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We show that all but five of the zeros of the period polynomial associated to a Hecke

cusp form are on the unit circle.

1 Introduction

Let Mk(Γ ) be the space of holomorphic modular forms of weight k for the full modular

group Γ = PSL(2, Z). It is well known that Mk(Γ ) has dimension k
12 + O(1) and a modular

form f ∈Mk has k
12 + O(1) inequivalent zeros in a fundamental domain Γ \ H. The study

of the natural question of the distribution of the zeros of modular forms dates back to

the 1960s and has seen some renewed interest thanks to the recent progress on the

quantum unique ergodicity (QUE) conjecture.

In the simplest case of Eisenstein series, it was conjectured by Rankin in 1968

and proved by Rankin and Swinnerton-Dyer [12] that all the zeros, in the standard fun-

damental domain, of the series

Ek(z) = 1

2

∑
(c,d)=1

(cz + d)−k

Received January 11, 2012; Revised April 27, 2012; Accepted July 4, 2012

c© The Author(s) 2012. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oup.com.



Zeros of Period Polynomials Lie on the Unit Circle 4759

lie on the geodesic arc {z∈H : |z| = 1, 0 ≤ �z≤ 1/2} and as k→ ∞ they become uniformly

distributed on this unit arc. A similar result for the cuspidal Poincare series was proved

by Rankin [13]. For generalizations of these results to other Fuchsian groups and to

weakly holomorphic modular functions, see [1, 3, 7], among many others.

In contrast to these cases, for the cuspidal Hecke eigenforms, it is a consequence

of the recent proof of the holomorphic QUE by Holowinsky and Soundararajan [8] that

the zeros are uniformly distributed. More precisely, we have the following theorem:

Theorem (Holowinsky and Soundararajan [8]). Let { fk} be a sequence of cuspidal Hecke

eigenforms of weight k. Then as k→ ∞ the zeros of fk become equidistributed with

respect to the normalized hyperbolic measure 3
π

dx dy
y2 . �

For some recent work on the zeros of holomorphic Hecke cusp forms that lie on

the geodesic segments of the standard fundamental domain, see [5].

In this note, we turn our attention from the zeros of modular forms to the zeros

of their period polynomials.

It is well known that Γ is generated by the elliptic transformations S = ± (
0 1

−1 0

)
and U = ± (

1 −1
1 0

)
with the defining relations S2 = U3 = ±I .

Let Pk−2 be the space of all complex polynomials of degree at most k − 2. For

p(z) ∈ Pk−2, A∈ PSL(2, C) acts on p(z) in the usual way via

(p|A)(z) := (cz + d)k−2 p
(

az + b

cz + d

)
.

Let P −
k−2 be the space of odd polynomials of degree k − 2 and

W− = W−
k−2 = {p∈ P −

k−2; p|(I + S) = p|(I + U + U2) = 0}.

For f(z) = ∑∞
n=1 a(n) e2πinz a Hecke eigenform of even integral weight k= w + 2

and level 1, let L( f, s) = ∑∞
n=1 a(n)n−s be its associated L-function. The odd period poly-

nomial for f is defined by

r−
f (X) :=

w−1∑
n=1

nodd

(−1)
n−1

2

(
w

n

)
n!(2π)−n−1L( f, n+ 1)Xw−n. (1.1)
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The basic result of Eichler–Shimura theory is:

Theorem (Eichler–Shimura). Let Sk(Γ ) be the space of cusp forms for Γ . Then the map

r− : Sk(Γ ) → W−

f → r−
f (X)

is an isomorphism. �

In the light of the theorem of Eichler and Shimura, studying the zeros of period

polynomials is as natural as studying the zeros of modular forms. In this paper, we

prove the following:

Theorem 1.1. If f is a Hecke eigenform, then the odd period polynomial r−
f (X) has

simple zeros at 0, ±2, and ±1/2 and double zeros at ±1. The rest of its zeros are complex

numbers on the unit circle. �

Figure 1 illustrates Theorem 1.1 in the case of f a cusp form of weight w = 34.

Note that in this example the spacing between zeros is quite regular. From the proof of

Theorem 1.1 it will become clear that this is a general phenomenon. It is worth noting

that for an arbitrary cusp form which is not a Hecke eigenform the zeros of r−
f (X) need

not be on the unit circle. This can be thought as analogous to the fact that for a general

modular form f which is not a Hecke eigenform, the zeros of f need not be uniformly

distributed.

