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18. Further models for proofs of independence. The reader of 
Part VI will have noticed that among the set-theoretic models considered 
there some models were missing which were announced in Par t I I for 
certain proofs of independence. These models will be supplied now. 

Mainly two models have to be constructed: one with the property that 
there exists a set which is its own only element, and another in which the 
axioms I - I I I and VII, but not Va, are satisfied. In either case we need not 
satisfy the axiom of infinity. Thereby it becomes possible to set up the 
models on the basis of only I - I I I , and either VII or Va, a basis from which 
number theory can be obtained as we saw in Part I I . 

On both these bases the II0-system of Part VI, which satisfies the axioms 
I-V and VII, but not VI, can be constructed, as we stated there. An 
isomorphic model can also be obtained on that basis, by first setting up 
number theory as in Part I I , and then proceeding as Ackermann did.85 

Let us recall the main points of this procedure. 
For the sake of clarity in the discussion of this and the subsequent 

models, it will be necessary to distinguish precisely between the concepts 
which are relative to the basic set-theoretic system, and those which are 
relative to the model to be defined. 

Unless otherwise stated, the terms are to refer to the basic system, so 
that in particular the term "natural number" (or simply "number", when no 
ambiguity seems possible) means "finite ordinal of the basic system". 
Furthermore in order to indicate the role of the natural numbers as con­
stituting the sets of the model we speak of them as "new sets". 

We now proceed to the description of Ackermann's number-theoretic 
model, which we call briefly the model ffl. The sets of the model ffl are 
the natural numbers, and the element relation in 50i, which we denote by 
"men", is defined to mean that the greatest natural number k such that 
k-2m <, n is odd. (It may be recalled that the relation r < s between natural 
numbers r, s in our system is simply r e s.) The condition amounts to re­
quiring that 2™ occurs as a term in the expansion of n as a sum of different 
powers of 2. Classes in 9ft are number classes, and the relation m r\ A is the 

Received March 30, 1953. 
84 Parts I-VI appeared in this Journal, vol. 2 (1937), pp. 65-77; vol.6 (1941), 

pp. 1-17; vol. 7 (1942), pp. 65-89, 133-145; vol. 8 (1943), pp. 89-106; vol. 13 (1948), 
pp. 65-79. 

85 W. Ackermann, Die Widerspruchsfreiheit der allgemeinen Mengenlehre, Math. 
Ann. vol. 114 (1937), pp. 305-315. 

81 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2268864
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:56:31, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2268864
https:/www.cambridge.org/core


82 PAUL BERNAYS 

same as in the basic system. Also the identity relation between sets and 
between classes remains unchanged. 

For verifying that the model so defined satisfies all the axioms I-V and 
VII, it will suffice to give the main ideas. 

That the extensionality axiom holds is immediate. 
As to the axioms II we have: The number 0 is the null set. The augmen­

tation of a new set m by a further element n consists in the operation m-\-2n.— 
An ordered pair <m, rCy of new sets is either the number 22™ in case m = n, 
or 2*m+22m+2" otherwise. 

For the verification of the axioms I I I we can rely on the following cir­
cumstances. There exists the class of natural numbers. The relation e 
can be formulated by a constitutive expression,86 likewise the ternary 
relation (a = b & c = 22") v (a =£ b & c = 22"+22'+2"). From the latter in 
particular it follows that , for every class of pairs (in the old sense) of new 
sets, there exists the class of the corresponding pairs in the model, and 
inversely. Likewise it is to be noted that for a class of pairs in the model 
the domain and also the converse domain is (by the definition of the 
"member" of a new pair) the same as for the class of corresponding pairs 
in the basic system.— As a consequence of the holding of the axioms I I I 
in 9Jt the class theorem is available for 2J£. 

The validity of the axiom IV in 9K follows from the circumstance that 
every class of natural numbers has a smallest element. In fact, to a class A 
of pairs of numbers there exists by the class theorem the subclass of those 
pairs <m, n> such that <,m, k> does not belong to A for any ken. 

That the axioms Va-d hold for 9ft follows by applying the following 
elementary fact (which is a consequence of the theorems on finite sets 
proved in Part II) . If A is a finite class of natural numbers, then there 
exists the sum 2 2* of the ktn powers of 2 extended over the elements 

kvA 

k of A. This indeed amounts to stating that every finite class of new sets is 
represented in the new sense by a set. For instance, the class of the new 
subsets of a new set n is in the old sense a class of natural numbers not 
greater than n, so it is a finite class and therefore by the theorem just stated 
it is represented in the new sense by a set; thus Vd holds for 9K. 

Axiom VII follows by using that every non-empty class of natural 
numbers has a smallest element and that each element, in the new sense, of 
a number m i s a number smaller than m. 

So indeed the Ackermann model Wl is found to satisfy all our axioms 
besides the axiom of infinity. 

Now a slight modification of the method used here allows us to construct 
the models which were announced in Part II . 

