE — ep, rt

34�3 52�9 5�5 7�3 — — —
LC1 5 850 40�7 33�9 — — — — 25�3 XþFE X ep, Fe–Ti, rt

47�2 39�5 — — — — 13�3
LC3B 4 900 42�5 30�7 — — — — 26�9 X X ep, Fe–Ti, rt

49�2 35�5 — — — — 15�3
LC4 3 1000 40�7 29�3 — — — — 30�2 — X Fe–Ti

47�0 33�8 — — — — 19�4
AOC
LCA0 8 750 — 59�6 5�9 15�9 1�7 1�8 15�0 XþFE — ep, rt, apa

— 70�2 7�0 18�7 2�1 2�1 —
LCA0 rep† 8 750 31�5 37�4 — — — — 31�1 X X ep, rt, grt seeds

36�3 43�1 — — — — 20�6
LCA2B 7 800 32�7 34�3 — — — — 33�0 XþFE X ep, rt, Fe–Ti, ky

37�6 39�5 — — — — 22�9
LCA1 5 850 31�8 35�4 — — — — 32�7 (X) X ep, rt, Fe–Ti, ky

36�6 40�8 — — — — 22�7
LCA3 4 900 30�3 35�7 — — — — 34�0 — X ep, rt, Fe–Ti, ky

34�8 40�9 — — — — 24�3
LCA4 3 1000 34�3 20�7 — — — — 45�1 — X Fe–Ti

38�8 23�4 — — — — 37�8

P¼3 GPa. grt, garnet; cpx, clinopyroxene; qtz–coe, quartz–coesite; ky, kyanite; Fe–Ti, Fe–Ti oxide; phen, phengite; liq, bulk liquid;
ep, epidote; rt, rutile; apa, apatite; FE, ‘fish eggs’; (st*) refers to the presence of staurolite as Al-rich phase in AOC sub-solidus ex-
periment; X refers to the presence of vapour and/or glass; (X), presence of vapour is ambiguous in this run. Mass balances were ini-
tially performed using anhydrous compositions (values in italic), and H2O was later reintegrated (see text).

†LCA0 rep is a repeat experiment of LCA0, run with grt seeds at ETH Zürich; further details are given in the Methods section.
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Fig. 2. Representative back-scattered electron (BSE) images of experimental run products at different temperatures in MORB and
AOC. Mineral abbreviations as in Fig. 1; plus ilm, ilmenite; rt, rutile; vap, vapour; ep, epidote. Partial melts are always microvesicu-
lar owing to exsolution of water upon quench. In some experiments, we find clear evidence for the presence of a vapour phase in
addition to glass, as evidenced by a second, larger generation of vesicles often containing ‘fish egg’ textured spherules [quenched
silicate fraction of a fluid phase rich in dissolved silicates; see Adam et al. (1997)].
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products also exhibit some features indicative of local

disequilibrium, including growth zoning in garnet as

well as small relict igneous clinopyroxenes that are sur-

rounded by omphacite. Mass balance and all interpret-

ations below are based on volumetrically dominant
garnet and clinopyroxene rim compositions, because

they will be in equilibrium with the coexisting phases.

Phase chemistry—major elements
Experimental glasses and silicate minerals are relatively

homogeneous: in most cases major elements have 1r
of <10% relative; minor elements have 1r¼10–50%

relative (Table 3). Notable exceptions are glasses in the

MORB 850�C experiment, hampered because the small

melt pools are not well interconnected, as well as both

1000�C experiments owing to the development of abun-

dant quench crystals. In the latter cases, however, the
average of a large number of analyses should approxi-

mate the equilibrium composition, despite large stand-

ard errors. Glasses are generally rich in SiO2, Al2O3,

CaO and alkalis, and poor in MgO and FeO. Low EMPA

totals as well as the microvesicular nature of quenched

glasses imply that they contain significant H2O. ‘Fish

egg’ textured spherules also appear glassy in nature

and are broadly granitic in composition (see Table 4).

The MORB partial melts are peraluminous and tonal-
itic in composition [according to the classification

scheme of Barker (1979)] just above the solidus, trend-

ing towards a more metaluminous composition at

higher temperatures (Fig. 3). The AOC partial melts are

also peraluminous, but trondhjemitic. Like MORB melts,

they become metaluminous at higher temperatures,

and further change their composition at T� 900�C to be-
come tonalitic (Fig. 3). Magnesium oxide and FeO con-

tents of all glasses are uniformly low, although both

elements increase slightly at higher temperatures

(Fig. 4). The Mg# decreases slightly between 750 and

1000�C from around 0�5–0�6 to around 0�4–0�5 in both

experimental sequences (Table 3). Such compositions
are fully consistent with other published studies on par-

tial melts of a basaltic composition with excess water

(range 5–25 wt %) at broadly similar P–T conditions [e.g.

Ryabchikov et al., 1996 (E3 composition); Prouteau

Table 3: Major and minor element compositions of experimental glasses

Exp.: LC1 LC1 LC1 LC3B LC3B LC3B LC4 LC4 LC4 LCA0 rep LCA0 rep LCA0 rep
Type: measured SD anhydr. measured SD anhydr. measured SD anhydr. measured SD anhydr.
T (�C): 850 850 850 900 900 900 1000 1000 1000 750 750 750

MORB MORB MORB MORB MORB MORB MORB MORB MORB AOC AOC AOC
n: 24 24 24 36 36 36 52 52 52 8 8 8

wt %
SiO2 60 4 76 57 2 74 54 3 71 58 3 73
TiO2 0�19 0�03 0�24 0�25 0�04 0�32 0�29 0�08 0�38 0�12 0�02 0�15
Al2O3 11�9 0�8 15�0 11�5 0�7 14�8 12�6 0�8 16�4 12�8 0�7 16�2
FeOtot 0�9 0�2 1�2 0�9 0�1 1�1 1�5 0�9 1�9 0�7 0�1 0�8
MgO 0�5 0�4 0�7 0�3 0�1 0�4 1 1 1 0�5 0�1 0�6
CaO 2�9 0�3 3�7 3�8 0�6 4�9 4 1 6 1�7 0�2 2�2
Na2O 1�8 0�5 2�3 2�8 0�3 3�6 2�4 0�7 3�1 4�4 0�2 5�5
K2O 0�4 0�2 0�5 0�7 0�2 0�9 0�5 0�3 0�7 0�9 0�1 1�1
P2O5 0�2 0�1 0�2 0�2 0�1 0�3 0�1 0�1 0�1 0�11 0�04 0�14
Sum 79 5 100 78 2 100 77 3 100 79 4 100
Al/(KþNaþ2Ca) 1�4 0�2 1�4 0�9 0�1 0�9 1�0 0�2 1�0 1�1 0�1 1�1
(NaþK)/Al 0�29 0�07 0�29 0�47 0�05 0�47 0�36 0�09 0�36 0�64 0�06 0�64
Mg# 0�5 0�4 0�5 0�4 0�2 0�4 0�5 0�8 0�5 0�6 0�2 0�6

