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We investigate the socially optimal intervention in the global carbon cycle. Limiting

factors are (i) increasing atmospheric carbon concentration due to fossil fuel-related

carbon emissions, and (ii) the inertia of the global carbon cycle itself. Accordingly,

we explicitly include the largest non-atmospheric carbon reservoir, the ocean, to

achieve a better representation of the global carbon cycle than the proportional-decay

assumption usually resorted to in economic models. We also investigate the option to

directly inject CO2 into the deep ocean (a form of carbon sequestration), deriving from

this a critical level for ocean sequestration costs. Above this level, ocean sequestration

is merely a temporary option; below it, ocean sequestration is the long-term op-

tion permitting extended use of fossil fuels. The latter alternative involves higher

atmospheric stabilization levels. In this connection it should be noted that the

efficiency of ocean sequestration depends on the time-preference and the inertia of

the carbon cycle.

JEL classifications: Q30, Q54.

1. Introduction
Today, society has recognized the far-reaching consequences of the increase in

atmospheric carbon concentration to above its preindustrial level because this con-

tributes to a large extent to global warming. Nevertheless, the carbon concentration

in the atmosphere is growing continuously and its growth rate increased even

further in the period 2000–2006 (Canadell et al., 2007). This growth depends not

only on global economic activity and the carbon intensity of the economy but also

on the effectiveness of the natural carbon sinks, namely the terrestrial biosphere and

the ocean. The uptake of the terrestrial biosphere is subject to strong fluctuations

that are not well understood yet. Looking at the change in the various carbon

reservoirs from 1800 to 1994, Sabine et al. (2004) show that the terrestrial
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biosphere has been a total net source of 39 (±28) Gt C.1 They conclude that ‘the

ocean has constituted the only true net sink for anthropogenic CO2 over the past

200 years’ (p.370). The absolute value of the long-run atmospheric carbon stabil-

ization level and the time pattern of its achievement will depend crucially on the

marine carbon cycle, which is therefore perceived to be the most import cycle with

regard to the climate (Najjar, 1992). Therefore, any approach to mitigate global

warming that ignores the ocean ignores optimization potential.

In this paper, we address the question how the inclusion of the largest carbon

reservoir of the carbon cycle, the ocean, changes the optimal path of carbon

emissions and whether its inclusion allows additional optimization potential.

Since natural forces transport carbon into the deep ocean, where it cannot affect

society as adversely as when in the atmosphere, the logical question is: at which cost

level would it be beneficial to accelerate the process of downward carbon transfer by

injecting carbon into the deep ocean? CO2 could be transported via pipelines or

ships to an ocean storage site, where it would be injected into the water column of

the ocean or at the seafloor. This way, it would also become part of the global

carbon cycle, but would enter the cycle in a more favorable way (Marchetti, 1977;

Ozaki et al., 2001; IPCC, 2005; Keeling, 2009).

The growing knowledge about the importance of the marine carbon cycle for the

mitigation of global warming has not just led to the inclusion of the oceanic carbon

sink in the pioneering integrated assessment model (see, e.g., modifications from

DICE 94 to DICE 99, Nordhaus, 1994; Nordhaus and Boyer, 2000, respectively).

It has also led to the development of highly sophisticated computer models

that include complex coupled atmosphere-ocean general circulation models to

represent the global carbon cycle and the climate system of the world (for an

overview of integrated assessment models, see, e.g., Kelly and Kolstad, 1999; Tol,

2006). However, many general properties of the stock externality problem were

derived in microeconomic optimal control models, like Plourde (1976) or Forster

(1980). In the application of these optimal control models to climate change

problems, the global carbon cycle is only roughly approximated. The majority of

the models apply a constant rate of decay, which yields a proportional decay of

carbon in the atmosphere. As a result, in these models, global warming presents

itself merely as a problem of temporary duration and the atmospheric carbon stock

is represented as a completely renewable resource (see, e.g., Tahvonen, 1997). The

other extremum is to model the atmospheric carbon stock without decay, whereby

it becomes a completely non-renewable resource (see, e.g., Section 4 in Hoel, 1978;

or Farzin, 1996). The atmospheric carbon stock is neither appropriately represented

by a completely renewable description nor by a completely non-renewable descrip-

tion. Whereas the completely renewable description clearly overestimates the

..........................................................................................................................................................................
1Based on the net increase of 165 Gt C in the atmosphere from 1800 to 1994, Sabine et al. (2004) subtract

their ocean inventory estimate of 118 (±19) Gt C from the total of fossil-fuel-emitted carbon, which

amounted to 244(±20) Gt C during this period. As a consequence, the terrestrial biosphere has to be

considered a net source of carbon if the carbon budget is to be balanced.
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storing capacity of the global carbon cycle, the completely non-renewable

description underestimates the storing capacity of the global carbon cycle. The

first description implies a complete oceanic carbon sink, the second description

neglects the oceanic carbon sink. Taking into account this oceanic carbon uptake,

the atmospheric carbon stock could be considered as a partial non-renewable

resource. This approach is followed by Farzin and Tahvonen (1996). Based on a

paper by Maier-Raimer and Hasselmann (1987), they divide the atmospheric carbon

stock within their dynamic system artificially into two different stocks, one with a

constant rate of decay and the other without. Given that the proportion of emissions

to the non-decaying stock is equal to the long-run equilibrium, Farzin and

Tahvonen’s model captures important aspects of the carbon cycle. Nevertheless,

the only management option in their dynamic model is to control the amount of

emissions released into the atmosphere, which is proportional to the amount of

extracted fossil fuels. Herzog et al. (2003) consider the injection of CO2 into the deep

ocean. They calculate the effectiveness of this activity, measured as the ratio between

the net benefit gained from temporary storage and the benefit gained from

permanent storage. They find ‘that the value of relatively deep ocean sequestration

is nearly equivalent to permanent sequestration if marginal damage (i.e., carbon

prices) remains constant or if there is a backstop technology that caps the abatement

cost in the not too distant future’ (p.306). However, their calculation of ocean

sequestration is not embedded within an optimal control framework, and

therefore is not the result of a combined extraction and sequestration decision.

We analyse the optimal amount of extraction and consumption of fossil fuels

whereby the related emissions can be released into the atmosphere and injected into

the deep ocean for purposes of ocean sequestration in a microeconomic partial

analysis framework. In Section 2 we explain how we include the oceanic carbon

stock in the optimization problem by applying a two-box model representation for

the global carbon cycle. Thereby, we replace the constant or nonconstant decay

assumption and capture the essential nonrenewable aspects of the global carbon

cycle without artificially dividing the atmospheric carbon stock. In Section 3 we

presents our results. In Section 3.1 we derive the general optimality conditions for

the solution, before we start in Section 3.2 by analysing the scenario, where the

fossil-fuel related emissions can only be released to the atmosphere. In Section 3.3

we analyse the scenario where fossil-fuel related carbon emission can also be

injected into the deep ocean and derive a critical level for ocean sequestration

costs. In Section 3.4 we analyse the policy relevant case, where the start-up costs

of ocean sequestration are below the critical level and the initial levels of atmos-

pheric carbon concentration are still below atmospheric stabilization targets.

Finally, Section 4 concludes.

2. Anthropogenic intervention into the global carbon cycle
We investigate the optimal anthropogenic intervention into the carbon cycle in the

light of global warming as a social planner’s problem in which the planer needs to
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determine the global optimal amount of fossil fuels extraction and consumption

with related emissions released to the atmosphere, q(t), and the global optimal

amount of fossil fuels extraction and consumption with related emissions

injected into the deep ocean for purpose of sequestration, a(t). Consequently,

the total amount of fossil fuels extraction and consumption is x(t) = q(t) + a(t).