"''• In the sense of P a r t I, pp . 7 0 - 7 1 ; for the proof see P a r t II, pp . 11-14. 
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A SYSTEM OF AXIOMATIC SET THEORY 83 

By means of the first, which we shall call Wtx we are to show that the 
existence of a set87 which is its own only element is compatible with the 
axioms I—III and Va and even with all the axioms I-V. 

The model W1 is obtained from 9tt by merely interchanging 0 e » and 
1 e n in the definition of elementhood between new sets. Thus the definition 
of m e n for m ;> 2 is the same in 9KX as in Wl, but in Wt we have 1 e n if 
and only if n is odd, and 0 e n if and only if n is of one of the forms 4ft+2 
or 4ft+3. According to this a new set is again determined by its elements. 
Moreover the number which in W1 is the new set with the elements 
ffjj, . . . , mk is obtained from the number 2 m i + • • • • + 2m* by replacing 
the exponent 0, if it occurs, by 1, and likewise 1 by 0. 

There is now no difficulty in adapting to Wi the verification of the axioms 
I-V given for the model ffl. But axiom VII is not satisfied, since the new set 
1 is its only element. 

This method of modifying 3R can be sharpened so as to produce models in 
which the axiom VII is violated in a stronger way. We give two instances. 

Let us define «*, for a natural number n, as follows: if n is odd, then n* 
is 2"; if n = 2k with k odd, then n* is k; in all other cases, n* is n. According 
to this obviously (»*)* = n. Now the element relation menis defined to 
mean that m* occurs as an exponent in the dyadic expansion of n. The 
condition can also be expressed in this way: we have m* e n, if and only if m 
occurs as an exponent in the dyadic expansion of n. Then again all the 
axioms I-V can be verified to hold. (Indeed the element relation can again 
be formulated by a constitutive expression, and likewise the relation between 
m, n and <w, w>, since the ordered pair <w, riy is now 2(2"">* for m = n, 
and 2(2",*)*+2<2""+2"*)* otherwise.) Axiom VII is now violated in such a 
way that for each odd number m we have (2m) = 2™. Thus we have an 
enumerable class of new sets which are their only elements. 

The other instance differs from the foregoing only by the definition of 
the star-function. Namely we define: for n odd, n* is 2"+2; for n = 2*+2 

with k odd, n* is k; in all other cases, n* is n. Here the deviation from axiom 
VII is such that we have an enumerable class of new sets where the set ak, 
assigned by the enumeration to the number k, has ak+1 as its element. 
Indeed we have 22*+1 = (22*+3) = ((22fc+5)), and so on. 

Remark. The model SJlj and also the two subsequent models of a set 
theory not satisfying the axiom VII can be extended to satisfy also the 
axiom VI (the axiom of infinity), provided this axiom and the axioms V 
are included in the basic system. Namely we can perform a construction 
fully parallel to that of the II-system with only the following differences: 
(1) As starting set we take not the null-set but the set of all natural numbers, 
which exists as a consequence of the axiom VI. 

87 Cf. Part II, p. 9. 
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84 PAUL BERNAYS 

(2) Every finite set of natural numbers which is not itself a natural number 
is left out. 
(3) The element relation between natural numbers is defined in the 
same way as it is in the model to be extended. 

The replacement process (2) has to be repeated at each step of the ex­
tension of the system of sets by the successive formations of power sets 
and sums. In the resulting system of sets, which in the basic system (by 
the general recursion theorem) is a class 5, every set, as in the IT-model, 
has a degree. For every natural number the degree is null; for other sets 
it is a successor ordinal. 

The classes of the new system are the subclasses of 5, taken in the 
basic system. The element relation between sets belonging to S — with the 
exception of that one newly defined between natural numbers — is the 
original one, likewise that between sets and classes. 

I t can be shown that the system of sets and classes so constructed satisfies 
the axioms I—III, V, VI, and also the axiom IV if this is satisfied in the 
basis. So from the extended models it follows that , if we can satisfy the 
axioms I-VI (with or without axiom IV), we can satisfy them in such a 
way that there exists an infinite set each element of which is its own only 
element,88 and also in such a way that there exists an infinite sequence 
each member of which has the following member as its element. 

Now we come to the other announced model,89 which we call Wl2- By this 
we are to show that without Va it cannot be proved (a) that a transitive set 
having every transitive proper subset as an element is an ordinal, nor (b) that 
a set is an ordinal if it satisfies Zermelo's defining conditions for n being an 
ordinal, which are: 0 = t i V O e « ; a e n -> a-{-(a) = n V a-\- (a) e n; if 
s £ n, then the sum of the elements of s is represented either by n or by an 
element of n. 

The proofs are impossible not only on the basis of I—III and VII, but 
even if IV and Vc are added. The availability of Vc is particularly agreeable 
for the consideration of Zermelo's conditions, since by it the third of these 
conditions becomes simpler in the sense that the representation of the sum 
of the elements of s by a set holds already in virtue of Vc. Of course Zermelo 
in setting up his definition presupposed the holding of Vc. 

