The genus *Praon* Haliday is one of the largest genera within the subfamily Aphidiinae (Hymenoptera: Braconidae: Aphidiinae) comprising over 50 described species (Mackauer and Starý 1967, Kavallieratos et al. 2005). They are solitary endoparasitoids of aphids (Mackauer 1959, Starý 1970) occurring throughout the Palearctic and Nearctic, with 28 species detected in Europe (Achterberg 2011) and over 15 species in North American and Nearctic, with 28 species detected in Europe. They are solitary endoparasitoids of aphids (Mackauer and Stary 2011) and over 15 species in North America, with 28 species detected in Europe.

The biotype of *P. abjectum* associated with *Rhopalosiphum padi* and *A. sambuci* by 5.4–6.5% and 7.7% sequence divergence, respectively, while the genetic distance between the latter two biotypes ranged from 9.5 to 10%. The main changes in the forewing shape that discriminate these three biotypes as revealed by geometric morphometrics are related to the stigma shape and the position of the radial nerve. Based on the differences determined in mitochondrial sequences and in the shape of the wing, we describe two new cryptic species within the *P. abjectum* group as follows: *P. sambuci* sp. n. in association with *A. sambuci* and *S. nigra* and *P. longicaudus* sp. n. in association with *L. trirhodus* and *T. aquilegifolium*.
within the genus Praon: the “Parapraon,” “dorsale-yomena,” and “rosacea” groups, albeit with low bootstrap support (Kavallieratos et al. 2005, Tomanović et al. 2006).

Praon abjectum Haliday is a common parasitoid distributed throughout the Palaearctic, parasitizing mainly aphid hosts from the genera Aphis, Rhopalosiphum, and Brachycausus in steppe and intermediate habitats (Kavallieratos et al. 2004b, Starý 2006). Its presence was also recorded in the Nearctic by Yu et al. (2005), still without further confirmation of this presence was also recorded in the Nearctic by Yu et al. (2005), still without further confirmation of this finding.

P. abjectum has been reported as a consistent member of the parasitoid guilds of aphids in cereal crops, orchards, and vegetables and black bean (Tomanovic and Brijkovic 2001, Kavallieratos et al. 2004b, Starý 2006). Starý (2006) and Kavallieratos et al. (2004b) reviewed over 16 aphid hosts for P. abjectum, mainly from the genus Aphis, associated with over 30 cultivated and native plant species.

Starý and Némec (1986) determined a great variation of electromorphs in P. abjectum populations parasitizing the common elder aphid, Aphis sambuci L., in the urban environment. In addition, our preliminary research indicated that the biotype of P. abjectum associated with Longicaudus trirhodus Walker/Thalictrum spp. shows differences in several morphological traits in comparison to other biotypes.

The aim of the current study was to examine the biotypes of P. abjectum originating from five aphid host/plant associations using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and nuclear 28S rDNA genes as well as geometric morphometric analyses of the forewing. Furthermore, we wanted to test the congruence between diversification detected by COI and 28S rDNA analyses and biotype separation based on morphological traits and geometric morphometrics.

Materials and Methods

Examined Material

Specimens of *P. abjectum* submitted to the analyses were collected from Serbia, Slovenia, France, Czech Republic, Switzerland, and Montenegro in association with aphids from the genera *Rhopalosiphum*, *Longicaudus*, and *Aphis* (Table 1). Plant samples bearing aphid colonies with live and mummified aphids collected in the field were transferred to a rearing cabinet and monitored for the emergence of the parasitoids.

DNA Extraction, Polymerase Chain Reaction (PCR) Amplification, and Sequencing

Material submitted to molecular analyses included specimens collected in 2011 from localities in Serbia (six specimens), Montenegro (2), France (1), Slovenia (2), and Switzerland (1). Sampling localities and data related to the specimens are summarized in Table 1. Total genomic DNA was extracted from single wasps according to a nondestructive TES method described by Mahuku (2004). Before the DNA extraction, all specimens were stored in 96% ethanol at −20°C.