Exp.: LCA2B LCA2B LCA2B LCA1 LCA1 LCA1 LCA3 LCA3 LCA3 LCA4 LCA4 LCA4
Type: measured SD anhydr. measured SD anhydr. measured SD anhydr. measured SD anhydr.
T (�C): 800 800 800 850 850 850 900 900 900 1000 1000 1000

AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC
n: 46 46 46 34 34 34 36 36 36 44 44 44

wt %
SiO2 59 3 74 61 2 72 61 1 70 54 5 65
TiO2 0�15 0�02 0�19 0�21 0�03 0�25 0�41 0�03 0�47 0�8 0�2 0�9
Al2O3 12�5 0�9 15�7 13�6 0�6 16�1 14�3 0�3 16�5 14 1 17
FeOtot 0�8 0�1 1�0 0�9 0�2 1�1 1�6 0�1 1�8 3 1 3
MgO 0�6 0�2 0�8 0�3 0�2 0�4 0�9 0�1 1�0 1�3 0�8 1�5
CaO 1�9 0�2 2�4 2�3 0�3 2�7 3�9 0�3 4�5 6 3 8
Na2O 2�8 0�4 3�6 4�6 0�5 5�4 3�8 0�6 4�3 3 1 4
K2O 1�4 0�2 1�8 1�4 0�3 1�7 0�96 0�08 1�11 0�7 0�2 0�9
P2O5 0�31 0�08 0�39 0�32 0�07 0�38 0�36 0�06 0�42 0�2 0�1 0�3
Sum 80 4 100 84 2 100 86�7 0�9 100�0 84 4 100
Al/(KþNaþ2Ca) 1�3 0�1 1�3 1�0 0�1 1�0 1�0 0�1 1�0 0�8 0�2 0�8
(NaþK)/Al 0�50 0�07 0�50 0�67 0�08 0�67 0�51 0�07 0�51 0�4 0�1 0�4
Mg# 0�6 0�2 0�6 0�4 0�2 0�4 0�5 0�1 0�5 0�4 0�3 0�4

SD refers to 1r of n (number) analyses; anhydr., anhydrous.
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et al., 2001 (3 GPa subset); Kessel et al., 2005b (4 GPa,

900–1000�C subset); Klimm et al., 2008; Prouteau &

Scaillet, 2013] (Supplementary Data file 2). Remaining

small discrepancies between all these studies can be

related to differences in bulk composition, fO2, pressure
(range 2�5–4 GPa) and the degree of melting as a conse-

quence of different starting H2O contents.

Major element compositions of minerals are given in

Supplementary Data file 3. The method of Droop (1987)

was used to estimate Fe3þ contents for garnet and clino-

pyroxene and stoichiometric considerations are used

for all other minerals. Garnets in MORB and AOC run
products are compositionally similar at similar tempera-

tures, being rich in almandine (25–40%), pyrope

(30–44%) and grossular (23–30%), but poor in spessart-

ine (<1%) and andradite (1–6%). Where zoning occurs,

garnets display increasing pyrope and decreasing al-

mandine from core to rim. A small but noticeable differ-
ence between the experimental sequences lies in the

calculated andradite component, which tends to be

lower at lower temperatures (800–900�C) in MORB (1–

2�7%) than in AOC (1�7–6�5%), in keeping with higher ini-

tial Fe3þ/Fetot in AOC. In contrast, calculated andradite

components are consistently higher (5�2–7�5%) at

1000�C. With increasing temperature, the pyrope com-

ponent increases mostly at the expense of almandine,

gradually changing the Mg# from around 0�4 to around

0�6. Garnet Mg# hence mirrors the behaviour of melts,

which become more iron-rich at higher temperatures.
Other minor elements observed in garnet include TiO2,

which increases slightly with increasing temperature in

the presence of rutile. Experimental garnet compos-

itions and chemical trends with temperature are fully

consistent with other experimental studies (see

Supplementary Data file 2).

Clinopyroxenes are all omphacites, and are less
chemically variable than garnet. A comparison with

other studies is given in Supplementary Data file 2.

They exhibit a significant ‘quadrilateral’ (QUAD)

Ca–Mg–Fe component (74–76% in MORB, 62–66% in

AOC), a jadeite component (18–24% in MORB, 23–31%

in AOC), and a small, but significant, calculated acmite
component (2–8% in MORB, 3–11% in AOC). The acmite

component is probably a maximum estimate owing to

the possible presence of a small Ca-eskolaite compo-

nent (e.g. Konzett et al., 2007). The relict igneous cores

in AOC (750–900�C) are �90% QUAD in composition,

with a relatively high acmite component (4�5–7�5%), and
significantly higher Ti compared with high-pressure,

omphacite rims.