The social welfare function can be formalized as follows:

max
qðtÞ;aðtÞ

ð1
0

ðUðqðtÞ þ aðtÞÞ � AðaðtÞÞ � DðSðtÞÞÞe��tdt; ð1Þ

with aðtÞ; qðtÞ � 0; ð2Þ

which has to be maximized subject to the constraints:

_S ¼ qðtÞ � �ðSðtÞ � !WðtÞÞ with Sðt0Þ ¼ S0; ð3Þ

_W ¼ aðtÞ þ �ðSðtÞ � !WðtÞÞ with Wðt0Þ ¼ W0; ð4Þ

_R ¼ �qðtÞ � aðtÞ with Rðt0Þ ¼ R0: ð5Þ

The total amount of fossil fuel extraction and consumption, q(t) + a(t), generates

gross utility in the social welfare function at any instant in time. The gross utility of

total fossil fuel consumption is described by U(x(t)), which has the properties

U0> 0, U00< 0, and U0(0) = b<1. The last property implies that there is a

choke price or a backstop price. We assume that the costs of fossil fuel

extraction are independent from the resource stock and are included in U(x(t)).

The proportional amount of carbon emissions related to total fossil fuels consump-

tion (the proportionality factor is one) can be released directly to the atmosphere,

q(t) (emissions), or injected into the deep ocean, a(t) (ocean sequestration). Ocean

sequestration generates additional costs in the social welfare function at any instant

in time. The costs of ocean sequestration are described by A(a(t)), which has the

properties A0> 0 and A00> 0 and is measured in the same units as utility. Ocean

sequestration summarizes the activities of capturing CO2 generated from the use of

fossil fuels, of transporting the captured CO2 via pipelines or ships to an ocean

storage site, and of injecting it into the deep ocean. The IPCC (2005) special report

on carbon dioxide capture and storage provides cost ranges for CO2 capture. The

ranges indicate that sequestration costs vary by differences in the design of CO2

capture systems and by differences in the operating and financing of the reference

plant to which the capture technology is applied (p.27). Additionally, their

estimates show that the costs are increasing as the transportation distance on

land and on sea increases (p.31, Figure TS.6, and p.39, Table TS.8). We assume

that carbon capture would be first applied to the most cost efficient plants and to

plants located nearest to the shore. However, in order to increase the amount of

ocean sequestration, the capture technology has to applied to less efficient plants

and to plants located far away from the shore. Consequently, by including ocean

sequestration into such a microeconomic partial analysis framework such as ours,

the most appropriate representation of the costs becomes a convex function.
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Both control variables, q(t) and a(t), increase the amount of carbon in the global

carbon cycle, whereas only the atmospheric carbon stock influences the objective

function. The increase in the atmospheric carbon stock to above pre-industrial

levels leads to global warming and thereby causes social costs for society at any

instant in time. The social costs of global warming are denoted as damage and are

described by the strictly convex function D(S(t)), with the properties D0> 0,

D00> 0, and D0(0) = 0.

Equations (3) and (4) constitute the two-box model representation of

atmosphere and ocean (see Fig. 1), whereby the boxes entail the carbon stocks in

the atmosphere and the ocean, respectively. Equation (5) incorporates the endow-

ment of the fossil resource, R(t). Equations (3) to (5) describe the dynamics of the

global carbon cycle as a consequence of the anthropogenic intervention. The upper

box aggregates the carbon stocks in the atmosphere and in the upper mixed layer of

the ocean. There is a net transfer of carbon between the atmosphere and the upper

mixed layer of the ocean if there is a difference in the partial pressure of carbon

dioxide (pCO2) between these two reservoirs. The equilibration time for the upper

layer of the ocean with the atmosphere takes around one year.2 However, only a

small fraction of the ocean is involved in direct exchange with the atmosphere and

the uptake bottleneck is the transport of anthropogenic carbon to the deeper parts

of the ocean. Consequently, we assume that the atmosphere and the upper mixed

Fig. 1 Two-box model.

..........................................................................................................................................................................
2Most of the CO2 dissolves in water, forming carbon acid first and then bicarbonate (HCO�3 ) and

carbonate ions (CO2�
3 ). The sum of these three elements describes the total amount of carbon in the

ocean, called dissolved inorganic carbon (DIC). The amount of DIC in the ocean consists to 89.1% of

bicarbonate ions, to 10.4% of carbonate ions and only to 0.5% of CO2 (Najjar, 1992). Regarding the last

figure, the atmosphere ‘sees’ only a tiny fraction of the carbon present in ocean surface water within the

chemical process of pCO2 equilibration between the atmosphere and the ocean.
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layer are always in equilibrium and that the stock of carbon in the atmosphere is a

constant fraction of the carbon stock in the upper box, S(t).

In order to model the transport of anthropogenic carbon to the deeper parts of

the ocean, we include the carbon stock in the deep ocean, W(t), in the lower box.

The transport of anthropogenic carbon to the deeper parts of the oceans is effected

by the biological pump and especially by the solubility pump. The term biological

pump designates the small fraction of organic matter and skeletons that survives

remineralization in the euphotic zone and sinks to deeper layers. The main con-

tribution to the transport of anthropogenic carbon is provided by the solubility

pump. The solubility pump is driven by two phenomena: thermohaline circulation

and the solubility of CO2. Surface water in equilibrium with atmospheric CO2 takes

up additional CO2 on its way to the earth’s poles, as the decreasing temperature

increases the solubility of CO2. The formation of deep seawater is driven by

thermohaline circulation, which transports cold and high-solubility high-latitude

surface waters into the deep ocean. Consequently, these two phenomena act

together to pump carbon from the atmosphere into the ocean’s deeper layers

until the deep ocean is saturated with respect to the upper layer. At this point in

time, the up-welling water in the mid-latitudes transports anthropogenic carbon

back to the upper layer.

The downward flux of carbon from the upper box to the lower box is represented

by the fraction gS(t) and the upwards flux of carbon from the lower box to the

upper box by the fraction goW(t). These two fluxes are represented in Fig. 1 by the

two white vertical arrows between the boxes. Both arrows have the same size,

indicating that the upward flux is balanced by the downward flux. Putting these

two fluxes together, we obtain the net transfer between the boxes, g(S(t)�oW(t)).

There will be a net flux between these two boxes if there is a difference between the

relative stock sizes. An increase in the stock size in the upper box causes a

downward transfer of excess carbon into the deep ocean, whereas up-welling

water is still free of excess carbon, so that we observe a net transfer from the

upper box into the lower box. The upper box is relatively small in comparison

to the lower box. Consequently, o is the proportionality factor to scale the stock of

carbon in the lower box with respect to the upper box and g is the turnover factor

to describe the speed of the adjustment process.3 The anthropogenic intervention

into the carbon cycle, the amount of emissions and the amount of ocean seques-

tration are depicted by the grey horizontal arrows in Fig. 1. The amount of

emissions enters the upper box and the amount of ocean sequestration enters the

lower box.4 Even though the carbon stock in upper box entails atmospheric and

oceanic carbon, we refer to it as the atmospheric carbon stock.

