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   Abstract 

 A palladium bis- N -heterocyclic carbene complex was immo-
bilized on polystyrene modifi ed, magnetic carbon coated iron 
nanoparticles and evaluated in Suzuki-Miyaura cross-coupling 
reactions under conventional and microwave heating. Under 
the latter conditions, both aryl bromides and aryl chlorides 
could be employed as substrates at low loading of catalyst 
(0.2 mol % ), which could be readily recovered by an external 
magnet and reused in at least four cycles. As a possible deac-
tivation pathway of the catalyst, the formation of palladium 
nanoparticles in the course of the reaction that became encap-
sulated in the polystyrene matrix of the support is suggested.  

   Keywords:    magnetic nanoparticles;   microwave irradiation; 
  palladium- N -heterocyclic carbene catalysts;   recyclable 
catalyst;   Suzuki-Miyaura coupling.     

  1. Introduction 

 The development of effi cient catalytic processes is an impor-
tant quest in sustainable chemistry. Reactivity, as expressed in 
turnover numbers and cycles of a catalyst, selectivity as well 
as low energy consumption are criteria to strive towards this 
goal. The immobilization of catalysts on heterogeneous sup-
ports is a widely employed strategy to increase turnover num-
bers by allowing facile recycling and reuse of the catalyst  [1] . 
Nevertheless, employing conventional polymers as supports 
is often accompanied by reduced activity of catalysts due 
to inaccessibility of active sites being buried in the polymer 
backbone and reduced mass transfer due to heterogenization. 
Moreover, the mechanical properties of polymer supports are 
not always optimal, which can lead to their degradation in the 

course of handling a reaction mixture by stirring or fi ltration 
procedures. Magnetic nanoparticles have been recognized as 
attractive supports for catalysts owing to their good surface 
accessibility and facile recovery by applying an external mag-
netic fi eld  [2 – 4] . In particular, carbon coated iron and cobalt 
nanoparticles have been found to display especially high ther-
mal stability as well as tolerance against basic or acidic reac-
tion conditions  [5 – 11] . We therefore wanted to combine such 
nanoparticles with a highly stable metal complex to arrive at 
recyclable catalysts that might be suitable for their utilization 
under forcing thermal conditions. Palladium- N -heterocyclic 
carbene (NHC) complexes in particular exhibit high stability 
against heat, moisture and air  [12] . As a suitable benchmark 
we were intrigued by recent studies demonstrating that com-
plexes such as  1  or  2  (Figure  1  ) are highly stable and show 
good activity in cross-coupling and Heck reactions with aryl 
bromides but not with aryl chlorides  [13 – 15] .  

  2. Experimental 

  2.1. General 

 Microwave experiments were carried out in a CEM Discover  ®   
S-Class apparatus, inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) measurements were performed 
with Spectro Analytical Instruments ICP Modula EOP and 
transmission electron spectroscopy (TEM) measurements 
with LEO912AB electron microscope (Zeiss, Oberkochen, 
Germany) operating at 100 kV.  

  2.2. 3,3 ′ -(5-Hydroxy-1,3-phenylene)bis(methylene)

bis(1-mesityl-1H-imidazol-3-ium) bromide (5) 

Seven hundred and eleven milligram  (2.54 mmol) 3,5-
bis(bromomethyl)phenol ( 3 )  [16]  and 946 mg (5.08 mg, 2.0 
equiv.) 1-mesityl-1H-imidazole ( 4 )  [17]  were stirred in 5 ml 
MeCN at 90 ° C in a sealed tube for 1 h. After cooling down to 
ambient temperature the white precipitate was washed thrice 
with MeCN and acetone to yield 1.42 g (2.2 mmol, 86 % )  5  as 
a white solid.  1 H-NMR (300 MHz, DMSO):  δ   =  10.01 (s, 1H), 
9.71 (s, 2H), 8.11 (s, 2H), 8.00 (s, 2H), 7.15 (s, 4H), 7.07 (s, 1H), 
6.84 (s, 2H), 5.52 (s, 4H), 2.33 (s, 6H), 2.01 (s, 12H);  13 C-NMR 
(75 MHz, DMSO):  δ   =  158.3, 140.2, 137.6, 136.7, 134.1, 131.0, 
129.2, 124.1, 123.2, 118.4, 115.2, 108.4, 51.9, 20.5, 16.9; IR 
(neat)   ν    =  3387, 3061, 1703, 1601, 1557, 1497, 1456, 1355, 1310, 
1231, 1147, 1107, 1030, 1009, 876, 749, 714, 698, 663; MS (EI): 
m/z  =  246.0 (M 2 +  ); HRMS (EIMS) [M 2 +  ]: found 246.1450, calcu-
lated 246.1439; m.p.: 145 ° C (decomposition).  
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  2.3. (3,3 ′ -(5-Hydroxy-1,3-phenylene)bis(methylene)

bis(1-mesityl-1H-imidazolium-2,2 ′ -diyliden))

palladium(II)-dichloride (7) 