The mitochondrial COI was amplified using a pair of primers LCO1490/HCO2198 (Folmer et al. 1994). Each PCR reaction was carried out in a volume of 20 μl, containing 1 μl of extracted DNA, 11.8 μl of H2O, 2 μl of High Yield Reaction Buffer A (with 1 × Mg), 1.8 μl of MgCl2 (2.25 mM), 1.2 μl of dNTP (0.6 mM), 1 μl of each primer (0.5 μM), and 0.2 μl of KAPA-TaqDNA polymerase (0.1U/μl) (Kapa Biosystems Inc., Boston, MA). The PCR protocol included an

Table 1. Sampling data for specimens used in molecular analysis

<table>
<thead>
<tr>
<th>Parasitoid (code)</th>
<th>Host aphid</th>
<th>Plant</th>
<th>Country of origin (collection site)</th>
<th>GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. abjectum (P30)</td>
<td>Rhopalosiphum sp.</td>
<td>Prunus domestica</td>
<td>France (Altkrich)</td>
<td>KC128669 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P46)</td>
<td>Rhopalosiphum sp.</td>
<td>Zea mays</td>
<td>Slovenia (Strujan)</td>
<td>KC128670 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P59)</td>
<td>Rhopalosiphum sp.</td>
<td>Prunus domestica</td>
<td>Slovenia (Zalog)</td>
<td>KC128671 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P45_1)</td>
<td>Longicaudus trirhodus</td>
<td>Thalictrum aquilegifolium</td>
<td>Montenegro (Durmitor)</td>
<td>KC128672 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P45_2)</td>
<td>Longicaudus trirhodus</td>
<td>Thalictrum aquilegifolium</td>
<td>Montenegro (Durmitor)</td>
<td>KC128673 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P50_1)</td>
<td>Aphis sambuci</td>
<td>Sambucus nigra</td>
<td>Serbia (Vračevšnica)</td>
<td>KC128674 (COI)</td>
</tr>
<tr>
<td>P. abjectum (P51)</td>
<td>Aphis sambuci</td>
<td>Sambucus nigra</td>
<td>Serbia (Vračevšnica)</td>
<td>KC128675 (COI)</td>
</tr>
<tr>
<td>P. yomenae (P50_2)</td>
<td>Uroleucon inoculata</td>
<td>Inula salicina</td>
<td>Serbia (Začelj)</td>
<td>KC128676 (COI)</td>
</tr>
<tr>
<td>P. dorsale (P62)</td>
<td>Corylophium avellanae</td>
<td>Corylus avellana</td>
<td>Switzerland (Steinmaur)</td>
<td>KC128677 (COI)</td>
</tr>
<tr>
<td>P. dorsale (P69)</td>
<td>Corylophium avellanae</td>
<td>Corylus avellana</td>
<td>Serbia (Golija)</td>
<td>KC128678 (COI)</td>
</tr>
<tr>
<td>Aproaon silvestres</td>
<td>Periphyllus sp.</td>
<td>Acer pseudoplatanus</td>
<td>Serbia (Kragujevac)</td>
<td>KC128679 (COI)</td>
</tr>
<tr>
<td>Aproaon chaitophori</td>
<td>Chaitophorus leucomelas</td>
<td>Populus sp.</td>
<td>Serbia (Zemun)</td>
<td>KC128670 (COI)</td>
</tr>
<tr>
<td>Aphidius uzbekistanicus</td>
<td>Sitobion avenue</td>
<td>Triticum aestivum</td>
<td>Germany (Ebergoetzen)</td>
<td>JN167411 (COI)</td>
</tr>
</tbody>
</table>

a Outgroup taxon used for phylogenetic analyses based on 28S D2.
b Outgroup taxon used for phylogenetic analyses based on COI mtDNA.
initial denaturation at 95°C for 5 min, 35 cycles consisting of 1 min at 95°C, 1 min at 54°C, 2 min at 72°C, and a final extension at 72°C for 10 min.

