On the Euler characteristic of spherical polyhedra and the Euler relation

Hadwiger, H. ; Mani, P.

In: Mathematika, 1972, vol. 19, no. 2, p. 139-143

Add to personal list
    Summary
    Let En+1, for some integer n ≥ 0, be the (n + 1)-dimensional Euclidean space, and denote by Sn the standard n-sphere in En+1, . It is convenient to introduce the (-1)-dimensional sphere , where denotes the empty set. By an i-dimensional subsphere T of Sn, i = 0 n, we understand the intersection of Sn with some (i+1)-dimensional subspace of En+1. The affine hull of T always contains, with this definition, the origin of En+1. is the unique (-1)-dimensional subsphere of Sn. By the spherical hull, sph X, of a set , we understand the intersection of all subspheres of Sn containing X. Further we set dim X: = dim sph X. The interior, the boundary and the complement of an arbitrary set , with respect to Sn, shall be denoted by int X, bd X and cpl X. Finally we define the relative interior rel int X to be the interior of with respect to the usual topology sphZ . For each (n-1)-dimensional subsphere of Sn defines two closed hemispheres of Sn, whose common boundary it is. The two hemispheres of the sphere Sº are denned to be the two one-pointed subsets of Sº. A subset is called a closed (spherical) polytope, if it is the intersection of finitely many closed hemispheres, and, if, in addition, it does not contain a subsphere of Sn. is called an i-dimensional, relatively open polytope, , or shortly an i-open polytope, if there exists a closed polytope such that dim P = i and Q = rel int P. is called a closed polyhedron, if it is a finite union of closed polytopes P1 ..., Pr. The empty set is the only (-1)-dimensional closed polyhedron of Sn. We denote by the set of all closed polyhedra of Sn. is called an i-open polyhedron, for some , if there are finitely many i-open polytopes Q1 ..., Qr in Sn such that , and dim . By we denote the set of all i-open polyhedra. Clearly for all , and each i-dimensional subsphere of Sn, , belongs to and to , For each i-dimensional subsphere T of Sn, set . A map is defined by , for all , and, for all