..........................................................................................................................................................................
3Currently, this turnover speed is mainly limiting the uptake process by the ocean, so that the total ocean

is estimated to be undersaturated for a long time (order of 103 years) (Körtzinger and Wallace, 2002).
4Note it would also be possible to apply the control variables x(t) and a(t) instead of q(t) and a(t). As

a result, only the net emissions, x(t)� a(t), would be released to the upper box and the control

constraints, (2), would change to x(t)� a(t)5 0 and a(t)5 0. Releasing the first constraint by
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3. Results
3.1 Optimal solution conditions

The corresponding current value Hamiltonian from (1) and (3) to (5) is

Hc ¼ Uðqþ aÞ � AðaÞ � DðSÞ �  _S� � _W þ � _R; ð6Þ

where lim
t!1

SðtÞ � 0; lim
t!1

WðtÞ � 0; lim
t!1

RðtÞ � 0: ð7Þ

Note that from now on we drop the time variable whenever it is convenient. We

have changed the signs of the costate variables,  and �, in order to facilitate their

economic interpretation as taxes. Together with the two Lagrange multipliers for

the control constraints (2), �1 and �2, we obtain the current value Lagrangian:

Lc ¼ Hc � �1ð�qÞ � �2ð�aÞ: ð8Þ

According to Proposition 6.2 and Propostion 7.5 in Feichtinger and Hartl (1986),

the admissible solution candidate has to fulfill the necessary conditions,

@Lc

@q
¼ 0) U 0 �  � �þ �1 ¼ 0; ð9Þ

@Lc

@a
¼ 0) U 0 � A0 � �� �þ �2 ¼ 0; ð10Þ

�
@Lc

@S
¼ � _ þ � ) �D0ðSÞ þ � � �� ¼ _ � � ; ð11Þ

�
@Lc

@W
¼ � _�þ ��) ��! þ �!� ¼ _�� ��; ð12Þ

�
@Lc

@R
¼ _�� ��) 0 ¼ _�� ��; ð13Þ

@Lc

@�1
� 0 �1 � 0 �1ð�qÞ ¼ 0; ð14Þ

@Lc

@�2
� 0 �2 � 0 �2ð�aÞ ¼ 0; ð15Þ

as well as the transversality conditions,

lim
t!1

e��t ¼ 0; lim
t!1

e��t� ¼ 0; lim
t!1

e��t�R ¼ 0; ð16Þ

and the constraint qualification for the control constraints (see Appendix 1). As any

admissible path for the state and costate variables is non-negative and as any

admissible path for the state variables is bounded due to the description of the

carbon cycle as a closed system, the fulfillment of the transversality conditions, (16),

is sufficient for the fulfillment of the general transversality conditions in a infinity

..........................................................................................................................................................................
allowing x(t)� a(t)4 0 would imply the option of air capture. This possibility is investigated in Lontzek

and Rickels (2008).
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horizon problem (Feichtinger and Hartl, 1986, Remark 2.9 and Remark 7.5). The

fulfillment of the necessary conditions, (9) to (16), provides the optimal solution,

because our carbon cycle is described by linear equations, (3) to (5), the control

constraints (2) are quasi-concave, and in Appendix 1 we show that the maximized

Hamiltonian is concave in the state variables and the Hamiltonian is strictly

concave in the control variables (Feichtinger and Hartl, 1986, Proposition 7.5).

The strict concavity of the Hamiltonian in the control variables implies that the

Hamiltonian is regular and that therefore the controls are continuous, in particular

at switching points (Feichtinger and Hartl, 1986, corollary 6.2). Note eqs (3) to (5)

constitute a closed system, which means that no carbon vanishes from the cycle,
_Sþ _W þ _R ¼ 0 and one state variable, e.g., W(t) = R0 + S0 + W0�R(t)� S(t), and

the corresponding costate variable can be dropped. Consequently, the modified

Hamiltonian dynamic system with a full rank is a 4x4 dynamic system. The

remaining two costate variables also measure then the influence of the omitted

state variable on the objective function. To facilitate interpretation, the analysis is

based on the system with all state variables (Full system), whereas some technical

arguments and the calculations in the Appendix are based on the system with only

two state variables (Redux system).

The optimal amounts of the control variables, q and a, are determined by the

costate variables, �,  , and �, where � measures the shadow resource scarcity rent,

� measures the shadow environmental scarcity rent of the atmospheric carbon

stock and �� measures the shadow environmental scarcity rent of the oceanic

carbon stock (Farzin, 1996). The two costate variables  and � can be interpreted

as the optimal tax values throughout time for an implementation of the social

optimal solution in a decentralized economy. The costate variable that corresponds

to the carbon stock in the upper box,  , denotes an emission tax, and the costate

variable that corresponds to the carbon stock in the lower box, �, denotes an ocean

sequestration tax. Conditions (11) and (12) indicate that both taxes are always

positive and that the emission tax is always larger than the ocean sequestration

tax, otherwise the transversality conditions (16) would be violated. This can be seen

by solving the equation of motion for the tax difference, l= ��, which coincides

with the emission tax in the Redux system, in which the state variable W and the

corresponding costate variable � have been dropped,5  R:

_l ¼ lð�þ � þ �!Þ � D0ðSÞ ) lðtÞ ¼  RðtÞ ¼

ð1
t

D0ðSÞe�ð�þ�þ�!Þð��tÞd�: ð17Þ

Consequently, if anthropogenic intervention takes place, the tax difference is

positive. For an unconstrained solution, �1 = �2 = 0, this can be seen directly by

..........................................................................................................................................................................
5The costate variables �R and  R also measure the shadow environmental scarcity rent of the oceanic

carbon stock. A lower R implies ceteris paribus a higher oceanic carbon stock and therefore �R>� (sum

of shadow resource scarcity rent and ocean sequestration tax). A lower S implies ceteris paribus also a

higher oceanic carbon stock but  R< because the negative effect of a higher oceanic carbon stock is

overcompensated by the positive effect of a lower atmospheric carbon stock (difference between

emission and ocean sequestration tax). This can also be seen from (9) and (10) by dropping � in (10).
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simplifying (10) to A = ��. Both taxes,  and � are increasing in the atmos-

pheric carbon stock as does the tax difference, indicating that the emission tax is

increasing stronger than the ocean sequestration tax.6 The economic interpretation

is that the amount of emissions directly increases the harmful carbon stock in the

upper box, while the amount of ocean sequestration only indirectly does via the

natural transfer. Nevertheless, as the ocean sequestration tax is positive, we see that

ocean sequestration does cause social costs due to its temporary storage character-

istics and therefore does not completely offset emissions into the atmosphere.

3.2 Scenario 1: optimal extraction without the option of ocean
sequestration

We start investigating the implications of the representation of the global carbon

cycle as a two-box model by considering a scenario where only one control variable

is available, q, the extraction and consumption of fossil fuels with related emissions

released to the atmosphere (Scenario 1). The anthropogenic intervention into the

global carbon cycle ends when no further carbon is added due to the fact that either

the marginal damage caused by carbon in the atmosphere has increased to such an

extent that the choke price has been hit by the emission tax (Situation A) or the

fossil resource stock is completely exploited (Situation B). In Situation A, the

solution approaches a steady state as t!1 and the steady state values for

the costate variables, which fulfill the transversality conditions (16), are7

 A1
1 ¼

D0ðS1Þ

� þ �þ �!
þ

�!D0ðS1Þ

�ð� þ �þ �!Þ
; �A1

1 ¼
�!D0ðS1Þ

�ð� þ �þ �!Þ
; �A1

1 ¼ 0: ð18Þ

Using the steady state values for the costate variables, we can derive from (9), in

which the Kuhn-Tucker multiplier, �1, is zero, the level of the steady state atmos-

pheric carbon stock:

SA1
1 ¼ D0�1 b

�ð� þ �þ �!Þ

�þ �!