The Second Expansion Segment of the 28S rRNA gene (28SD2) was amplified using the forward primer 28SD2f (5'-AGAGAGAGTTCAAGAGTACGTC-3') (Belshaw and Quicke 1997) and the reverse primer 28SD2r (5'-TTGGTCCGTGTTTCAAGACGGG-3') (Campbell et al. 1993). Each PCR reaction was carried out in a volume of 20 µl, containing 1 µl of extracted DNA, 14.35 µl of H₂O, 2 µl of High Yield Reaction Buffer A (with 1 × Mg), 1.5 µl of MgCl₂ (2.25 mM), 0.5 µl of dNTP (0.25 mM), 1 µl of each primer (0.5 µM), and 0.15 µl of KAPA Taq polymerase (0.0375U/µl) (Kapa Biosystems Inc.). The PCR protocol included an initial denaturation at 95°C for 3 min, 30 cycles consisting of 30 s at 95°C, 30 s at 54°C, 2 min at 72°C, and a final extension at 72°C for 10 min. The PCR products were purified using the QIAGen Purification Kit (QIAGEN Inc., Valencia, CA) according to the manufacturer’s instructions. DNA sequencing was performed using automated equipment (Macrogen Inc., Seoul, South Korea).

Phylogenetic Analyses. Sequences of COI and 28S were manually edited in FinchTV (Geospiza, Inc., Seattle, WA, http://www.geospiza.com) and aligned using the ClustalW program integrated in MEGA5 (Tamura et al. 2011). Evolutionary distances using Kimura’s two-parameter model were calculated to estimate the divergence of different *P. abjectum* biotypes. Using the Modeltest 3.7 program (Posada and Crandall 1998), the general time reversible (GTR + I + Γ) model of nucleotide substitution was estimated as the best fit model of sequence evolution based on the Akaive Information Criterion (AIC). Phylogenetic relationships were reconstructed using Bayesian inference (BI). BI analysis was conducted with MrBayes v3.1.2 (Ronquist and Huelsenbeck 2003), using a Markov chain Monte Carlo iteration for five million generations, trees being sampled every 100 generations. The first 12,500 trees were discarded as burn-in. To confirm the convergence of the parameters we used the program Tracer v1.5.0 (Rambaut and Drummond 2007) and the program FigTree 1.3.1. (Rambaut 2006–2009) to view the consensus tree with posterior probabilities.

Morphometric Analyses. The wing morphology and shape are of adaptive significance and could be related to the varying ecological roles and physiological constraints of the insects’ flight (e.g., Berwaerts et al. 2002). To explore and quantify the morphological variation, the wing shape of 63 *P. abjectum* females that emerged from three aphid hosts were analyzed by means of geometric morphometrics. Samples consisted of three biotypes: 1) *P. abjectum* that parasitizes *A. sambuci* (44 specimens from Serbia and 3 specimens from Czech Republic), 2) *P. abjectum* that parasitizes *L. trirhodus* (6 specimens from Montenegro), and 3) *P. abjectum* that parasitizes *Rhopalosiphum padi* (10 specimens from Czech Republic). *P. abjectum* specimens are generally scarcely present in the field. For this reason, the samples submitted to morphometric analyses differed somewhat from those used for molecular analyses. For the morphometric analyses we could include additional specimens that were well preserved in dried condition in the coauthors’ collections, but unsuitable for DNA extraction.

The right forewing of each specimen was photographed using a LEICA microscope at 50× magnification and a CANON digital camera. To describe the wing shape, we used a combination of seven landmarks and six semilandmarks (positions and definitions are given in Fig. 1). All landmarks and semilandmarks were digitized using the Tps-Dig software (Rohlf 2005) by the same person (A.M.B.). Before digitizing, semilandmarks were defined using MakeFan6 (see Fig. 1) to ensure a consistent placement of semilandmarks at equal angular displacements along the curves. Landmarks were superimposed by the generalized Procrustes analysis, which eliminates variation because of the scale, position, and orientation of landmark configurations (Rohlf and Slice 1990, Bookstein 1991). Semilandmarks were superimposed by allowing them to slide along curves bounded by landmarks to minimize the Procrustes distances among individuals (Bookstein 1997). Superimposition of semilandmarks was conducted using SemiLand6. The programs MakeFan6 and SemiLand6 belong to the IMP series (Sheets 2003).

Wing size was computed as the centroid size (CS), which is the measure of the size in geometric morphometrics and reflects the amount of dispersion around the centroid of the landmark configuration. To explore the variation in the size of the wings among the three biotypes of *P. abjectum*, we performed an analysis of variance (ANOVA) on the centroid size. To
analyze the variation in wing shape of parasitoids from different hosts we performed a MANOVA analysis on the full set of shape variables (Zelditch et al. 2004).