– 2 – 1 0 1 2

– 1.0

– 0.5

0.0

0.5

1.0

Fig. 1. A contour plot of log |r−
f (z)| for f one of the cusp forms of weight w = 34, illustrating the

zeros at ±2, ± 1
2 , and 0, with the remaining zeros on the unit circle.
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In the case of zeros of modular forms, the uniform distribution result is a

remarkable consequence of the deep QUE conjecture, which is now a theorem due to

Holowinsky and Soundararajan for holomorphic eigenforms. The fact that the uniform

distribution of the zeros of modular forms follows from the QUE conjecture was first

observed by Nonnenmacher and Voros [11], Shiffman and Zelditch [15], and Rudnick

[14].

In the case of the zeros of period polynomials, as we will show in the next

section, Theorem 1.1 follows using simple function theory arguments together with the

deep theorem of Deligne which is the Ramanujan–Petersson conjecture in the case of

holomorphic cuspforms.

Finally, it is worth noting that the proof of our Theorem 1.1 can be applied with-

out much difficulty to show that the zeros of some special period polynomials are also

on the unit circle. More precisely these are the polynomials associated to the cusp forms

Rn(z), 0 ≤ n≤ w = k − 2 characterized by the property

rn( f) := n!(2π)n−1L( f, n+ 1) = ( f, Rn), ∀ f ∈ Sk(Γ ).

Here, ( f, Rn) is the Petersson inner product of f and Rn. Rn(z) has the following

Poincare type series representation, due to Cohen [2]. For 0 < n< w, ñ= w − n, and

ck,n = iñ+12−w
(
w

n

)
π , we have

Rn(z) = c−1
k,n

∑
(

a b
c d

)
∈Γ

(az + b)−n−1(cz + d)−ñ−1.

A special case of [9, Theorem 1] gives that the odd period polynomial of Rn for n

even and 0 < n< w is given by the Bernoulli type polynomial

(−1)k/2+n/22−wr−
Rn

(X) =
[

B0
ñ+1(X)

ñ+ 1
− B0

n+1(X)

n+ 1

]
| (I − S), (1.2)

where

B0
n+1(X) =

n+1∑
i=0
i 	=1

(
n

i

)
Bi X

n+1.

The polynomials in (1.2) can be closely approximated by sin(2πx) + xw sin(2π/x)

which then can be used to show that their nontrivial zeros are on the unit circle. The
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period polynomials of the cusp forms Rn can be seen as complementary to the Ramanu-

jan polynomials which can be thought in terms of the period polynomials of the Eisen-

stein series (see [4, 9]). Recently, it was shown by Murty et al. [10] that the zeros of the

Ramanujan polynomials also lie on the unit circle. In this context, see also [6].

2 Period Polynomial of Hecke Eigenforms

For f(z) = ∑∞
n=1 a(n) e2πinz ∈ Sk(Γ ), a Hecke eigenform, we let L( f, s) = ∑∞

n=1 a(n)n−s be its

associated L-function and

r−
f (X) :=

w−1∑
n=1

nodd

(−1)
n−1

2

(
w

n

)
n!(2π)−n−1L( f, n+ 1)Xw−n (2.1)

the odd part of its period polynomial.

The L-function satisfies the functional equation

(2π)−sΓ (s)L( f, s) = (−1)k/2(2π)s−kΓ (k − s)L( f, k − s).

It follows from the functional equation that r−
f (X) is self-reciprocal, that is,

r−
f (X) = Xwr−

f (1/X) (2.2)

and it follows from the modularity of f (specifically that f( z−1
z ) = zk f(z)) that

r−
f (X) + Xwr−

f

(
1 − 1

X

)
+ (X − 1)wr−

f

( −1

X − 1

)
= 0. (2.3)

By Eichler–Shimura theory the vector space of polynomials of degree ≤ k − 2 spanned by

the set of r−
f (X) as f runs through Hecke eigenforms of weight k is precisely the space

of odd polynomials P of degree ≤ k − 3 for which

P (x) + xk−2 P
(−1

x

)
≡ 0 (2.4)

and

P (x) + xk−2 P
(

1 − 1

x

)
+ (x − 1)k−2 P

( −1

x − 1

)
≡ 0. (2.5)
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Lemma 2.1. Any polynomial P (X) ∈ W−
k−2 has “trivial zeros” at ±2, ± 1