� �
: ð19Þ

Equations (3) and (4) indicate that the two-box model is a non-renewable resource

model, because no carbon vanishes or decays. Therefore, the release of carbon will

increase the stock in both boxes forever and the two-box model approaches a new

equilibrium with an atmospheric carbon stabilization level above the preindustrial

one. The comparable atmospheric stabilization levels obtained with a renewable

description of the global carbon cycle (R), like in Tahvonen (1997), obtained with a

..........................................................................................................................................................................
6The increase in the emission tax follows directly from the interpretation of � being the shadow

environmental scarcity rent of the atmospheric carbon stock, measuring the change in the value

function due to a change in the corresponding state variable (see, e.g., Sydsæter et al., 2005). The

increase in the tax difference follows from (17). The increase in the ocean sequestration tax follows

from �ðtÞ ¼ �!
Ð1

t le��ð��tÞd�.
7In the Redux system where the state variable W and the corresponding state variable � have been

dropped, �R has a positive steady state value equal to the steady state value of �A1
1 in the Full system.
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non-renewable description of the global carbon cycle (NR), like in Hoel (1978), and

obtained with a partially non-renewable description of the global carbon cycle

(PNR), like in Farzin and Tahvonen (1996), are8

SR
1 ¼ S0; SNR

1 ¼ D0�1ðb�Þ; SPNR
1 ¼ D0�1 b

�ð�þ �Þ

a� �aþ �

� �
: ð20Þ

Intuitively, the renewable description implies that the atmospheric carbon stock

returns to its preindustrial level when the release of carbon emissions has ended due

to physical (R1= 0) or economical (R15 0) exhaustion of the fossil resource. The

atmospheric stabilization levels of the non-renewable and partially non-renewable

description are only compared if Situation A also applies, that is, if it is not optimal

to completely exploit the fossil resource. The non-renewable description provides

lower atmospheric carbon stabilization levels than the two-box model, because all

carbon emissions remain in the atmosphere. The partially non-renewable descrip-

tion provides the same atmospheric stabilization levels as the two-box model if a is

chosen to be �þ!
�þ�þ! and a is chosen to be g in SPNR

1 , whereby the parameter a

describes the fraction of emissions that adds to the decaying carbon stock and the

parameter a describes the fraction of the carbon stock that decays within the

decaying carbon stock. The renewable description implies a complete oceanic

carbon sink; the non-renewable description neglects the oceanic carbon sink. The

reality is somewhere in between: 15% (Körtzinger and Wallace, 2002) to 20%

(IPCC, 2005) of all anthropogenic CO2 will remain in the atmosphere within a

new carbon cycle equilibrium. Consequently, the most appropriate description

seems to be the partially non-renewable one. The comparison with the partially

non-renewable description in Farzin and Tahvonen’s model shows that the

two-box model has no advantage in itself in representing the global carbon cycle.

However, it becomes indispensable if further options to release carbon into the

carbon cycle are considered (see Section 3.3).

The new equilibrium of the two-box model implies that there is no net transfer

between the boxes and that S1=oW1 is fulfilled. Consequently, we can derive the

critical initial level of the fossil resource for the steady state in Situation A as being

feasible:

RA1
crit ¼

!þ 1

!

� �
D0�1 b

�ð� þ �þ �!Þ

�þ �!

� �
� S0 �W0: ð21Þ

If R0 < RA1
crit , extraction stops in finite time because U0(0) = b<1 (Farzin and

Tahvonen, 1996). The corresponding atmospheric and oceanic carbon stabilization

levels are then

SB1
1 ¼

!

1þ !
ðR0 þ S0 þW0Þ; WB1

1 ¼
1

1þ !
ðR0 þ S0 þW0Þ; ð22Þ

..........................................................................................................................................................................
8In Farzin and Tahvonen’s model, they divide the atmospheric carbon stock artificially into two different

stocks, one with a constant rate of decay and the other without. Their objective function includes

stock-dependent extraction costs as well, which we have set to zero in order to compare the steady states.
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which are lower than the carbon stabilization levels in Situation A. Note the

stabilization levels in Situation B are not approached at the point in time when

extraction stops, but as t!1. According to Meinshausen et al. (2009), the

emission of carbon from all proven fossil fuel resources would exceed the

atmospheric stabilization levels corresponding to a 28C temperature increase

above preindustrial levels, which has been accepted by most countries as

maximum tolerable limit for global warming. We focus therefore in our analysis

on Situation A, where the limiting factor for optimal extraction is not the

endowment of the fossil resource, but rather harmful levels of atmospheric

carbon concentration, and impose therefore

Assumption 1 R0 � RA1
crit :

We show in Appendix 2 that the steady state of the 4x4 Hamiltonian dynamic

system is a saddle point with four real eigenvalues, two being positive and two

being negative. If Assumption 1 is fulfilled, the steady state is feasible and the

optimal solution is the unique saddle path converging to the steady state as

t!1. Additionally, it can be seen from (13) and from the steady state levels of

the costate variable in Situation A (18) that �(t) = 0 for te[0,1). The fulfillment of

Assumption 1 implies that the fossil resource is not scarce for the optimal solution

in Situation A. The optimal path of extraction is therefore only determined by the

emission tax,  .

Proposition 1 In Scenario 1 (related emissions can only be released to the

atmosphere), if functional forms (9)–(11) are restricted to be quadratic-linear,

Assumption 1 holds, and U 0(0) = b<1, the global optimal path for the

emission tax,  , is either monotonically increasing or U-shaped.

Proof Because of the saddle path property with four real eigenvalues, two being

positive and two being negative (see Appendix 2), the optimal path of the emission

tax towards the steady state for quadratic-linear functional forms is determined by

the two negative real eigenvalues in exponential terms and can therefore only entail

one extremum. As a result, the set of possible paths is limited to a monotonically

increasing, a monotonically decreasing, a U-shaped, and an inversely U-shaped

path. The fulfillment of (9) in the steady state with q1= 0 requires  1= U0(0) =

b41. Therefore, the control constraint q(t)5 0 for te[0, 1) allows only tax

paths that increase into the steady state. h

Proposition 2 In Scenario 1 (related emissions can only be released to the

atmosphere), if functional forms (9)–(11) are restricted to be quadratic-linear,

Assumption 1 holds, and U 0(0) = b<1, the global optimal path for the ocean

sequestration tax, �, and the tax difference, l, is either monotonically increasing

or U-shaped.

Proof Again, the set of possible paths for the ocean sequestration tax and the tax

difference is limited to a monotonically increasing, a monotonically decreasing, a

U-shaped, and an inversely U-shaped path due to the saddle path property with real
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eigenvalues and the restriction to quadratic-linear functional forms. From (12),

_� ¼ ð�þ �!Þ�� �! it can be seen that it is not possible for � to approach its

steady state value from above. Such a path would imply that � is decreasing, while

the second term with  is increasing due to Proposition 1. As a consequence, �

would continue to decrease. As both,  and � have to be increasing into the steady

state so does l as it can be again seen from (12), _� ¼ ��� �!l. Paths for � and l
which are decreasing do not allow to approach a steady state which in turn would

violate the transversality condition (16). h

Note, restricting functional forms to be quadratic-linear allows global statements

for the tax paths in Proposition 1 and 2. Without the functional restriction, the

propositions would only be locally in the neighborhood of the steady state valid.

The two excluded paths from the set of possible paths, the monotonically

decreasing and the inversely U-shaped path, require an additional term that

increases during the movement to the steady state so that (9) allows a declining

amount of extraction even if the emission tax is decreasing. This requirement can

be fulfilled by modeling extraction costs as not stock-independent, as in our model,

but as stock-dependent, as in Farzin and Tahvonen (1996), qC(R) with C 0< 0.9 The

inclusion of stock-dependent extraction costs allows both physical exhaustibility

(R1= 0) and economical exhaustibility (U0(0) = C(R1) with R15 0) to be

considered. However, our formulation with stock-independent extraction costs

allows the implications of the description of the global carbon cycle to be clarified.

The renewable description of the global carbon cycle allows two tax paths, a

monotonically decreasing and an inversely U-shaped path (e.g., Tahvonen, 1997).

The non-renewable description of the global carbon cycle allows only one tax path,

a monotonically increasing path (e.g., Farzin, 1996). The partially non-renewable

description allows, compared to the non-renewable description, one additional

possible path, a U-shaped path. Note Farzin and Tahvonen (1996) observe as

well the two paths from the renewable description within their partially non-

renewable description, but not as consequence of the partially non-renewable

description but due to the inclusion of stock-dependent extraction costs. The

result is confirmed by the fact that the description with the two-box model

allows the two additional paths from the renewable description to be observed as

well if extraction costs are modeled to be stock-dependent (Lontzek and Rickels,

2008).