Minor phases that were observed include kyanite,

which is relatively pure Al2SiO5, although a small quan-

tity of iron (probably Fe2O3) is detectable (�3 wt % in

MORB; �4 wt % in AOC). Epidotes are epidote–

clinozoisite solid solutions, containing �8–10 wt % total
iron, which should be mostly Fe2O3. The SiO2 phase

that occurs in sub-solidus runs should be coesite, al-

though this is hard to distinguish from quartz in our run

products, based on textural criteria alone. Iron–Ti

oxides of the ilmenite–hematite solid solution series are

present in almost all runs, displaying a significant
hematite component (�55–75 mol %), and a small Al2O3

component (�1–4 mol %). Rutile, which contains some

ferric iron (�2–7 mol %), is present in all runs below

1000�C. Apatite was found in a single run only (750�C;

Table 4: Major and minor element composition of ‘fish eggs’

Exp.: LC1 LC1 LC1 LCA2B LCA2B LCA2B
Type: measured SD anhydr. measured SD anhydr.
T (�C): 850 850 850 800 800 800

MORB MORB MORB AOC AOC AOC
n: 7 7 7 13 13 13

wt %
SiO2 65 5 81 65 2 78
TiO2 0�15 0�07 0�19 0�11 0�04 0�13
Al2O3 11 1 13 13 1 15
FeOtot 0�7 0�3 0�8 0�4 0�1 0�5
MgO 0�4 0�2 0�5 0�4 0�3 0�4
CaO 2�5 0�4 3�1 1�8 0�4 2�2
Na2O 0�5 0�3 0�6 1�6 0�5 1�9
K2O 0�31 0�03 0�39 1�2 0�3 1�4
P2O5 0�05 0�03 0�06 0�15 0�05 0�18
Sum 80 6 100 83 2 100

SD refers to 1r of n (number) analyses; anhydr., anhydrous.
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Fig. 3. (a) Al/(NaþKþ2Ca) ratios of quenched glasses showing a trend from peraluminous to metaluminous compositions at
higher temperatures. (b) The granite classification scheme of Barker (1979), indicating that the experimental partial melts are
trondhjemitic to tonalitic in composition.
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AOC without melt and garnet), suggesting that this is

the main phase that carries P2O5 down to sub-arc depth

in phosphate-rich basalts, until it is melted out above

the solidus.

Glass chemistry—trace elements
With increasing temperature several systematic vari-

ations in glass chemistry are observed. Concentrations

are given in Table 5 and plotted [normalized to primitive

upper mantle (PUM)] in Fig. 5 and against temperature
in Fig. 6. The AOC experiments provide the most com-

plete dataset in terms of temperature evolution (750–

1000�C), but some insights can also be derived from the

MORB data at 900 and 1000�C. In general, fluid-mobile

elements such as Cs, Rb, Ba, Sr and Li are always en-

riched in the partial melts. Other elements such as U,

Zr, Hf, and V are also moderately enriched. Elements
such as Nb, Ta, the light REE (LREE) and Th are rela-

tively depleted at T� 900�C. Heavy REE (HREE), Y and

Sc are relatively depleted at all temperatures. Different

element groups behave differently with increasing tem-

perature; for example, HREE, Y and Sc concentrations

increase with increasing temperature, in contrast to
most fluid-mobile elements. The different trace element

patterns are explained in more detail below.

DISCUSSION

Location of the solidus
Our experiments place constraints on the 3 GPa, H2O-

saturated solidus of ocean floor basalt, which is shown
to be sensitive to bulk K2O content. Our AOC experi-

ments (�0�25 wt % K2O) produced glass (þ garnet,

clinopyroxene, minor phases) at 750�C only in the ex-

periment that contained garnet seeds. The other experi-

ment at 750�C contained ‘fish eggs’ instead of melt,

together with clinopyroxene, staurolite [for reasons de-
tailed by Skora & Blundy (2010) staurolite is probably

metastable relative to garnet and kyanite], phengite,

quartz–coesite and minor phases. It is tempting to con-

clude that the lack of melt in the latter 750�C experiment

is due to garnet nucleation problems and related overall

disequilibrium. However, the most widely proposed

H2O-saturated melting reaction for K-bearing MORB
and sediment is quartz–coesiteþphengiteþ clinopyr-

oxeneþH2O¼meltþgarnet (e.g. Schmidt, 1996;

Hermann & Green, 2001; Hermann & Spandler, 2008;

Skora & Blundy, 2010). As garnet is a product of melt-

ing, it is unlikely that the lack of garnet should inhibit

melting. Alternatively, melting in K-bearing AOC may
start at temperatures that are very close to 750�C, and

small calibration-related P–T discrepancies between

Table 5: Trace element compositions of hydrous glasses

LCA0* LCA0*
Exp.: LC3B LC3B LC4 LC4 rep rep LCA2B LCA2B LCA1 LCA1 LCA3 LCA3 LCA4 LCA4
Type: meas SD meas SD meas SD meas SD meas SD meas SD meas SD
T (�C): 900 900 1000 1000 750 750 800 800 850 850 900 900 1000 1000

MORB MORB MORB MORB AOC AOC AOC AOC AOC AOC AOC AOC AOC AOC
n: 7 7 5 5 11 11 5 5 5 5 5 5 6 6

ppm
Li 5�1 0�8 9 2 — — 38 7 63 9 65 3 58 6
Sc 5�6 0�4 10 2 1�9 0�3 3�4 0�3 1�9 0�2 4�4 0�6 10�3 0�6
Ti 1770 50 3040 420 655 31 1020 150 1270 140 2580 60 7000 340
V 530 40 600 150 131 9 260 20 230 20 209 5 310 30
Rb 10 2 6 1 16�7 0�9 26 4 23 2 20 4 12 1
Sr 220 10 180 60 415 12 440 20 470 10 720 30 400 20
Y 1�9 0�2 2�9 0�9 0�60 0�05 3�0 0�4 0�75 0�06 1�9 0�1 7�4 0�4
Zr 40�3 0�9 56 5 43 2 81 6 96 3 181 5 151 4
Nb 2�2 0�1 4�4 0�3 0�24 0�03 0�50 0�09 0�49 0�06 0�92 0�06 4�8 0�2
Cs 0�4 0�1 0�4 0�1 3�4 0�2 1�6 0�2 1�6 0�7 1�3 0�2 0�6 0�2
Ba — — — — 18�4 0�8 23�3 0�9 27 1 20�7 0�8 19 4
La 0�52 0�06 1�6 0�8 <0�04 — 0�34 0�08 0�09 0�02 0�28 0�07 6�7 0�6
Ce 1�1 0�3 4 2 0�08 0�02 1�1 0�1 0�09 0�01 0�9 0�1 20 2
Nd 0�8 0�2 3 2 <0�02 — 0�8 0�1 0�09 0�06 1�2 0�2 15 2
Sm 0�24 0�08 1�0 0�6 <0�02 — 0�28 0�03 0�05 0�02 0�4 0�1 3�4 0�3
Eu 0�10 0�04 0�3 0�2 <0�06 — 0�12 0�06 0�05 0�04 0�16 0�03 0�89 0�05
Gd 0�21 0�03 0�7 0�3 <0�03 — 0�26 0�04 0�05 0�02 0�32 0�07 2�3 0�2
Dy 0�32 0�06 0�5 0�3 0�08 0�02 0�5 0�1 0�09 0�03 0�28 0�06 1�4 0�2
Lu 0�014 0�006 0�04 0�01 <0�02 — 0�022 0�004 b.d.l. b.d.l. 0�011 0�004 0�10 0�02
Hf 0�9 0�2 1�5 0�2 1�6 0�2 2�4 0�2 2�8 0�3 5�1 0�4 3�7 0�3
Ta 0�08 0�01 0�22 0�05 <0�03 — 0�04 0�01 0�03 0�02 0�05 0�01 0�27 0�05
Th 0�11 0�04 0�27 0�08 <0�02 — 0�012 0�005 0�012 0�003 0�036 0�003 0�28 0�04
U 0�07 0�02 0�12 0�06 0�04 0�01 0�07 0�02 0�08 0�04 0�17 0�04 0�14 0�04P