2 , and 0. �

Proof. Since P is odd, we have P (0) = 0 and we only have to verify that P (1) = P ′(1) =
P (2) = P (1/2) = 0. We substitute x = 1 into (2.5), noting that

lim
x→1

(x − 1)k−2 P
( −1

x − 1

)
= 0

since P has degree smaller than k − 2. Thus, P (1) = 0 = P (−1). Now we substitute x = −1

into (2.5) to obtain

P (2) + 2k−2 P (1/2) = 0,

while from x = 2 in (2.4), we have

P (2) − 2k−2 P (1/2) = 0.

Thus, P (1/2) = P (2) = 0. We differentiate (2.4) to obtain

P ′(x) + (k − 2)xk−3 P
(−1

x

)
+ xk−4 P ′

(−1

x

)
≡ 0.

Substituting x = 1 here gives

P ′(1) + P ′(−1) = 0.

But P is odd, so P ′ is even which means that P ′(−1) = P ′(1). Therefore, P ′(1) = P ′(−1) = 0

and so we have verified that all of the trivial zeros are where we said they would be. �

To understand the rest of the zeros of the odd period polynomial r−
f (x) attached

to a Hecke eigenform f ∈ Sk(Γ ), we look at

p−
f (X) := 2πr−

f (X)

(−1)w/2(2π)−w(w − 1)!
=

w−1∑
n=1

nodd

(−1)
n−1

2
(2π X)n

n!
L( f, w − n+ 1)

=
w/2−1∑
m=0

(−1)m(2π X)2m+1

(2m + 1)!
L( f, w − 2m). (2.6)
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Since L( f, w − 2m) is close to 1 for small values of m, we see that the initial terms of the

above series are close to the initial terms of the series

sin(2π X) =
∞∑

m=0

(−1)m(2π X)2m+1

(2m + 1)!
.

The idea now is to study the zeros of

sin(2πx) + xN sin(2π/x).

It follows from (2.2) that p−
f (X) may be written as

p−
f (X) = qf (X) + Xwqf (1/X), (2.7)

where

qf (X) =
[(w−6)/4]∑

m=0

(−1)m(2π X)2m+1

(2m + 1)!
L( f, w − 2m) + L( f, w+2

2 )(2π X)
w
2

2
(

w
2

)
!

. (2.8)

Note that when k≡ 2 mod 4 the last term does not appear, since in this case the func-

tional equation implies that L( f, k/2) = 0. Note also that qf and r−
f have real coefficients,

since L( f, s) is real on the real axis.

To prove that the nontrivial zeros of r−
f (X) are on the unit circle, we need several

lemmas. First, we can replace sin 2πz above by an entire function r(z). The crucial idea

is the following lemma.

Lemma 2.2. Let r(z) be an entire function and for an even N ∈ N, let

FN(z) := r(z) + zNr(z−1).

Let

R(θ) := �r(eiθ ) and I (θ) := �r(eiθ ).

For j = 0, . . . , 2M − 1 et I j denote the interval [ π
2M + π

M j, π
2M + π

M ( j + 1)] ⊂ R. Then

(a) For θ j = π
2M + π

M j, if I (θ j) = 0, then F2M(eiθ j ) = 0.

(b) If I (θ) 	= 0 for θ ∈ I j, then F2M((eiθ ) = 0 for some θ ∈ I j. �
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Proof. Let

fN(z) = z−N/2 FN(z) = z−Mr(z) + zMr(z−1),

where 2M = N. Note that fN and FN have the same zeros on |z| = 1. Since fN is real when

|z| = 1, it suffices to look at the real-valued function

� fN(eiθ ) = 2 cos(Mθ)R(θ) + 2 sin(Mθ)I (θ). (2.9)

Using (2.9), part (a) of the Lemma is clear.

To see part (b) note that if I (θ) 	= 0, then � fN(eiθ ) = 0 will have a solution when

− tan Mθ = R(θ)

I (θ)
. (2.10)

If I (θ) 	= 0 for θ ∈ I j, then in the interval I j the function R(θ)/I (θ) is bounded and con-

tinuous and hence (2.10) will have a solution. �

Lemma 2.3. Let

S(z) = sin(2πz) − sin(2π/z).