Differences among parasitoid biotypes emerging from different aphid hosts were explored by discriminant function (DF) analysis. We report both original and cross validation percentages of the cases correctly classified by DF analysis. A leave-one-out cross-validation test was applied, which uses the available data for cross validation avoiding the problems of random selections. The comparison of both percentages quantifies the uncertainty in assigning individuals to a certain group according to the estimated DF (Manly 1997). The divergence in the shape of the wings between hosts is visualized by Canonical Variate Analysis (CVA).

Results

Phylogenetic Analysis. In Fig. 2, we present the phylogenetic tree with Bayesian posterior probabilities (PP) for the mitochondrial COI sequences. All species from the genus *Praon* clustered together within the same group with 99% probability. Two specimens of *P. abjectum* originating from the association of *A. sambuci* / *S. nigra* were separated with 100% posterior probability from the other *Praon* taxa that formed a poorly supported phyletic group (PP = 51%). Within this group, aside a *Praon yomenae* as a separate taxon, three well-supported clades (all PP = 100%) were formed by 1) *P. abjectum* in association with the aphid host from the genus *Rhopalosiphum*, 2) *P. abjectum* from *L. trirhodus*, and 3) *P. dorsale* associated with a hazelnut aphid, *Corylobium avellanae* (Fig. 2).

A comparison of the COI mtDNA sequences between *P. abjectum* biotypes using Kimura’s two-parameter model showed substantial genetic divergence. Distances between the biotype associated with *L. trirhodus* and those associated with *Rhopalosiphum* sp. and *A. sambuci* were 5.4–6.5 and 7.7%, respectively, while the distance between the latter two biotypes ranged from 9.5 to 10%. These distances are far beyond any intraspecific distances typically observed for COI in Aphidiinae (Derocles et al. 2012).

On the BI tree constructed for the 28S D2 sequences, the congeneric species showed a close relatedness by grouping within the same clade (Fig. 3). Further clustering within the *Praon* clade is evident with two subclades formed, but with low posterior probabilities (PP = 66–68%). Species grouped within the first subclade are *P. abjectum* in association with *Rhopalosiphum* sp., *P. dorsale* from *C. avellanae* and *P. abjectum* from *L. trirhodus*. The second *Praon* subclade clustered *P. yomenae* in association with *Uroleucon inoculata* and *P. abjectum* from *A. sambuci*.

Pairwise comparisons of the nuclear sequences show a closer relatedness between the *P. abjectum* biotypes associated with *Rhopalosiphum* and *L. trirhodus*, with a distance of 0.1%, whereas the *A. sambuci* biotype differed by 0.5 and 0.6% from the previous two, respectively.

Geometric Morphometrics. The ANOVA showed no significant differences in wing size between specimens of the three *P. abjectum* biotypes (model df =
2; error df = 54; \(F = 1.07; P = 0.3511 \)). However, there was a highly significant difference in the shape of the wings among biotypes (MANOVA: Wilks’ \(\lambda = 0.1177 \); df1 = 44; df2 = 66; \(P < 0.0001 \)). The divergence in wing shape expressed as Procrustes and Mahalanobis distances is provided in Table 2.

The following percentages were found for the classification of individuals per biotype (the first and the second value in brackets being the original and cross-validation, respectively): \(A. sambuci \) 97% (63.4%), \(L. trirhodus \) 100% (33.33%), and \(R. padi \) 90% (20%).

To explore the divergence in wing shape among the three biotypes, we performed a canonical variate analysis (CVA), which reduces the within group variances and increases the between group divergences in the shape of the wing. \(P. abjectum \) specimens emerged from \(L. trirhodus \) were clearly discriminated from the ones associated with \(A. sambuci \) and \(R. padi \) by the shape of the stigma (described by landmarks 2, 5, and 6) and the position of the radial vein (described by landmarks 2 and 7) (Fig. 4). In addition, the specimens of the \(Longicaudus \) biotype have a wider distal part of the wing, especially the area above the radial nerve (described by landmarks 2, 6, 7, and 8), and narrower proximal part of the wing (described by landmarks 1, 3, 4, and 5). \(P. abjectum \) specimens emerged from \(A. sambuci \) and \(R. padi \) were discriminated along the second CV axis. The main shape changes that discriminated these two groups are related to the stigma shape and the position of the radial nerve. The biotype from \(R. padi \) has an elongated and narrower stigma (described by landmarks 2, 5, and 6) and an elongated radial nerve orientated laterally (described by landmarks 2 and 7) compared with the \(A. sambuci \) biotype with a more triangular stigma and shorter radial nerve orientated toward the posterior margin of the wing.