LREE 2�6 0�4 10 3 <0�2 — 2�5 0�2 0�3 0�1 2�7 0�2 45 2
Ba/Th 460 180 130 40 >920 — 1870 770 2330 610 580 50 70 20
La/SmPUM 1�5 0�3 1�1 0�5 — — 0�8 0�1 1�3 0�5 0�4 0�1 1�3 0�1
U/Thn 2 1 1�0 0�8 >3�5 — 10 6 12 9 9 4 0�9 0�4

*Experiment analyzed by LA-ICP-MS, all other experiments were analyzed by SIMS; Ba concentrations for AOC are LA-ICP-MS
data; further details are given in the Methods section. Meas, measured; SD, 1 sigma standard deviation.P

LREE¼SUM (La–Sm); La/SmPUM are PUM normalized; U/Thn are source normalized; b.d.l., below detection limit.

Journal of Petrology, 2015, Vol. 56, No. 8 1595



Cs Ba U Ta Ce
Rb Th Nb Ti

Eu
Sm

Hf
Zr

Nd
SrLa Dy

VLuLiGd
ScY

0.1

1

10

0.1

10

1

M
el

t/P
U

M
M

el
t/P

U
M

MORB

AOC

850°C
800°C
750°C         bulk

1000°C
900°C
bulk

1000°C
900°C

Cs Ba U Ta Ce
Rb Th Nb Ti

Eu
Sm

Hf
Zr

Nd
SrLa Dy

VLuLiGd
ScY

PUM

3xPUM

PUM

3xPUM

Fig. 5. Trace element compositions of experimental glasses normalized to PUM (primitive upper mantle; Sun & McDonough, 1989).
Starting compositions are shown as thick continuous grey lines. At low temperatures trace element patterns are spiky, becoming
smoother and approaching their levels in the starting materials as temperature increases. Fluid-mobile elements (e.g. alkalis) are
the most enriched at all conditions. LREE are strongly depleted in partial melts, owing to the presence of residual epidote up to
�900�C. Glasses also show enrichment of Zr (over Nd), Hf (over Sm) and Li (over Y), although these characteristics are rarely re-
flected in arc magmas because of the subsequent control exerted by mantle wedge peridotite.
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Bristol and ETH Zürich (e.g. owing to different thermo-

couple types) may be responsible. For basalt with

0�14 wt % K2O and excess water, Lambert & Wyllie

(1972) determined a 3 GPa solidus temperature of

�750�C, whereas Schmidt & Poli (1998) located their
solidus at �730�C for MORB with 0�49 wt % K2O. Thus,

regardless of whether the lack of melt in one 750�C ex-

periment is due to P–T uncertainties or due to disequi-

librium, we conclude that melting in K-rich AOC starts

at T�750�C, in keeping with previous studies.

Quenched silicate melt formed only above 800�C in

the MORB experiments, placing the 3 GPa solidus for a
starting material with only 0�04 wt % K2O between 800

and 850�C (T¼825 6 25�C). In theory, no phase other

than phengite is capable of hosting appreciable potas-

sium in an eclogitic assemblage at around 3 GPa, a fact

confirmed by analyses of silicate minerals in this run

(Supplementary Data file 3). Sub-solidus phengite, how-
ever, was not observed. Possibly phengites were never

found because 0�04 wt % initial K2O equates to just

�0�4 vol % phengite. Alternatively appreciable potas-

sium was dissolved in the siliceous fluid (quenched as

‘fish eggs’) at near-solidus conditions (Table 4), effect-

ively stripping out all the potassium from the solid as-
semblage. We note that the K-free, water-rich

experiments of Kessel et al. (2005b) determined a 4 GPa

solidus temperature of 875 6 12�C. Assuming a con-

stant offset between K-bearing and K-free MORB at 3

and 4 GPa, the solidus estimates of Lambert & Wyllie

(1972) and Kessel et al. (2005b) can be extrapolated to a

3 GPa, K-free MORB solidus temperature of around
850�C, consistent with our experimental results. The

melting reaction, however, differs slightly from that

given by Kessel et al. (2005b). We find that glass and

garnet replace quartz–coesite, kyanite and some

clinoyproxene in the 850�C experiment, suggesting an

initially incongruent melting reaction of the form quartz–
coesiteþ kyaniteþ clinopyroxeneþH2O¼meltþgarnet.

Kessel et al. (2005b) proposed instead a congruent melt-

ing reaction of the form clinopyroxeneþgarnet¼melt.

To what extent the discrepancies relate to differences in

pressure or bulk-rock composition remains uncertain at

this stage, but it is evident that both reactions would

occur at somewhat similar temperatures in subduction
zones.