Then S(z) has precisely 10 zeros in the annulus A := {z : 4/5 ≤ |z| ≤ 5/4}. Moreover, on the

boundary of the annulus, |S(z)| > 1. �

Proof. One can count the number of zeros in the annulus by numerically integrating

the logarithmic derivative S′(z)/S(z) on the boundary of the annulus. On the boundary,

S′(z)/S(z) is bounded by 2π( 5
4 )2 < 10, so numerically integrating with a step size of 1/100

is more than adequate to determine the integral with an error < 1
2 . This is easily done

on any modern computer algebra system. �

The zeros of S(z) are illustrated in the contour plot in Figure 2.

Lemma 2.4. Let f be a Hecke eigenform of weight k for the full modular group and let

L( f, s) = ∑
a(n)n−s be its associated L-function. Then for σ ≥ 3k/4, we have

|L( f, σ ) − 1| ≤ 4 × 2−k/4 (2.11)
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Fig. 2. A contour plot of log |S(z)|. The darker contour is the set where log |S(z)| = log(1.5).

and for σ an integer with σ ≥ k/2, we have

L( f, σ ) ≤ 2k1/2 log 2k + 1. (2.12)

�

Proof. If σ ≥ 3k/4, then we are in the region of absolute convergence. By Deligne’s

Theorem, we have

|L( f, σ ) − 1| ≤
∞∑

n=2

d(n)

nσ−(k−1)/2
≤

∞∑
n=2

d(n)

nk/4
= ζ(k/4)2 − 1 ≤ 2(ζ(k/4) − 1).

We have

ζ(k/4) − 1 = 2−k/4 +
∞∑

n=3

n−k/4 ≤ 2−k/4 +
∫∞

2
u−k/4 du≤ 2 × 2−k/4

for k≥ 12. This proves (2.11).
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Next, if σ ≥ k/2 + 1, we estimate L( f, σ ) trivially by L( f, σ ) ≤ ζ(3/2)2 < 7. If k/2 ≤
σ ≤ k/2 + 1, then using standard methods, we have for σ = k/2,

Γ (k/2)L( f, k/2) = 2
∞∑

n=1

a(n)

nk/2

∫∞

2πn
e−xxk/2 dx

x
.

Thus,

|L( f, σ )| ≤ 2Γ (k/2)−1
∞∑

n=1

d(n)

n1/2

∫∞

2πn
e−xxk/2 dx

x
.

We split the sum over n at k. The terms with n≤ k are

≤
∑
n≤k

d(n)

n1/2

as is seen by completing the integrals down to 0. Now

∑
n≤k

d(n)

n1/2
=

∑
mn≤k

1

(mn)1/2
≤

∑
m≤k

1

m1/2

∫k/m

0
u−1/2 du= 2k1/2

∑
m≤k

1

m
≤ 2k1/2 log 2k

for k≥ 5. The tail of the series is

= 2Γ (k/2)−1
∞∑

n=k+1

d(n)√
n

∫∞

2πn
e−xxk/2 dx

x

≤ 2Γ (k/2)−1
∞∑

n=k+1

d(n)√
n

e−πn
∫∞

2πn
e−x/2xk/2 dx

x
.

The integral is

= 2k/2
∫∞

πn
e−xxk/2 dx

x
≤ 2k/2Γ (k/2).

Using d(n) ≤ 2
√

n, we have that the tail is

≤ 4 × 2k/2
∞∑

n=k+1

e−πn ≤ 4 × 2k/2 e−πk < 1.

Note that 2k1/2 log 2k + 1 > 7 for k≥ 3. The proof is complete. �
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Lemma 2.5. Let qf be as in (2.8). Then, for z≤ 5/4 and k≥ 80 we have

sin 2πz − qf (z)| ≤ 1

100
. �

Proof. We have

sin 2πz=
∞∑

m=0

(−1)m (2πz)2m+1

(2m + 1)!

and

qf (z) =
[(w−6)/4]∑

m=0

(−1)m(2πz)2m+1

(2m + 1)!
L( f, w − 2m) + L( f, w+2

2 )(2πz)
w
2

2(w
2 )!