Additionally, Farzin and Tahvonen (1996) show that for the partially non-

renewable description and for a specific initial level of the atmospheric carbon

stock, the possibility of a stationary emission tax with a stationary atmospheric

carbon level to exist, given that there is no steady state, U0(0)!1. The stationary

atmospheric carbon level requires that the decaying atmospheric carbon stock in

the sum of the total atmospheric carbon stock declines at the rate at which the

..........................................................................................................................................................................
9An alternative formulation is C(X) with C0> 0, where X measures the cumulative amount of extracted

fossil fuels (Farzin, 1992).

334 ocean sequestration



non-decaying atmospheric carbon stock increases. The decreasing decaying

atmospheric carbon stock implies lower decay, so that extraction is decreasing at

a constant rate. Such a stationary atmospheric carbon stock where the amount of

emission is constantly decreasing is also possible with the two-box model. It

requires that the amount of carbon emissions decreases at the same rate as the

net transfer between the two boxes decreases due to the carbon accumulation in the

deep ocean. The amount of emission would decline according to

qðtÞ ¼ �!
�S

!
�W0

� �
e��!t ð23Þ

and the oceanic carbon stock would increase according to

WðtÞ ¼
�S

!
þ W0 �

�S

!

� �
e��!t; ð24Þ

where �S denotes the stationary atmospheric carbon level. Additionally, by changing

our model formulation so that U0(0)!1 is valid and stock-dependent extraction

costs are included, we could confirm that a constant emission tax occurs even with

fossil fuel endowment as a specific feature of the description of the carbon cycle by

a two-box model as it could be confirmed by Farzin and Tahvonen (1996) as a

specific feature of the description of the carbon cycle by a partially non-renewable

atmospheric carbon stock. However, the constant path requires, first, particular

functional forms for U(q) and C(R) so that a constant percentage of the resource

stock is extracted, which implies that extraction declines at this constant percentage

rate (p.523), and, second, that the constant percentage coincides with the

parameters of the carbon cycle description.10 Consequently, the partially non-

renewable description of the atmospheric carbon stock or the two-box model

description of the carbon cycle is the precondition for such a path to occur, but

the occurrence of such path is the consequence of a specific extraction path rather

than the consequence of the carbon cycle description. In our analysis, we focus

on the situation where the global carbon cycle approaches a steady state with

non-constant taxes (Situation A).

3.3 Scenario 2: optimal extraction with the option of ocean sequestration

We turn to the scenario where both control variables, q and a, are available, the

extraction and consumption of fossil fuels with related emissions released to the

atmosphere and the extraction and consumption of fossil fuels with related

emissions injected into the deep ocean (Scenario 2). As in the previous section,

the anthropogenic intervention into the global carbon cycle ends when no further

carbon is added due to the fact that either the marginal damage caused by carbon in

..........................................................................................................................................................................
10In Farzin and Tahvonen (1996) the constant percentage is given by aa, the decay parameter and the

fraction being added to the non-decaying stock, whereas in our model the constant percentage is given

by the turnover speed between the boxes, g, and the proportionality parameter, o.
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the atmosphere has increased to such an extent that the choke price has been hit or

even exceeded by the emission tax (Situation A) or the fossil resource stock is

completely exploited (Situation B). Again, in Situation A the solution approaches

a steady state as t!1 and the steady state values for the costate variables are given

by (18) from Section 3.2. However, unlike in the previous section, not just (9) has

to be fulfilled, but also (10) as well, which can be simplified to

A0 þ �1 � �2 ¼  � �: ð25Þ

Condition (25) shows that the amount of ocean sequestration is determined by the

difference between the two taxes, because by injecting carbon emissions into the

ocean, one saves the emission tax, but instead has to pay the ocean sequestration

tax. We already pointed out in the previous section that Situation A requires an

increasing emission tax for (9), U0(0) = 1, to be fulfilled in the steady state.

However, the amount of ocean sequestration is increasing in  due to the

convexity of the ocean sequestration cost function, and therefore we cannot

further assume that the solution is unconstrained. Using the steady state levels of

the taxes (18), we can derive two conditions (a and b) for the steady state

atmospheric carbon stock to fulfill (9) and (10):

SA2a
1 ¼ D0�1 ðbþ �1Þ

�ð� þ �þ �!Þ

�þ �!

� �
;

SA2b
1 ¼ D0�1 ðb� A0ð0Þ þ �2Þ

�ð� þ �þ �!Þ

�!

� �
:

ð26Þ

By equating SA2a
1 and SA2b

1 , we obtain

A0ð0Þ ¼ b
�

�þ �!
�

�!

�þ �!
�1 þ �2; ð27Þ

by which we distinguish three cases for the steady state:11

Case 1: A0ð0Þ> b
�

�þ �!
) �1 ¼ 0 �2 > 0; ð28Þ

Case 2: A0ð0Þ ¼ b
�

�þ �!
) �1 ¼ 0 �2 ¼ 0; ð29Þ

Case 3: A0ð0Þ< b
�

�þ �!
) �1 > 0 �2 ¼ 0: ð30Þ

The value of A0(0) is somehow the counterpart of the choke price b. Whereas b

denotes the maximum value for marginal utility, A0(0) is the minimum level of the

marginal sequestration costs. Therefore, A0(0) can be interpreted as the start-up

..........................................................................................................................................................................
11We only consider carbon cycle equilibriums that are approached via anthropogenic intervention into

the global carbon cycle and do not consider a potential Case 4 with both Kuhn-Tucker multipliers being

positive, because in such a case the carbon cycle equilibrium is determined only by the initial levels, S0

and W0.
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cost for ocean sequestration. Due to the importance of A0(0) within Case 1 to 3, we

define

Acrit ¼ b
�

�þ �!
: ð31Þ

Proposition 3 In Scenario 2 (related emissions can be released to the atmosphere

and injected into the deep ocean), if A0(0)<Acrit holds, the atmospheric stabiliza-

tion level increases compared to Scenario 1.

Proof If A0(0)5Acrit, �1 is zero, (28) and (29), and we obtain

SA2a
1 ¼ SA2b

1 ¼ SA1
1 ¼ D0�1 b

�ð� þ �þ �!Þ

�þ �!

� �
with �2 ¼ A0ð0Þ � Acrit : ð32Þ

If A0(0)<Acrit, �1 ¼
b��A0ð0Þð�þ�!Þ

�! > 0, �2 is zero, and the function arguments in

SA2a
1 and SA2b

1 increase uniformly and consequently the atmospheric stabilization

level increases, so that SA2a
1 ¼ SA2b

1 > SA1
1 . h

If the atmospheric carbon stabilization level increases compared to Scenario 1, so

does the oceanic carbon stabilization level in order to satisfy the carbon cycle

equilibrium condition S1=oW1. Consequently, we can again derive the critical

initial level of the fossil resource for the steady state in Situation A as being feasible:

RA2
critðA

0ð0ÞÞ ¼
!þ 1

!

� �
D0�1 ðb� A0ð0ÞÞ

�ð� þ �þ �!Þ

�!

� �
� S0 �W0; ð33Þ

whereas R2
critðA

0ð0ÞÞ>R1
crit requires A0(0)<Acrit to be fulfilled. If R0 <RA2

critðA
0ð0ÞÞ,

extraction stops again in finite time, as in Section 3.2, because U0(0) = b<1

(Situation B). The corresponding atmospheric and oceanic carbon stabilization

levels are only determined by the initial level of the fossil resource, R0 (see (22)).