The question persists as to whether AOC and MORB

can melt at Wadati–Benioff zone depths (�75–135 km,

average �105 km; Syracuse et al., 2010), provided that

sufficient H2O can be added via the breakdown of hy-

drous minerals such as serpentine or chlorite in deeper
portions of the slab. Recent results in thermal modelling

(e.g. Syracuse et al., 2010; van Keken et al., 2011) pre-

dict slab-top temperatures of around 750–850�C in most

subduction zones at 2�5–4�5 GPa (e.g. Lesser Antilles),

with some offset towards higher temperatures (850–

950�C; e.g. Nicaragua, Guatemala). These temperatures

drop off in the lower parts of the subducted column,
and are �100–300�C lower than slab-top temperatures

at the bottom of a 7 km thick basaltic crust (e.g. van

Keken et al., 2011). Combined with our experimentally

derived, H2O-saturated solidus temperatures, these re-

sults suggest that only the top part of the basaltic crust

can melt, if present as altered oceanic crust with ele-

vated K2O contents. K-poor MORB is less likely to melt
except in the hottest subduction zones. Melt fractions of

oceanic basalts will be significantly lower compared

with those of overlying, K-rich marine sediments (e.g.

Schmidt et al., 2004).

Nature of experimental fluids
The second critical end-point (SCEP) is defined in P–T

space by the intersection of the melt–vapour critical

curve and the H2O-saturated solidus (see, e.g. Manning,

2004; Hermann et al., 2006). The conventional designa-

tion of solidus, melt and vapour is lost at pressures ex-

ceeding the SCEP because melt and H2O are fully
miscible supercritical fluids. Experimental studies have

come to different conclusions concerning the position

of the SCEP in the system basalt–H2O (or more correctly

the system basalt-derived partial melt–H2O). Kessel

et al. (2005b) used topological criteria to estimate the

SCEP in K-free basalt to lie between 5 and 6 GPa. This is

close to the position of the SCEP in K-MORB as esti-
mated by Schmidt et al. (2004) using textural evidence.

On the basis of extrapolation from the haplogranite crit-

ical curve to the H2O-saturated basalt solidus, Klimm

et al. (2008) proposed that the SCEP lies at �2�5 GPa in

K-MORB. This discrepancy raises the question of

whether MORB- or AOC-derived fluids beneath arcs are
supercritical in nature, or not.

In our experimental charges, MORB glasses at 850–

900�C and AOC glasses at 800–850�C clearly exhibit two

distinct types of vesicles: (1) microvesicles that are evi-

dent in all glass pools; (2) large, irregular vesicles that

are also present in glass pools and that may or may not

contain ‘fish eggs’. Microvesicles in glasses (1) are com-
monly interpreted to represent vapour-exsolution upon

quench (e.g. Klimm et al., 2008). Larger vesicles (2) are

interpreted to represent an additional vapour phase that

coexisted with hydrous melt (¼ quenched glasses) at

run conditions. The ‘fish eggs’ are suggested to repre-

sent the siliceous fraction that was dissolved in the va-
pour phase at run conditions. Our textural evidence

argues for two fluid phases at near-solidus conditions,

hydrous meltþ siliceous vapour (Fig. 7). Our experi-

mental data thus suggest sub-critical conditions and

place the SCEP at pressures greater than 3 GPa in both

MORB- and AOC-derived fluids, consistent with

Schmidt et al. (2004) and Kessel et al. (2005b). Above
900�C (MORB) and 850�C (AOC), clear evidence for an

additional vapour phase (6 ‘fish egg’ textured spher-

ules) disappears, suggesting that complete fluid–melt

miscibility (supercritical behaviour) may occur in re-

sponse to increasing temperature and changing melt

composition. We further offer a possible explanation for
the discrepant result of Klimm et al. (2008) in

Supplementary Data file 4.
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Trace elements in fluid and melt
It is well known that the behaviour of trace and minor

elements in the glass with increasing temperature is a

direct consequence of the residual mineralogy, specific-

ally the phases that control the budget of those elem-
ents (e.g. rutile; Klemme et al., 2002). For elements that

lack a residual host phase the concentration in the glass

will decrease with temperature, whereas for elements

with a ubiquitous host phase, element concentrations

will increase with temperature. For elements whose

host phase becomes exhausted over the melting inter-

val the concentration in the glass will attain a maximum
at the point of phase exhaustion. Naturally all trace

element contents attain those of the bulk starting mater-

ial at the liquidus temperature. A complexity arises for

those elements that strongly partition into a separate

vapour phase; that is, for sub-critical conditions. In that

case the exhaustion of the vapour phase upon attain-
ment of criticality will lead to a maximum in glass con-

centration in much the same way as exhaustion of a

solid residual phase.

Titanium, Nb and Ta show a continuous increase in

concentration with temperature, with the same trends

observed for MORB and AOC, consistent with the per-

sistence of residual rutile up to 900�C and Fe–Ti-oxide
thereafter (Fig. 6). It should be noted that Fe–Ti oxides

are unlikely to host significant quantities of Nb and Ta

because of the significant hematite component (see

Skora & Blundy, 2010). In AOC glasses Zr (and Hf)

shows a marked peak in concentration at around 900�C

(Fig. 6). We lack the resolution in MORB glasses to es-
tablish if there is a maximum or not. The tendency of Zr

and Hf to attain maxima at intermediate temperatures

in AOC suggests the exhaustion of zircon at �900�C

during melting, although zircon was never positively

identified in our experiments owing to low bulk Zr.
Scandium, V, Y and HREE also show an overall increase

in the glass from 750 to 1000�C owing to the persistence

of garnet and, to a lesser extent, omphacite across the

melting interval (Fig. 6). The slightly complex behaviour

of Sc and V may reflect competition between garnet

and omphacite and their changing proportion in the
residue with increasing temperature. LREE abundances

are extremely low (<1–3 ppm total LREE) in all glass-

bearing experiments on MORB and AOC, except at the

highest temperature when their concentrations increase

sharply (Fig. 6). This behaviour is a consequence of re-

sidual epidote, which is known to host these elements

(e.g. Frei et al., 2004) and approaches exhaustion at the
highest run temperatures. The 800�C AOC run has

higher LREE than either of the adjacent runs. This be-

haviour is suggestive of less epidote in this run, which

may be a result of a small inter-run variability in fO2,

which influences epidote stability and proportion

through control of Fe3þ. Uranium and Th concentrations
are also very low (<0�3 ppm) in all experimental

glasses, and consequently subject to high analytical un-

certainty, making trends hard to discern. Nonetheless

Th clearly increases with temperature until T¼900�C,

similar to Ce (Fig. 6). Again, epidote appears respon-

sible for this behaviour.