Description of Two New Praon Species

Praon longicaudus Tomanović & Starý n. sp. (Figs. 5–11)

Diagnosis. On the basis of the number of antennal segments (16 and exceptionally 17) and wing venation patterns (colored m-cu vein and colorless Rs + M vein), the new species is close to \(P. abjectum \). However, \(P. longicaudus \) n. sp. differs from \(P. abjectum \) in having a slightly concave dorsal margin of ovipositor sheaths (straight dorsal margin in \(P. abjectum \)), two conical spines at the tip of ovipositor sheaths (tip of ovipositor sheaths in \(P. abjectum \) without conical spines), and a more elongated petiole (T1 liters/w = 1.60–1.65 times in \(P. longicaudus \) n. sp. versus T1 liters/w = 1.30–1.40 in \(P. abjectum \)).

Female. Head. Malar space equal to 0.23–0.25 of longitudinal eye diameter. Clypeus oval with 18–20
long setae. Tentorial index 0.22–0.30. Maxillary palps 4-segmented, labial palps 3-segmented (Fig. 5). Head 1.25–1.40 times wider than mesoscutum. Antennae 16–(17)-segmented, filiform, with semiereect setae which are shorter than the diameter of the segments (Fig. 6). Flagellomere 1 (F1) and 2 (F2) elongate, 4.20–5.00 times as long as wide, and 2.60–3.00 times as long as wide, respectively (Fig. 6). F1, 1.25–1.40 times longer than F2. F1 without, and F2 with 0–1 longitudinal placodes.

Mesosoma. Mesonotum (Fig. 7) with central lobe densely covered with long setae. Lateral lobes of mesonotum with small hairless areas. Notaulices deep and distinct throughout. Propodeum (Fig. 8) smooth, densely pubescent except for small upper and lower central parts that are hairless.

Forewing. Stigma 3.45–3.75 times as long as wide (Fig. 9) and 1.50–1.80 times as long as distal abscessa of R1 (= metacaropus), m-cu vein colored and Rs + M vein colorless throughout. Forewing M vein long and colorless.

Metasoma. Petiole elongate 1.60–1.65 times as long as wide (Fig. 10), at the level of the spiracles. The distance between spiracles and apex less than the width at the spiracles level. Petiole with long setae along the sides. Ovipositor sheath (Fig. 11) elongate with dorsal margin slightly concave. Ovipositor sheath with round apex, with two conical spines on its upper and lower edge (Fig. 11).

Body Length. 1.8–2.0 mm.

Male. Antennae 18-segmented. Petiole shorter than in female, 1.30–1.50 times as long as wide, at the level of the spiracles. Mouthparts and legs yellow to brown. Petiole brown. Remaining body parts black.

reared from L. trirhodus on T. aquilegifolium, leg. Ž. Tomanović: 1 ♀, in ethanol, Montenegro. Plav-Oko, 21–VII–2006, reared from L. trirhodus on T. flavum, leg. Ž. Tomanović. All paratypes are deposited in coll. of Faculty of Biology, Institute of Zoology, Belgrade.

Expected Distribution. *P. longicaudus* n. sp. is probably following the distribution of the specific association of *L. trirhodus/T. aquilegifolium*, thus could be expected in the Palaearctic and possibly Nearctic. To date, *P. longicaudus* was collected from submontane and montane areas of Montenegro.

Etymology. The new species takes its name after the host aphid *L. trirhodus*.