It is possible to observe RA2
critðA

0ð0ÞÞ>R0 > RA1
crit if A0(0)<Acrit, so that the oppor-

tunity to inject carbon emissions related to fossil fuel consumption directly into the

ocean would lead to the complete exploitation of the fossil resource (Situation B),

whereas without this opportunity the fossil resource would not be completely

exploited (Situation A). In Scenario 2, we also concentrate on Situation A and

therefore extend Assumption 1,

Assumption 2 R0 � RA2
critðA

0ð0ÞÞ:

Again, if Assumption 2 is fulfilled, it can be seen from (13) and from the steady

state level of the costate variable in Situation A (18) that �(t) = 0 for te[0,1). The

fulfillment of Assumption 2 implies that the fossil resource is not scarce for the

optimal solution in Situation A. The optimal path of extraction is therefore

determined only by the emission tax,  , and the ocean sequestration tax, �. The

steady states in Case 1, (28), and Case 3, (30), have positive Kuhn-Tucker multi-

pliers. Taking into account the continuity of the control variables, a point in time

has to emerge, ts, with ts<1, after which the dynamic system is either described by
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q(t)5 0 and a(t) = 0 for te[ts,1) (Case 1) or by q(t) = 0 and a(t)5 0 for te[ts,1)

(Case 3) on the path towards the steady state. Note after ts the dynamic system

leading toward the steady state coincides with a dynamic system which allows only

extraction with related emissions released into the atmosphere (Case 1) or with

a dynamic system which allows only extraction with related emissions injected into

the deep ocean (Case 3). To formalize this idea, we define three control regimes:12

Regime 1: No sequestration: a = 0 and q5 0 (�1 = 0 and �2> 0),

Regime 2: Sequestration: a5 0 and q5 0 (�1 = 0 and �2 = 0),

Regime 3: Only sequestration: a5 0 and q = 0 (�1> 0 and �2 = 0).

Proposition 4 In Scenario 2 (related emissions can be released to the atmosphere

and injected into the deep ocean), if Assumption 2 holds, and U0(0) = b<1, the

movement into the steady state is not an interior solution, but is, after some point

in time, ts, described either by Regime 1 (A0(0)5Acrit, R0 > RA2
critðA

0ð0ÞÞ ¼ RA1
crit), or

by Regime 3 (A0(0)<Acrit, R0 > RA2
critðA

0ð0ÞÞ > RA1
crit).

Proof Movement into the steady cannot be determined by Regime 2 because

q(t)! 0 requires an increasing emission tax, whereas a(t)! 0 requires a

decreasing emission tax so that the tax difference is also decreasing. Consequently,

movement into the steady state implies at least one control constraint to be active

(either �1 or �2). h

We already referred in Section 3.2 to Appendix 2, where we show that Regime 1

(which is equal to Scenario 1), obeys saddle path properties with real eigenvalues.

In Appendix 2 we also show that Regime 3 obeys saddle path properties. For the

eigenvalues to be real in Regime 3, the condition

1

4
ð�ð1þ !Þð�þ � þ �!Þ � D00ða0�R

Þ þ a0�R
Þ

2 > � �!ð� þ �þ �!ÞD00a0�R
ð34Þ

has to be fulfilled in the steady state, where the subscript R indicates the costate

variables of the Redux system.

Proposition 5 In Scenario 2 (related emissions can be released to the atmosphere

and injected into the deep ocean), if functional forms (9)–(11) are restricted to be

quadratic-linear, Assumption 2 holds, and U 0(0) = b<1, the global optimal path

for the emission and ocean sequestration tax after ts (final regime) is either mono-

tonically increasing or U-shaped (A0(0)5Acrit) or monotonically increasing

(A0(0)<Acrit).

Proof After point ts, the optimal path is either determined by Regime 1 or Regime

3. We showed already in Propositions 1 and 2 that the optimal path is either

monotonically increasing or U-shaped for Regime 1. For Regime 3, we see from

(10), U0(a)�A0(a) =�, that only ocean sequestration tax paths that increase into

..........................................................................................................................................................................
12We only consider control regimes with anthropogenic intervention into the global carbon cycle and do

not consider a potential Regime 4 with q = a = 0 (�1> 0 and �2> 0).
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the steady state fulfill the condition due to the concavity of the utility function and

the convexity of the ocean sequestration cost function. We can therefore exclude

paths that decrease into the steady state such as an inversely U-shaped path.

Additionally, at ts, U0(a(ts)) = (ts), U0(a(ts))�A0(a(ts))) =�(ts), and q(ts) = 0

have to be fulfilled. We know from (12) that a U-shaped ocean sequestration tax

requires a U-shaped emission tax for the transversality conditions to be fulfilled,

(16). The decreasing emission tax  (t) on the U-shaped path contradicts q(t) = 0

for te[ts, t*], where t* is defined by _ ðt�Þ ¼ 0 and € ðt�Þ> 0, because a(t) would be

decreasing for te[ts, t*] due to the decreasing tax difference (see Proposition 2) and

therefore the LHS in U0(a(t)) = (t) would be increasing whereas the RHS would be

deceasing. Consequently, if A0(0)<Acrit only monotonically increasing tax paths

are possible for te[ts, 1]. h

Proposition 5 is only valid for te[ts, 1). Before the point ts is reached, various

successions of regimes are possible, so that the possible set of optimal emission and

ocean sequestration tax paths becomes more complex. Additionally, the dynamics

in the regimes before the final regime are no longer determined by just the negative

eigenvectors, but by the full set of eigenvectors. The reason for this is that the

negative eigenvectors describe the optimal path towards the steady state corres-

ponding to the regime (saddle path). However, in regimes prior to the final regime,

the corresponding steady state is not feasible, and as a result the path towards such

a non-feasible steady state cannot describe the optimal path towards the regime

switching point.

3.4 Utilizing ocean sequestration within a global carbon management
strategy

Consider the situation where the initial values for atmospheric and oceanic carbon

stocks, S0 and W0, are low, the initial value for the fossil resource, R0, fulfills

Assumption 1, and the start-up costs for ocean sequestration are at least equal to

the critical level, A0(0)5Acrit. In this situation, the optimal solution is completely

described by Regime 1 for te[0, 1). The tax difference between the emission and

ocean sequestration tax is never sufficient to bear the additional costs of ocean

sequestration. The tax difference, which determines the amount of ocean seques-

tration, A0(a) = ��, does not reach the critical level, Acrit, before the steady state,

so that with A0(0)5Acrit ocean sequestration is not beneficial. Obviously, if the

initial levels for the carbon stocks are low, there is no difference between ocean

sequestration that is too costly (A0(0)5Acrit in Scenario 2) and ocean sequestration

that is not available or prohibited (Scenario 1). We refer to this situation as

Policy 1.

Consider the situation where the initial values for atmospheric and oceanic

carbon stocks, S0 and W0, are low, the initial value for the fossil resource stock,

R0, fulfills Assumption 2, and the start-up costs for ocean sequestration are below

the critical level, A0(0)<Acrit. In this situation, the optimal solution might be

described by a succession of various regimes, but each succession involves
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Regime 3 for te[ts, 1). Even though a succession of various regimes is possible

before ts, the non-renewable description of the carbon cycle by the two-box model

and the low initial levels imply tax paths that are increasing in direction towards ts.

Consequently, the tax difference will be at some point in time, t< ts, above the

start-up costs for ocean sequestration. Then it becomes beneficial to pay the ocean

sequestration costs for some fraction of the emissions but to save the emission tax

(Regime 1 to Regime 2). With the tax difference increasing into the steady state, the

overall amount of fossil fuel consumption decreases, but the fraction of ocean

sequestration for the related emissions increases. Consequently, at ts the complete

amount of emissions related to fossil fuel consumption is injected into the deep

ocean (Regime 2 to Regime 3). We see that from ts onwards, ocean sequestration is

declining until b��1= A0(0) is fulfilled and that the emission tax increases above

the choke price, b = ss� �1 with �1> 0. The increasing tax paths prevent backward

regime switches, e.g., from Regime 2 to Regime 1. Consequently, if ocean seques-

tration is not too costly, more than one regime can occur in the optimal solution.

We refer to this situation as Policy 2.