The large ion lithophile elements (LILE) K, Ba, Cs, Rb,
Sr and Li in glasses show variable behaviour (Fig. 6).

Caesium decreases steadily with temperature in the

AOC and MORB experiments, indicative of behaviour as

an incompatible element with no residual host phase.
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Potassium and Rb show broad maxima at around 800–

850�C in AOC, and 900�C (K only) in MORB. Barium in

AOC shows a maximum at 850�C, whereas Li shows a

broad maximum at 850–900�C. Strontium shows a max-

imum between 900 and 1000�C in both sets of experi-
ments. Finally, Na shows a maximum in MORB at

900�C, but rather irregular behaviour in AOC. With the

possible exceptions of Sr in epidote (Supplementary

Data file 5) and Na and Li in omphacite (e.g. Hermann

2002a), none of the LILE have a residual host phase;

phengite, a potential host for K and Ba, is exhausted

above the solidus of MORB and AOC. Thus the maxima
that the LILE display cannot be ascribed to exhaustion

of a solid phase. However, it is striking that the various

maxima displayed by LILE roughly correspond to the

transition from sub-critical to super-critical behaviour

(850–900�C in AOC, 900–1000�C in MORB), as evidenced

texturally, suggesting a role for fluids in LILE transport.
In much the same way as exhaustion of a solid phase

produces maxima for other trace elements so the ex-

haustion of the fluid phase on crossing the solvus into

super-critical behaviour can lead to maxima in the con-

centrations of elements that possibly partition into the

fluid. In detail, the temperature at which the maximum
occurs over the transition to supercritical behaviour will

reflect the strength of partitioning into the fluid. Thus

our data suggest that fluid–melt partitioning increases

in the order Cs<Rb<K<Ba in AOC. The behaviour of

Na in this sequence is unclear. This is an interesting in-

sight into LILE fluid partitioning, but dedicated experi-

ments would be required to quantify it.

Allanite versus epidote and the behaviour of
LREE
The behaviour of LREEþTh in our experimental glasses

is controlled by the presence of residual epidote. LREE
abundances are extremely low (<1–3 ppm total LREE,

Fig. 8) in all glass-bearing experiments on MORB and

AOC, except at the highest temperature when epidote is

exhausted. Epidote forms a solid solution with allanite,

indicating a demonstrable ability to accommodate LREE

in its structure (e.g. Frei et al., 2003). Analyses of epi-
dote in our run products show elevated LREE, in one

case readily analysable by EMPA (Supplementary Data

file 5). For example, in a run on AOC at 900�C epidote

contains 1000 6 300 ppm Ce, 400 6 100 ppm La, and

900 6 300 ppm Nd. The corresponding epidote–melt

partition coefficients are DLa�1500 6 600, DCe� 1200 6

400 and DNd� 700 6 300 (Supplementary Data file 6).
The observed concentrations of RLREE (La–Sm) are

much lower than those required for allanite solubility

(Fig. 8), confirming that this mineral was absent from

our experiments in contrast to those of Hermann

(2002a) and Klimm et al. (2008). We attribute this key

difference to the relatively high doping levels of LREE
used in those studies. In fact, the LREE partition coeffi-

cients between epidote and melt given above are higher

than those for allanite at 900�C and 2�5 GPa (Klimm

et al., 2008) by a factor of �2.

It is logical to conclude that doping with LREE in the

experiments of Hermann (2002b), Kessel et al. (2005a)

and Klimm et al. (2008), where allanite was found to be
the principal carrier for LREEþTh, simply pushed the

composition of the allanite–epidote solid solution to the

high LREE end-member, thereby increasing the overall

level of LREEþTh in the glasses in the doped experi-

ments. Additional evidence for the stability of allanite

versus epidote can be drawn from field examples.

Although allanites are found in some (ultra) high-
pressure [(U)HP] terrains, they are typically restricted to

REE-enriched rocks with alkaline affinities [as opposed

to normal (N)-MORB], or Fe-gabbros (e.g. Tribuzio et al.,

1996; Hermann, 2002b; Spandler et al., 2003). These

rock types are not representative of average oceanic

basaltic crust and, indeed, epidote–zoisite is much more
common in exhumed (U)HP terrains (Enami et al.,

2004). It should be noted in that context that UHP ter-

rains most often represent the un-molten, sub-solidus

protolith of subducted crust, and allanite forms only

above the solidus according to Klimm et al. (2008) (reac-

tion: epidote¼ allaniteþmelt). Our experimental study
suggests, however, that epidote would not change its

composition appreciably above the solidus.

We conclude that the control on LREE contents of

subduction zone melts of basalt is still an epidote-group

mineral, but one much poorer in LREE than allanite. A

simple test of this proposal is to use the solubility

model of Klimm et al. (2008), but with the epidote com-
positions determined in our experiments (Fig. 8). These

have considerably lower mole fractions of allanite (Xall),

which leads to much lower levels of LREE in the melt ac-

cording to equation (9) of Klimm et al. (2008). We use

the epidote from the AOC 900�C run with the LREE
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Fig. 8. Variation of log RLREE (La–Sm) in glasses versus tem-
perature. Continuous curves are modelled RLREE using the al-
lanite solubility equation (9) given by Klimm et al. (2008), for
pure allanite (Xall¼1), and for Xall¼0�3 [approximating the
composition found by Klimm et al. (2008)]. The RLREE of our
undoped experiments is significantly lower when compared
with allanite-saturated experiments. (max conc.) refers to max-
imum measurement near detection limits, see Table 5.