 To 250 mg (0.38 mmol) of ( 5 ) in 10 ml dichloromethane 
(DCM), 98 mg (0.42 mmol, 1.1 equiv.) of Ag 2 O were added. 
The slurry was stirred for 4 h under the exclusion of light. 
Subsequent fi ltration through a syringe fi lter and evapora-
tion of the solvent furnished  6  as a white powder, which 
was used as such in the next step.  6  was dissolved in 10 ml 
of degassed dichloromethane followed by addition of 110 
mg (0.38 mmol) of PdCl 2 (cod), and the reaction mixture 
was stirred for 16 h. Filtration through a syringe fi lter and 
subsequent evaporation of the solvent furnished a yellow 
powder which was purifi ed by precipitation from a saturated 
dichloromethane solution with pentane. Centrifugation of 
the precipitate and subsequent recrystallization from CHCl 3  
gave 219 mg (0.33 mmol, 86 % ) of  7  as amorphous yellow 
platelets.  1 H-NMR (300 MHz, DMSO):  δ   =  7.35 – 6.93 (m, 
br, 5H), 6.93 – 6.41 (m, br, 7H), 5.80 – 5.39 (m, br, 2H), 5.24 
(m, br, 2H), 2.43 (m, br, 3H), 2.30 (m, br, 1H), 2.08 (m, br, 
5H), 1.97 (m, br, 3H), 1.82 (m, br, 7H); IR (neat)   ν    =  2916, 
1598, 1487, 1448, 1415, 1297, 1233, 1160, 1033, 968, 934, 
848, 728, 702; MS (ESMS): [M 2 +  -2Cl - -H  +  ] m/z  =  593.3, 
594.1, 595.2, 597.1, 599.1, 600.1; CHN (C 32 H 34 Cl 2 N 4 OPd): 
calculated: C 57.54, H 5.13, N 8.39, found: C 58.12, H 5.37, 
N 7.26; m.p.:   >  200 ° C (decomposition).  

  2.4. Synthesis of 9 by immobilization of 7 

on polystyrene modifi ed, carbon coated iron 

nanoparticles 8 

 To 25 mg (corresponding to 0.095 mmol benzyl chloride 
functionalities) of  8  in 3 ml DMF were added 70 mg (0.105 
mmol, 1.1 equiv.)  7  and 30 mg (0.22 mmol, 2.0 equiv.) of 
K 2 CO 3 . After vigorously stirring at 60 ° C for 18 h, the par-
ticles were recovered by the aid of an external magnet and 
subsequently washed with acetone, water, acetone and 
dichloromethane. After drying under reduced pressure 37 mg 
of the particles with a loading of 0.6 mmol/g (ICP-OES) was 
obtained. IR (neat)   ν    =  3651, 2915, 2117, 1748, 1664, 1596, 
1510, 1487, 1448, 1413, 1381, 1357, 1291, 1235, 1151, 1034, 
1015, 931, 847, 810, 726, 700, 654; elemental microanalysis 
( % ): C, 70.71; H, 4.43; N, 3.92.  

  2.5. General procedure for Suzuki-Miyaura cross-

coupling reactions with the supported catalyst 9 

 A mixture of  9  (3 mg, 0.2 mol % ), arene R-X (1.0 mmol), boronic 
acid (1.1 mmol, 1.1 equiv.) and K 2 CO 3  or Cs 2 CO 3  (2.0 mmol, 2 
equiv.) as detailed in Tables  1   or  2   in toluene (2 ml) was stirred at 
70 ° C or heated in a closed microwave vessel at a constant power 
of 200 W for the indicated time. The catalyst was retained after 
the reaction in the vessel by applying an external magnet, the 
reaction mixture was decanted, and the reaction vessel contain-
ing the nanoparticles was washed with toluene, MeOH, water 
and MeOH (5 ml each). The combined organic fractions were 
extracted with water (10 ml), dried (Na 2 SO 4 ), fi ltered, concen-
trated under reduced pressure and the residues were purifi ed by 
column chromatography. The recovered catalyst was dried under 
reduced pressure and subsequently subjected to the next run.   

  3. Results and discussion 

 To arrive at a suitable magnetic nanoparticle supported 
ananlog to  2 , we prepared the palladium complex  7  that was 
attached onto polystyrene modifi ed, carbon coated iron par-
ticles (PS@C@Fe-NP,  8 )  [18]  to give the nanocatalyst  9  with 
a loading of 0.6 mmol Pd/g (Scheme  1  ). 

  9  was fi rst evaluated in Suzuki cross-couplings applying ther-
mal heating (Table 1). At 0.2 mol %  catalyst concentration, for a 
variety of aryl bromides quantitative conversion and high yields 
in the coupling with phenyl boronic acids was reached within 
12 h.  9  could be readily recovered by applying an external magnet 
to the reaction vessel and decantation of the reaction solution and 
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 Figure 1    Successful bis-NHC-palladium complexes for Suzuki-
Miyaura couplings of aryl bromides  [12 – 14] .    

 Table 1      Suzuki-Miyaura reaction catalyzed by  9  under conventional 
heating conditions a . 