In Fig. 2 we show the dynamics of the atmospheric and oceanic carbon stock, the

emission and ocean sequestration tax and the controls for Policy 1 and Policy 2 for

low initial levels by using simple quadratic-linear functional forms.13 Policy 2

shows the succession from Regime 2 to Regime 3. We see in the upper left graph

that the atmospheric carbon stock increases slower in the beginning with Policy

2 than with Policy 1. With Policy 2 carbon emissions are not only released into the

atmosphere but are also injected into the deep ocean, consequently, the oceanic

carbon stock increases faster with Policy 2 than with Policy 1, where it only

increases due to the natural carbon transfer (upper right graph). Due to a slower

increase in atmospheric carbon concentration, fossil fuel consumption declines

slower with Policy 2 than with Policy 1 (lower right graph). The fraction of

ocean sequestration for the related carbon emissions increases until it reaches

100% and only fossil fuels which allow related carbon emissions to be captures

and injected into the deep ocean are consumed. This occurs, before upper and

lower box have equilibrated, which can seen by a slight temporary decrease in the

atmospheric carbon stock. However, in the long run, the atmospheric carbon con-

centration increases more with Policy 2 due to the extended use of the fossil

resource and by a positive net transfer from the ocean to the atmosphere. Both

taxes are increasing with Policy 2 in the long run above the levels which are

obtained with Policy 1.

Even though we observe in Fig. 2 with Policy 2 a switch from Regime 2 to

Regime 3, the dynamics are not characterized by a significant increase in

..........................................................................................................................................................................
13The utility function is U(q) = bq� u2q2, the ocean sequestration cost function is A(a) = a1a + a2a2, and

the damage function is D(S) = v1(sS�Apreind)2. As a result of the linear-quadratic functional forms, the

start-up costs, A0(0), simplify to the parameter value a1. The parameter values are b = 5/10, g= 1/10,

o= 1/10, �= 3/100, a1 = 1/4 a2 = 1/10, u2 = 1/20, v1 = 0.1, s = 3/10, and Apreind = 6/10, S0 = 2, W0 = 20.

These parameter values yield acrit = 3/8 and RA2
crit ða1Þ ¼ 64:1667.
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volatility. One reason for this is that the long-run dynamics are mainly influenced

by the natural transfer parameters, g and o, which are rather low in order to

represent the inertia of the carbon cycle. Consequently, the eigenvalues have a

different magnitude and the Hamiltonian dynamic system is rather stiff. To dem-

onstrate this effect, in Fig. 3 we again show Policy 1 and Policy 2 with a switch from

Regime 2 to Regime 3, but this time with stock-dependent extraction costs

included.14 However, instead of the emission tax and the ocean sequestration tax

we show in Fig. 3 the difference between the two taxes. Due to the presence of

stock-dependent extraction costs, the use of fossil fuels cannot be extended through

ocean sequestration as it can in the case without stock-dependent extraction costs.

Consequently, the atmospheric and oceanic stabilization levels are not affected by

the magnitude as in Fig. 2. Total fossil fuel consumption in Scenario 2 is rather

similar to fossil fuel consumption in Scenario 1 and at some point in time even

slightly lower (lower right graph). Note that even with rather similar paths for total

fossil fuel consumption, the atmospheric peak concentration is significantly lower

due to the presence of ocean sequestration (upper left graph). Additionally, we see

that both the atmospheric carbon stock and tax difference show a inverted S-shape

with Policy 2 and confirm that the inclusion of ocean sequestration extends the set

of possible tax paths so far discussed in the literature. The influence of ocean

sequestration on atmospheric peak concentration and also the possibility of an

interior solution due to inversely U-shaped tax paths are investigated in Lontzek

and Rickels (2008).

The situation where the initial values for the atmospheric carbon, S0, stock is

high, whereas the initial level of the oceanic carbon stock, W0, is low and the initial

value for the fossil resource stock, R0, fulfills Assumption 2 remains to be briefly

considered. In this situation, the optimal solution might be described by a

succession of various regimes, even with A0ð0ÞPAcrit . In contrast to the

non-renewable atmospheric carbon stock models (e.g. Hoel, 1978; Farzin, 1996),

the non-renewable two-box model allows periods of time where the atmospheric

carbon stock is decreasing. A decreasing atmospheric carbon stock implies that the

natural downward transfer into the deep ocean exceeds the amount of emissions

released into the atmosphere. If the harmful carbon stock in the atmosphere is

initially high, the emission tax starts at a high initial level so that only small

amounts of emissions are released into the atmosphere and the atmospheric

carbon stock can equilibrate with the oceanic carbon stock due to the natural

transfer while the emission tax is declining. However, whereas high emission

tax levels imply low extraction with related emissions released to the atmosphere,

they favor the utilization of ocean sequestration for the related emissions.

..........................................................................................................................................................................
14The stock-dependent extraction cost function is c1� c2 * R(t), with the parameter values c1=5/10,

c2 = 1/200, and R0 = 100. Note the parameter value for a1 has to be smaller than 1/8 in order to still

observe a final Regime 3, because, with the stock-dependent extraction costs, the critical level for the

start-up costs changes to Acrit ¼ ðb� CðR1ÞÞ
�

�þ�!.
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Consequently, given that the tax difference starts decreasing at a initial level that is

higher than its steady state level, l(t)> l1 for te[0, ta), ocean sequestration is

utilized if l(t)5A0(0)5Acrit = l1 for te[0, ta) with ta defined by l(ta) = l1.

If the start-up costs are above the critical level, ocean sequestration can only be

utilized until ta, thereafter the dynamics are again complete described by Regime 1.

Consequently, if the initial levels for the atmospheric carbon stock are high,

there is a difference between ocean sequestration that is too costly (A0(0)>Acrit

in Scenario 2) and ocean sequestration that is not available or prohibited

(Scenario 1). Even though ocean sequestration is not an option for the long-run

management of the global carbon cycle because it is too costly, it might be

beneficial to utilize ocean sequestration for some period of time for the consump-

tion of fossil fuels if the atmospheric carbon stock is rather high, but the oceanic

carbon stock is still rather low.

If the start-up costs are below the critical level, ocean sequestration will be

utilized beyond ta, but not necessarily as the only control option. If the emission

tax decreases sufficiently along the U-shaped path, it might be beneficial to switch

back to Regime 2 and release some of the emissions again to the atmosphere, or

even switch further back to Regime 1 and release all of the emissions again into the

atmosphere. However, as the atmospheric carbon stock will start increasing again at

some point in time so will the emission tax and therefore the dynamic system will

return to Regime 3 at ts if A0(0)<Acrit.

Irrespective of the tax paths that are realized, the effectiveness of ocean seques-

tration in this two-box model depends crucially on generating utility by using fossil

fuels while delaying the damage resulting from increased levels of carbon in the

atmosphere. As result, the effectiveness of sequestration depends on the time pref-

erences and the adjustment times of the two boxes. The critical level, Acrit, is

determined by the discount factor and the adjustment parameters of the two-box

model. When the discount factor decreases, the critical level also decreases. As a

result, the effectiveness of sequestration decreases because, with a lower discount

factor, delaying damage pays off less. When g and o decrease, the critical level

increases. As a result, the effectiveness of sequestration increases because, with

lower adjustment factors, the adjustment time of the two boxes decreases.

A smaller value of g implies a slower mixing of the two boxes. A smaller value

of o implies a greater lower box, which in turn implies that the lower box can

contain greater amounts of carbon. In the context of our two-box model, variations

in the amount of carbon active in the lower box can be used to approximate various

injection depths for ocean sequestration. A deeper injection depth goes along with a

greater lower box and a slower adjustment process. Therefore, the effectiveness of

ocean sequestration depends on the injection depth.

4. Conclusions
In this paper, we investigated optimal intervention into the global carbon

cycle. To capture the complete accumulation of carbon in the global carbon
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cycle, we included, besides the atmospheric carbon stock, the oceanic carbon

stock in a two-box model representation. Using a two-box model to describe

the global carbon cycle does not in itself provide optimal atmospheric stabil-

ization levels that are different from models with a partially non-renewable

description of the atmospheric carbon stock. However, factoring in ocean

sequestration may do so. Thus it is important to account for the amount of

carbon that ‘decays’ by including the oceanic sink in the lower box. By

doing so, we could show that ocean sequestration does not serve as

a complete offset for a carbon emission tax, but has a price itself, an ocean

sequestration tax. Furthermore, we clarified the implications of the non-

renewable description of the carbon cycle and therefore also for the partial

non-renewable description of the atmospheric carbon stock for the optimal tax

paths.