Praon sambuci Tomanović & Starý n. sp. (Figs. 12–18)

Diagnosis. Morphologically, *P. sambuci* n. sp. is very close to *P. abjectum* and both species share the following common characters: wing venation pattern, absence of conical spines at the tip of ovipositor sheath and straight dorsal margin of ovipositor sheath. In addition, both species are parasitizing aphids from the genus *Aphis*. The new species *P. sambuci* n. sp. differs by having a more triangular stigma than *P. abjectum* (proportion between length and width stigma in *P. sambuci* n. sp. is 3.00–3.50 vs. 3.50–4.00 in *P. abjectum*) and a smaller number longitudinal placodes on flagellomere 2 (1–2 in *P. sambuci* n. sp. vs. 2–3 in *P. abjectum*).

Female. Head. Malar space equal to 0.20–0.30 of longitudinal eye diameter. Clypeus oval with 18–20 long setae. Tentorial index 0.30–0.36. Maxillary palps 4-segmented, labial palps 3-segmented (Fig. 12). Head =1.3 times wider than mesoscutum. Antennae 16-segmented, filiform, with semierect setae that are shorter than the diameter of the segments (Fig. 13). F1 and F2 elongate, 4.00–4.50 times as long as wide, and 2.50–2.90 times as long as wide, respectively (Fig. 13). F1, 1.30–1.40 times longer than F2. F1 without, and F2 with 1–2 longitudinal placodes.

Mesosoma. Mesonotum (Fig. 14) with central lobe densely covered with long setae. Lateral lobes of mesonotum with large hairless areas. Notaulices deep and distinct throughout. Propodeum (Fig. 15) smooth,
densely pubescent except for small upper and lower central parts that are hairless.

Forewing. Stigma 3.50 times as long as wide (Fig. 16) and 1.40–1.50 times as long as distal abscissa of R_1 (=metacarpus). m-cu vein colored and $Rs + M$ vein colorless throughout (Fig. 16). Forewing M vein long, pigmented in the first part and with spectral remaining parts, which reaching almost forewing margin.

Metasoma. Petiole elongate 1.25–1.35 times as long as wide (Fig. 17), at the level of the spiracles. The distance between spiracles and apex less than the width at the spiracles level, with long sparse setae along the petiole sides. Ovipositor sheath (Fig. 18) with a straight dorsal margin. Round apex, without conical spines on its upper and lower edge.

Body Length. 1.7–2.4 mm.

Expected Distribution. Currently, *P. sambuci* n. sp. was collected throughout the Palaearctic from the

aphid host A. sambuci in association with S. nigra and S. ebulus. Aside the plausible Palaeartic distribution, presence of the newly described species could be expected in North America as well. Though the host range is still to be investigated, most probably the P. sambuci n. sp. will follow the distribution of A. sambuci/ Sambucus sp. associations.

Etymology. The new species takes its name after the host aphid A. sambuci.

Discussion

One of the proposed mechanisms of cryptic speciation within the subfamily Aphidiinae is the splitting of sympatric populations driven by host specialization and changes in host selection behavior of the parasitoid (Tremblay and Pennacchio 1988, Rehman and Powell 2010). A good example of such a scenario represents Aphidius ervi (Braconidae: Aphidiinae), a common biocontrol agent of the pea aphid across the Palaeartic. Populations of this parasitoid associated with the stinging nettle aphid, Microlophium carnosum, were determined to express strong host specialization and to have evolved reproductive isolation from A. ervi, where after this parasitoid was described as a new cryptic species, Aphidius microlophii (Pennacchio and Tremblay 1987).

Several new species within the Praon dorsale/yomenae group have been described recently from the Eastern Mediterranean, which represent good examples of cryptic speciation by specialization to different, plant host-associated aphids of the genus Uroleucon (Mescheloff and Rosen 1988; Tomanović et al. 2003a,b).

Based on the results of molecular analyses and morphometrics, we identified two new cryptic species here: P. abjectum-like parasitoids in association with A. sambuci/ S. nigra and L. trirhodus/ T. aegilopfolium are described (according to their aphid host) as P. sambuci n. sp. and P. longicaudus n. sp., respectively.

According to Kavallieratos et al. (2005) and Tomanović et al. (2006), P. abjectum is recognized as a sister taxon to the remaining Praon species, possessing several plesiomorphic character states (e.g., absence of conical apical spines at the top of ovipositor sheaths and straight dorsal margin of the ovipositor sheaths). The newly described species P. sambuci shares the same plesiomorphic characters, whereas P. longicaudus possesses two conical apical spines at the top of the ovipositor sheaths and a slightly concave dorsal margin of the ovipositor sheaths. Based on the wing shape P. longicaudus n. sp. is clearly distinguished from P. sambuci n. sp. and P. abjectum. The main shape changes that discriminate all three bio-types are related to the stigma shape and the position of radial nerve.