   

Br B(OH)2

9 (0.2 mol%)
K2CO3 (200 mol%)

Toluene, 0.5 M
70°C, 12 hR1

R1
+

R2

R2

  

Entry Run R 1 R 2 Conversion b  ( % )

   1 1 4-OMe H   >  95
   2 2 4-OMe H   >  95
   3 3 4-OMe H   >  95
   4 4 4-OMe H   >  95
   5 5 4-OMe H   >  95
   6 6 4-OMe H   >  95
   7 1 2,6-Me H    61 c 
   8 2 4-NO 2 H    95 c 
   9 3 4-C(O)Me H    93 c 
10 4 H Me    91 c 
11 5 4-OMe H    89 c 

    a Reaction conditions: 0.5 mmol aryl halide, 0.55 mmol aryl boronic 
acid, 1.0 mmol K 2 CO 3 , 0.2 mol %  starting concentration of catalyst 
 9  (series 1, entries 1 – 6; series 2, entries 7 – 11), 2 ml toluene, 70 ° C, 
12 h.  
  b Determined by  1 H-NMR.  
  c Isolated yield after column chromatography.   
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 Table 2      Suzuki-Miyaura reaction catalyzed by  5  under microwave 
conditions a . 

   

X

R

+

R

B(OH)2 9 (0.2 mol%)
Cs2CO3 (200 mol%)

Toluene, 0.5 M
200 W MW

  

Entry Cycle Aryl halide Time 
(min)

Yield b  
( % )

R X

1 1 Me I    5 98
2 2 MeO Br 20 96
3 3 MeO Br 20 94
4 4 MeO Br 20 95
5 1 C(O)Me Cl 60 95
6 2 C(O)Me Cl 60 80
7 3 C(O)Me Cl 60 68
8 4 C(O)Me Cl 60 49

    a Reaction conditions: 0.5 mmol aryl halide, 0.55 mmol phenyl-
boronic acid, 1.0 mmol Cs 2 CO 3 , starting concentration of catalyst  9  
(series 1, entries 1 – 4; series 2, entries 5 – 8) 0.2 mol % , 2 ml toluene, 
200 W microwave heating (fi xed power).  
  b Determined by GC analysis with diethylene glycol-di- n -butyl ether 
as internal standard.   
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 Scheme 1    Synthesis of polystyrene modifi ed, carbon coated iron nanoparticle supported palladium complex  9 .    
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 Figure 2    Time conversion and time-turn-over frequency (TOF) 
curves of  9  (0.2 mol % ) in the Suzuki-Miyaura cross-coupling reac-
tion between bromobenzene and phenylboronic acid.    

was reused in subsequent runs without apparent loss of activity 
(Table 1, series 1: entries 1 – 6; series 2: entries 7 – 11). Monitoring 
the conversion versus time for the reaction of 4-bromoanisole 
and phenylboronic acid (Figure  2  ) revealed that the reaction 
reached 50 %  conversion after 1 h and 80 %  conversion after 2 h. 

 Carrying out Suzuki-Miyaura couplings under microwave 
irradiation (Table 2) in closed vessel conditions at 140 ° C not 
only greatly shortened the reaction times but also allowed the 

coupling of less reactive aryl chlorides. Again,  9  was read-
ily recycled by an external magnet and reused; nevertheless, 
we noted a signifi cant drop of activity in the coupling of aryl 
chlorides with each cycle. TEM analysis revealed the forma-
tion of palladium nanoparticles over time and reaction cycles 
that apparently became trapped in the polystyrene matrix, i.e. 
indicating the decomposition palladium complex in  9 . This 
breakdown occurred under microwave conditions (140 ° C) but 
to our surprise also under thermal conditions at 70 ° C (Figure 
 3  ). It should be noted that ICP-OES measurements revealed, in 
all cases (Tables 1 and 2), that   <  2 ppm palladium in each cycle 
was released into the reaction solution. Because the number 
but not the size of the nanoparticles was increasing with the 



278  S. Wittmann et al.: Nanocatalysis

reaction cycles performed, it is assumed that these palladium 
nanoparticles do not leach to a signifi cant extent from the 
polystyrene matrix as opposed to being trapped in there upon 
cooling the reaction mixture. Although this fi nding might open 
up an interesting strategy for nanoparticle synthesis in a poly-
mer matrix that is, in return, attached to magnetic nanoparti-
cles, we must conclude for our current study that the palladium 
nanoparticles formed do not exhibit the same, if any, catalytic 
activity for the Suzuki-Miyaura cross-coupling. 

 In conclusion, the immobilization of palladium NHC 
complex  7  to iron nanoparticles  8  resulted in a magnetically 
recyclable catalyst  9  that was successfully employed in Suzuki-
Miyaura coupling reactions of aryl halides. In particular, it was 
shown that under microwave irradiation, even aryl chlorides 
can be employed as substrates. As a possible pathway for cata-
lyst deactivation, the formation of palladium nanoparticles was 
identifi ed that are encapsulated into the polystyrene matrix of 
the support.   
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 Figure 3    Representative TEM micrographs of  9  after heating under conventional heating taken after one (left) and four (right) reaction cycles 
(for conditions see Table 1, entries 1 – 4). Palladium nanoparticles (5 – 7 nm) are formed that are encapsulated in the polystyrene matrix (upper 
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