By deriving the critical level for the start-up costs of ocean sequestration we

could determine the role of ocean sequestration in a global carbon management

strategy. For ocean sequestration start-up costs above this level, ocean sequestration

is merely a temporary option given initial atmospheric carbon concentration is

high; below this level, ocean sequestration is the long-term option permitting

extended use of fossil fuels. The latter alternative accompanies higher atmospheric

and oceanic stabilization levels.

Given a climate policy that formulates an atmospheric carbon stabilization goal,

ocean sequestration cannot increase the total amount of fossil fuels that can be

consumed. Carbon injected into the deep ocean in excess of the atmosphere-ocean

equilibrium amount corresponding to the atmospheric stabilization goal is

expected to leak back to the atmosphere, because the ocean becomes supersaturated

in relation to the atmosphere. However, the option of ocean sequestration does

extend the period of time in that fossil fuels can be extracted in reasonable

amounts, whereas without ocean sequestration the amounts of extraction would

have to decline much earlier due to the inertia of the carbon cycle. Consequently,

ocean sequestration constitutes a serious option with which to buy time to deal

with the atmospheric carbon accumulation problem. The effectiveness of this

option depends on the injection depth of the sequestered carbon and the time

preference of society.
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Appendix 1: Necessary and sufficient optimality conditions
For the two constraints, g1(q, a) =�q4 0 and g2(q, a) =�a4 0, the constraint

qualification is fulfilled, if the matrix

@g1

@q

@g1

@a
g1 0

@g2

@q

@g2

@a
0 g2

0
BBB@

1
CCCA ðA1Þ

has the full row rank (Feichtinger and Hartl, 1986, p.161), which can be seen to be

fulfilled from

�1 0 �q 0
0 �1 0 �a

� �
ðA2Þ

The concavity of the maximized Hamiltonian follows from the negative semi-

definiteness of the Hessian matrix of the Hamiltonian (Feichtinger and Hartl, 1986,

Remark 2.4). For the calculation of the Hessian matrix we eliminate the state

variable W(t) so that the carbon cycle eqs (3) to (5) simplify to

_S ¼ q� �ðS� !ðS0 þ R0 þW0 � S� RÞÞ ðA3Þ

_R ¼ �q� a: ðA4Þ

Consequently, the Current Value Hamiltonian is Hc ¼ Uðqþ aÞ � AðaÞ � DðSÞ�

�R
_R�  R

_S, where the subscript R indicates the costate variables of the Redux
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system, and we can calculate the Hessian matrix:

HSS HSR HSq HSa

HRS HRR HRq HRa

HqS HqR Hqq Hqa

HaS HaR Haq Haa

0
BBB@

1
CCCA ¼

�D00 0 0 0

0 0 0 0

0 0 U 00 U 00

0 0 U 00 U 00 � A00

0
BBB@

1
CCCA; ðA5Þ

which has the eigenvalues

	1;2;34 ¼

�D00;
1

2
ð2U 00 � A00 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðU 00Þ2 þ ðA00Þ2

q
Þ;

1

2
ð�U 00 � A00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðU 00Þ2 þ ðA00Þ2

q
Þ; 0

0
BB@

1
CCA: ðA6Þ

The Hessian matrix being negative semi-definite requires 	1,2,3,44 0. Taking into

account our function properties, A00> 0, U00< 0, and D00> 0, the negativeness of

the third eigenvalue can be see from:

A00 � 2U 00 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA00Þ2 þ 4ðU 00Þ2

q
; and � 4A00U 00 > 0; ðA7Þ

whereas the first and second eigenvalue are obviously negative and the fourth

eigenvalue is zero.

The regularity of the Hamiltonian follows from the strict concavity of the

Hamiltonian in the control variables. The strict concavity can be seen from the

lower right bloc matrix in the Hesse matrix (A5), because the first leading principal

minor is negative (U00< 0) and the determinant of the lower right bloc matrix is

positive, �A00U00> 0.

Appendix 2: Saddle path properties for Regime 1 and
Regime 3
Following Dockner (1985, Theorem 3) the fulfillment of first K< 0 and second

0<Det(MHDS)< (K/2)2 is necessary and sufficient for the eigenvalues to be real,

two being negative and two being positive. MHDS abbreviates modified

Hamiltonian dynamic system and K is defined as

K ¼ Det

@ _x

@x

@ _x

@lx

@_lx

@x

@_lx

@lx

0
BBB@

1
CCCAþ Det

@ _y

@y

@ _y

@ly

@_ly

@y

@_ly

@ly

0
BBB@

1
CCCAþ 2Det

@ _x

@y

@ _x

@ly

@_lx

@y

@_lx

@ly

0
BBB@

1
CCCA; ðA8Þ

where x, y, lx, and ly denote state variables and the corresponding costate variables,

respectively.

Regime 1 The MHDS for Scenario 1 as well as for Regime 1 is, again based on the

system with full rank and eliminated state variable W(t), where the subscript R
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indicates the costate variables of the Redux system:

_R ¼ �qð�R;  RÞ;

_S ¼ þqð�R;  RÞ � �ðS� !ðS0 þ R0 þW0 � S� RÞ;

_�R ¼ ��R � �! R;

_ R ¼ ð�þ � þ �!Þ R � D0;

ðA9Þ

and the corresponding Jacobian is

JR1 ¼

0 0 �q0�R
�q0 R

��! �� � �! q0�R
q0 R

0 0 � ��!
0 �D00 0 �þ � þ �!

0
BB@

1
CCA: ðA10Þ

We see that the determinate of detðJR1Þ ¼ ��
2!2D00q0�R

� ��!D00q R
and KR1 ¼

��ð1þ !Þð�þ � þ �!Þ þ D00q0 R
fulfill the conditions KR1< 0 and det(JR1)> 0,

because q0 R
< 0 and q0�R

< 0. Additionally, det(JR1)< (K/2)2 is fulfilled, because

ðK=2Þ2� detðJR1Þ ¼ �!D00ð�!q0�R
þ �q0 R

þ
1

4
ð�ð1þ!Þð�þ � þ �!ÞÞ �D00q0 R

Þ
2>0:

ðA11Þ

Regime 3 The MHDS for Regime 3 is, again based on the system with full rank

and eliminated state variable S(t), where the subscript R indicates the costate

variables of the Redux system:

_R ¼ �að�R; �RÞ;

_W ¼ að R; �RÞ þ �ðS0 þ R0 þW0 � R�WÞ � �!W;

_�R ¼ ��R � ��R � D0;

_�R ¼ ð�þ �!Þ�R � D0;

ðA12Þ

and the corresponding Jacobian is

JR3 ¼

0 0 �a0�R
�a0�R

�� ��! a0�R
a0�R

D00 D00 0 ��
D00 D00 0 �þ �!

0
BB@

1
CCA: ðA13Þ

We see that the determinate of detðJR3Þ ¼ ��!ð�þ � þ �!ÞD
00a0�R

and KR3 ¼

��ð1þ !Þð�þ � þ �!Þ þ D00ða0�R
þ a0�R

Þ fulfill the conditions det(JR3)> 0 and

KR3< 0, because a0�R
< 0 and a0�R

< 0. Additionally, det(JR1)< (K/2)2 is fulfilled, if

1

4
ð�ð1þ !Þð�þ � þ �!Þ � D00ða0�R

Þ þ a0�R
Þ

2 > � �!ð� þ �þ �!ÞD00a0�R
ðA14Þ

is fulfilled in the steady state. If (A14) is not fulfilled, the saddle path property is not

affected, but the eigenvalues are complex (Tahvonen, 1989).
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