The nuclear gene 28SD2 is a more conservative gene than mitochondrial DNA, thus had mostly been used in phylogenetic analyses of higher taxa within the family Braconidae (Quicke 2002, Downton et al. 2002, Whitfield et al. 2002). The low genetic variation of 28SD2 sequences determined in this study between species of the genus Praon was to be expected and only confirmed their close relatedness. However, using the mitochondrial COI, clearly identified three taxa within the P. abjectum group as separate entities with substantial genetic divergence among them, that is, P. abjectum in association with Rhopalosiphum sp., P. abjectum associated with A. sambuci/ S. nigra and P. abjectum in association with L. trirhodus/ T. aegilopfolium.

P. longicaudus n. sp. is morphologically and genetically clearly separated from P. abjectum. However, the large genetic distance between P. sambuci n. sp. and P. abjectum (9.5–10% at COI) is not matched by morphological variation, including the shape of the forewings. Both species are morphologically very close, with slight differences in the shape of the stigma and the number of placodes on flagellomere 2. Because the relatively small number of P. sambuci n. sp. specimens in our analysis could have affected the estimation of the mean shape and variance in geometric morphometrics (Cardini and Elton 2007), a larger sample size would certainly increase the reliability and therefore the correct morphological identification.

A. sambuci and L. trirhodus are holocyclic and heteroecious aphids of Palaeartic distribution (Blackman and Eastop 2006), both being reported as invasive pests in the United States (Foottit et al. 2006). Pike et al. (2000) documented that A. sambuci in the northwestern United States is parasitized by Lysiphlebus testaceipes, a native North American parasitoid species. However, parasitoid guilds of A. sambuci in Europe are comprised of Binodoxys angelicae, B. aculeaphae, Ephedrus plagiarior, P. abjectum, and Lysiphlebus cardui (Kavallieratos et al. 2004b, Starý 2006). Our examination of the P. abjectum specimens collected from Southeastern and Central Europe associated with A. sambuci showed that in fact they belong to a separate taxon, the here described P. sambuci. For this reason, all literature records of P. abjectum on common elder aphid hosts should be re-examined for the possible presence of the newly described cryptic species. Parasitoids associated with L. trirhodus in North America are still unknown, whereas in Europe the following four species were recorded to parasitize this aphid (Kavallieratos et al. 2004b): Aphidius eglanteriae, Ephedrus laevicolis, P. abjectum, and Trioxys chaetopsis. Analyzes of P. abjectum specimens collected from L. trirhodus/ T. aegilopfolium in South-eastern Europe identified them as a separate species, P. longicaudus. In the absence of any native parasitoids effectively controlling populations of the invasive pests A. sambuci and L. trirhodus in North America, it could be considered to include parasitoids from Europe in classical biological control programs. As a reported member of the parasitoid guilds for both aphid hosts, one of the potential agents might be P. abjectum. For this reason, it is of great importance to pursue the host range tests to define the level of host specialization of the newly described species within the P. abjectum group and to ascertain accordingly what distribution patterns are to be expected.
There is a great interest in resolving the taxonomic status of aphid parasitoids to estimate the role of each separate species in the very complex interactions in agroecosystems and the surrounding natural habitats (Kavallieratos et al. 2008, Tomanović et al. 2009). Our study shows that an integrative approach using molecular markers, classical morphology, and geometric morphometrics shows great potential to resolve cryptic taxa of aphid parasitoids in agroecosystems as well as natural environments.

Acknowledgments

We thank to professor Olivera Petrović-Obadović (Faculty of Agriculture, University of Belgrade) for identification of the aphids. This study was supported by the grants No. IZ73Z0 1 28174 (SCOPES program of the Swiss National Science Foundation) and III43001 (The Ministry of Education and Science of the Republic of Serbia). The participation by P. Starý was partially supported from the Entomology Institute project AV0Z5070508 (Academy of Sciences of the Czech Republic).

References Cited

Stary.
Tomanovic.
Tumanovic.