1600 Journal of Petrology, 2015, Vol. 56, No. 8

http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv046/-/DC1


contents given in Supplementary Data file 5. In this run

Xall�0�008; assuming ideal mixing this would equate to

an LREE content in melts 125 times lower than if pure

allanite were present in the residue. Inspection of Fig. 8

shows that this is indeed the case for this run: at 900�C
Klimm et al. (2008) found Xall�0�4 and RLREE (La–Sm)

in the melt of 168 ppm, whereas we have Xall¼ 0�008

and RLREE¼2�7 ppm; that is, Xall is 53 times lower and

RLREE 62 times lower in our experiment than in those

of Klimm et al. (2008). The close correspondence be-

tween the observed Xall and melt LREE content in our

experiments and those of Klimm et al. (2008) lends
strong support to the notion that epidote-group min-

erals limit the flux of LREE from subducted basalt to the

mantle wedge at temperatures below 900�C.

To employ the allanite solubility approach to better

understand basalt-derived fluxes of LREEþTh (e.g.

Plank et al., 2009), we need a thermodynamic model of
the allanite–epidote solid solution. In addition, we need

to constrain the bulk-rock and fO2 control on epidote–

zoisite solid solutions and their respective stability

fields. For example, the stability field of the zoisite end-

member in MORB does not extend much beyond

2�5 GPa, 800�C or 3 GPa, 700�C (e.g. Schmidt & Poli,
1998; Poli et al., 2009). Our experiments reveal that

Fe3þ-bearing epidote may well be stable at much higher

temperatures at 3 GPa. Hence Xall in epidote has the po-

tential to vary significantly. It is also known that parti-

tion coefficients of LREEþTh, and possibly U, vary as a

function of the epidote–zoisite solid solution (see, e.g.

Frei et al., 2003, 2004; Martin et al., 2011). In the absence
of any such data our experiments provide useful first

constraints, demonstrating that negligible basalt-

derived LREEþTh concentrations enter the arc basalt

source region. Unless slab-top temperatures are much

higher than existing models would suggest, LREEþTh

enrichment in arc magmas must therefore originate
from the sedimentary veneer.

Implications for arc basalt trace element
geochemistry
Our experiments have a number of implications for the

chemistry of the basalt-derived component added to
the mantle wedge source of arc basalts. Although the

tripartite model of the arc magma source reviewed by

Elliott (2003) (Fig. 9) advocates an aqueous fluid as the

key transporting agent of trace elements from the bas-

altic portion of the slab to the wedge, it is instructive to

evaluate the potential for basalt-derived melts to affect

the required chemical signal. It should be noted that al-
though at super-critical or near super-critical conditions

the distinction between fluid and melt disappears, there

is still a relationship between total solutes in the fluid

phase and temperature. At low temperatures, the com-

position and physical properties of the fluid phase will

resemble those of an aqueous fluid, whereas at high
temperatures they will resemble those of a hydrous

melt (e.g. Hermann & Rubatto, 2014, fig. 11). Thus, our

data are principally also relevant for supercritical fluids

that have the physical properties of a hydrous melt. Our

basalt-derived melts approximate the composition of

the total subduction component only in the case of sedi-

ment-starved arcs; sediment-derived melts will have

different trace element chemistries because of their dif-
ferent bulk compositions, leading to different residual

assemblages at high pressure, and initial trace element

inventories. For this reason we compare directly the

trace element composition of our experimental melts

with basaltic arc lavas whose subduction component is

thought to be dominated by material from the mafic
crust (e.g. Tonga, Izu–Bonin, some Mariana islands;

Elliott, 2003). Because our experimental starting mater-

ials were undoped, it is possible, for the first time, to

make direct inferences about the melt flux from sub-

ducted basalt as a function of temperature based on

analyses of trace elements in quenched experimental
glasses.

Trace element contribution
Primitive upper mantle-normalized trace element pat-

terns for melts derived from MORB and AOC exhibit

several striking features (Fig. 5). First, the overall con-

centrations of trace elements, relative to PUM, increase

with increasing temperature, although fractionation be-
tween adjacent elements decreases with increasing

temperature. Thus the most ‘spiky’ trace element pat-

terns are observed at the lowest temperatures. Second,

the only elements with concentrations significantly

higher (factor >3) than PUM at all temperatures, and

therefore able to significantly modify the trace element
chemistry of the mantle wedge, are the fluid-mobile

elements (e.g. Cs, Rb, K, Ba, Sr, and U). This is
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Fig. 9. (La/Sm)PUM versus Ba/Th for mafic arc lavas worldwide
[compilation of Elliott (2003) shown in the hatched field].
Superimposed are the chemical compositions of the experi-
mental glasses of this study, as well as the sub-solidus experi-
ments of Green & Adam (2003). Barium/Th ratios are highest in
our melts at 800–850�C from an AOC source, where epidote is
present (retaining Th) but phengite (retaining Ba) is absent.
Conversely, at low, sub-solidus temperatures, residual phen-
gite will retain Ba and reduce Ba/Th in the fluids. Thus elevated
Ba/Th is favoured by a narrow temperature interval between
phengite-out and epidote-out.
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consistent with their enrichment even in sediment-

starved arcs (e.g. Tonga, Izu–Bonin, some Mariana

islands). Zirconium, Hf and Li are also surprisingly en-

riched in our partial melts (see below). Titanium, Nb

and Ta enrichments exceed a factor of three only at the
highest temperatures studied (>900�C). REE are lower

than 3�PUM except at 1000�C.

Sediment-starved arcs typically have low concentra-

tions of many incompatible elements when compared

with sediment-rich arcs, and exhibit low La/Sm and

high Ba/Th, as well as Sr isotope ratios consistent with

contributions from an altered MORB source. Elliott
(2003) showed that the Ba/Th ratio of the basalt-derived

component is in excess of 1000 with a (La/Sm)PUM of

around unity (Fig. 5). This special characteristic of the

arc geochemical signature has been traditionally

ascribed to a ‘fluid’ phase from subducted mafic oce-

anic crust. However, similar characteristics are
observed in our melts at 800–850�C from an AOC

source in which residual epidote is present (retaining

Th) but phengite (retaining Ba) is absent. The same is

likely to be true for the 750�C AOC experiment, but

exact Ba/Th and (La/Sm)PUM could not be determined

because Th, La and Sm were below detection. At higher
temperatures the increased Th content, allowed by the

progressive breakdown of epidote, as well as increased

melt fractions, reduces Ba/Th significantly (Fig. 5). At

lower (sub-solidus) temperatures, the presence of re-

sidual phengite will retain Ba and reduce Ba/Th in the

fluid. This is readily apparent from the 650�C, 3 GPa

sub-solidus fluid analyses of Green & Adam (2003). At
700�C the Ba/Th of sub-solidus fluids approaches those

measured in our supra-solidus experiments, probably

because the solubility of phengite and other silicates is

enhanced in near-solidus fluids (e.g. Manning et al.,

2010). [Note in that context that Green & Adam (2003)

used a doped starting material. Whether the absolute
Ba/Th values given by Green & Adam (2003) truly ap-

proximate nature requires undoped experiments.]