.

Thus,

| sin 2πz − qf (z)| ≤
∑

m≤w/8

(5π/2)2m+1

(2m + 1)!
|L( f, w − 2m) − 1|

+
∑

w/8<m<w/4

(5π/2)2m+1

(2m + 1)!
(|L( f, w − 2m)| + 1) +

∑
m>w/4

(5π/2)2m+1

(2m + 1)!

= Σ1 + Σ2 + Σ3,

say. Now by Lemma 2.4 we have

Σ1 ≤ 4 × 2−k/4
∑

m≤w/8

(5π/2)2m+1

(2m + 1)!
≤ 4 × 2−k/4 × e5π/2.

We can combine estimates for Σ2 and Σ3. Again using Lemma 2.4 we have

Σ2 + Σ3 ≤ (2
√

k log 2k + 2)
∑

w/8<m

(5π/2)2m+1

(2m + 1)!
.

We can bound the sum using

∞∑
m=r+1

xm

m!
= xr+1

(r + 1)!

(
1 + x

r + 2
+ x2

(r + 2)(r + 3)
+ · · ·

)

≤ xr+1

(r + 1)!

1

(1 − x
r+1 )

= xr+1

r!(r + 1 − x)
<

(ex)r+1

rr(r + 1 − x)
,
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the last line uses r! > (r/e)r. Using this above, we have

Σ2 + Σ3 ≤ (2
√

k log 2k + 2)
(5πe/2)k/2+1

(k/2)k/2(k/2 + 1 − 5π/2)
.

For k≥ 80, we have Σ1 + Σ2 + Σ3 < 0.01. �

Lemma 2.6. If k≥ 80, then the function

Q f (z) := qf (z) − qf (1/z)

has at most 10 zeros in the annulus A. �

This follows from Rouché’s theorem using Lemmas 2.3 and 2.5.

Corollary 2.7. If k≥ 80, then

�qf (e
iθ )

has at most 10 zeros in 0 ≤ θ < 2π . Moreover, �qf (eiθ ) = 0 at θ = 0 and at θ = π . �

Proof. If z is on the unit circle, then �qf (z) = −iQ f (z) so any zero of �qf (z) has to be a

zero of Q f (z). But Q f (z) has at most 10 zeros on the annulus A of which the unit circle

is a subset. Since r f (±1) = 0, we see from (2.7) that qf (±1) = 0, so �qf (eiθ ) = 0 for θ = 0

and θ = π . �

We now combine these lemmas to prove:

Theorem 2.8. Let f be a cusp form of weight k≥ 80 for SL(2, Z), w = k − 2 and p−
f (z) =

qf (z) + zwqf (1/z) be its odd period polynomial of degree w − 1. Then p−
f (z) has all but five

of its zeros on the unit circle. The five trivial zeros of pf (z)are at z= 0, 2,−2, 1/2,−1/2.

It has double zeros at z= 1,−1. �

Proof. First recall that we have shown that each period polynomial has simple zeros at

z= 0, 2,−2, 1/2,−1/2 and double zeros at 1,−1. To prove that the rest of the zeros are

on the unit circle we let r(z) = qf (z) and N = w = k − 2 in Lemma 2.2.

By the corollary, there are 10 zeros of �(qf (eiθ )) in the interval [0, 2π) and hence

by part (b) of Lemma 2.2 for each of the N − 10 intervals among the N intervals I j =



4770 J. B. Conrey et al.

[ π
2M + π

M j, π
2M + π

M ( j + 1)], j = 0, N − 1 for which �(qf (eiθ )) 	= 0, pf (eiθ ) = 0 for some θ ∈ I j

This gives at least N − 10 zeros on the unit circle. Among the 10 discarded intervals

in which �(qf (eiθ ) vanish, we have also excluded the intervals that contain θ = 0 and

θ = π where pf (z) has double zeros. Hence, we have at least N − 10 + 4 = w − 6 zeros

on the unit circle. Since the degree of pf (z) is w − 1 together with the five zeros at z=
0, 2,−2, 1/2,−1/2, this covers all the zeros and finishes the proof of the theorem. �

Finally, Theorem 1.1 follows from Theorem 2.8 together with the fact that for the

weights k≤ 80 the statement can be verified numerically, as we have done.
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