Our results suggest that the Ba/Th and (La/Sm)PUM

characteristics of the ‘fluid’ component can be delivered

by a wet melt of basalt (Fig. 9). Further complexity in Ba

is introduced across the transition from sub- to super-

critical behavior, as noted above. However, by far the
greatest influence on Ba/Th ratios of melts is the pres-

ence or absence of phengite and epidote. Epidote stabil-

ity is complex, as discussed above. Phengite stability, in

turn, is primarily a function of bulk K2O and H2O, given

that there is a strong relationship between Xphengite (the

only host of K2O at sub-arc conditions), H2O and the de-
gree of melting (e.g. Schmidt et al., 2004; Skora &

Blundy, 2010). In our water-rich experiments, the Ba/Th

ratio of melts supplied by the slab basalt end-member

is controlled primarily by temperature, with the highest

ratios being generated in the narrow window

between exhaustion of phengite (at the solidus) and

exhaustion of epidote (melted out above the solidus, at
�900�C). This window lies between 750–800 and 850�C

(Fig. 9).

It is also worth noting that our sub-solidus, K-poor

MORB run product contains epidote but no phengite,

probably because the very low initial potassium content

is fully dissolved in the fluid phase (discussed above). If

this is generally the case, then Ba lacks a host in the
sub-solidus mineral assemblage of subducted MORB at

these conditions and may also be concentrated in the

fluid phase. In contrast, Th will be retained by residual

epidote and so fluids equilibrated with K-poor MORB at

sub-solidus conditions may also have high Ba/Th ratios.

It is therefore conceivable that fluids derived from lower

parts of the subducted basalt, and equilibrated with un-
altered MORB at sub-solidus conditions, as well as par-

tial melt from the uppermost AOC are jointly

responsible for the high Ba/Th ratios observed in sedi-

ment starved arcs. Our experiments show how effective

epidote can be at keeping Ba/Th high and La/Sm low.

The tendency of our melts to show elevated Zr/Nd
(range 10–1070), Hf/Sm (range 1–60), and Li/Y (range

3–80) ratios (Fig. 5) may at first seem paradoxical given

that arc basalts do not show positive anomalies for

these elements. Using the same compilation as Elliott

(2003) for the most mafic Izu–Bonin and Tonga lavas,

these ratios are closer to 7 6 1 (Zr/Hf), 0�6 6 0�1 (Hf/Sm)
and 0�4 6 0�1 (Li/Y). However, the trace element ratios of

the added slab component are mirrored in arc basalts

only when the elements of interest are not incorporated

significantly into mantle minerals (e.g. Ba/Th).

Zirconium, Hf and Li, however, are only modestly in-

compatible in mantle minerals (pyroxene, olivine).

Studies such as that of Stolper & Newman (1994) have
quantified the exchange of elements with the mantle

wedge and concluded that all but the most incompat-

ible elements are likely to equilibrate with it. Hence, we

suggest that Zr, Hf and Li can be significantly modified

by equilibration with the mantle wedge, to the extent

that they no longer provide a clear insight into slab
processes.

Finally, we note that melts derived from the basaltic

portion of the slab have elevated U/Th ratios. This will

lead to isotopic disequilibrium between the activities of
238U and 230Th that will be retained in the melt on time-

scales less than five half-lives of 230Th (i.e. 350 kyr). An

activity excess of 238U over 230Th is a characteristic of
many sediment-starved arcs (e.g. McDermott &

Hawkesworth, 1991). For example, in the Marianas the

maximum 238U activity excess over 230Th observed by

Elliott et al. (1997) and Avanzinelli et al. (2012) is �1�6
[also see Elliott (2003) for a compilation of high 238U ac-

tivity excess over 230Th]. Such a value is consistent with
basalt-derived melts generated at 800–850�C from AOC,

although we note that our source-normalized U/Th

ratios are poorly constrained owing to analytical

limitations.

CONCLUSIONS

Through a series of experiments conducted at sub-arc

P–T conditions (750–1000�C, 3 GPa) in the presence of
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excess water, we show that the temperature and com-

position of the down-going oceanic crust (pristine

MORB versus AOC) can have a profound effect on the

sub-arc phase assemblage and geochemistry, and

therefore the resulting slab contribution to arc magma
geochemistry. Notably, an order of magnitude elevated

potassium content in AOC over MORB shifts the water-

saturated basaltic solidus to lower temperature (�750�C

AOC, 825 6 25�C MORB). Just above the solidus, run

products texturally indicate the presence of two liquids:

an aqueous fluid with quench ‘fish eggs’, and a vesicu-

lar hydrous melt. With increasing temperature, the se-
cond vapour phase diminishes and disappears across

the solvus. Further experimentation at varying P, XH2O

is needed to constrain the solvi and second critical end-

points for AOC and MORB.

For slab-top temperature estimates from recent sub-

duction models (e.g. Syracuse et al., 2010), our study
confirms the likelihood that melt 6 fluid, particularly

from an altered (high-K2O) oceanic basalt protolith, can

transport important trace elements to the sources of arc

magmas. Slab-top temperature imparts an important

control on trace element concentrations in the melt and

the ratios of key element pairs. In particular, oceanic
crust can contribute melts with high ratios of Ba/Th and

U/Th under conditions at which residual phengite is ab-

sent but epidote is present. The results from our

undoped starting materials demonstrate the primacy of

residual epidote as opposed to the LREE-rich allanite of

previous, doped experimental studies.
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