The model ffl2 i s again number-theoretic. As before, the class relation 
in it is the ordinary one of a number belonging to a class of numbers, and 
the element relation e is again connected with the dyadic expansion of 
numbers, but in a more complicated way. In order to facilitate its formulation 
let us take 0c(&, m) as an abbreviation for "k occurs as an exponent in the 

88 This has been recently shown by another method by Ernst Specker in his Ha-
bilitationsschrift of 1952, soon to appear. 

89 Cf. Part II , p. 10, bottom. 
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A SYSTEM OF AXIOMATIC SET THEORY 85 

dyadic expansion of m". Further we use 2/» for "n is even" and 2~/-n for 
"n is odd". We then have the following definition by cases:90 

I m \ 
(1) If 2/n, then m "kn^> 2jm &0c I \-\, n\, 

(2) if 2-f-n and {Ex)(x =£ 0 & 2\x & 0c(%, n)), then m c w <-> Oc(m+1, n), 
(3) if 2 -/• wand (x)(x ^ 0 & 0c(%, w) -^-2 -/- x), then w e n «-> 2/m V Oc(m,n). 

This definition may be explained as follows. The three cases on n corre­
spond to three kinds of new sets: 
(1) those whose transitive closures are finite, 
(2) those which themselves are finite whereas their transitive closures are 

infinite, 
(3) those which are infinite. 

Concerning the elements of a new set n, we see that , if n is of the first 
kind, its elements are the numbers 2&—2 such that Oc(ft, n). If n is of the 
second kind, then its elements are the predecessors of the exponents ^ 0 
in its dyadic expansion. If n is of the third kind, then its elements are 
the even numbers together with the odd exponents in the dyadic expansion 
of n if there are such exponents. 

The idea of this arrangement is that besides "normal sets", which are 
those finite sets whose transitive closures are finite and which arithmetically 
(in the basic system) are characterized as the even numbers, we have also 
the set of all normal sets corresponding to the "old" 1 and all those non-
normal sets which are generated from 0 and the old 1 by the iterated oper­
ation of adding an element (already obtained) to a set. One also sees that 
every finite set of normal elements occurs as a normal element, and every 
other finite set occurs as an element of second kind, and every set which 
has as elements all normal sets besides (at most) finitely many other sets 
occurs as a set of third kind. 

Now we proceed to verify the axioms I-IV, Vc and VII for this model W2-
As to extensionality, one easily sees that sets in 9K2 which have the 

same elements must be of the same kind and then also must be identical. 
For the axioms I I , we have first that 0 is the empty set in $R2. For axiom 

11(2), we shall explicitly indicate how to obtain from a number n which is 
a new set the number a (n, m) which in 9Jc2 is the set arising from n by adding 
a set m, not yet in n, as an element. Here we have to distinguish three 
cases relative to the kind of n. 

(1) If n is of the first kind, we have to consider two possibilities ac-

cording as m is even or not. If m is even, then a(n, m) = M + 2 2 . If m is 
odd, then a(n, m) = (nx-f l) + 2m + 1, where n1 results from n by replacing 
every additive term 2k in the dyadic expansion of n by 22*- 1; indeed n 

90 We use here "<-»" instead of "if and only if". 
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86 PAUL BERNAYS 

is of the first kind and a(n, m) has to be of the second kind, so that for the 
representation of the elements by the exponents we have to make the passage 
from the first to the second case. 

(2) If n is of the second kind, we have a(n, m) = n-\-2m+1, since this 
number is also of the second kind. 

(3) If n is of the third kind, m must be odd and we obviously have 
a(n, m) = n-\-2m. 

In order to define a(n, m) for arbitrary numbers, we need only take 
a(n, m) — n for the case that the new set m is in the new set n. — By means 
of a(n, m) we can express the function which is the number-theoretic 
representation of the ordered pair <a, by. Indeed, we have <a, ay = 
a (0, a(0, a)), and for a ^ b, <a, by = a(a(0, a(0, a)), a(a(0, a), b)). 

For the axioms I I I and IV the verification can be made in the same 
way as for the model W', in particular it is necessary to take into account 
here that in 9ft2 the element relation and also the relation <«, by = c can 
be formulated by a constitutive expression. As a consequence of the axioms 
I I I the class theorem holds again in 9K2. 

In order to see that Vc holds in ffi2, it is sufficient, on account of our 
previous statements about the different kinds of new sets, to observe that 
the sum of the elements of any new set is either a finite set of new sets or 
has as elements all normal sets besides at most finitely many non-normal 
sets. 

That axiom VII is also satisfied results as follows. Let A be any non­
empty class of 2ft2. Two possibilities are to be considered, (a) A has at 
least one even number as element. Let n be the smallest among them. Then 

-
n has no element in common with A. For, if k e n, then 2\k and 22 <. n, 

k n 
hence — < —, k < n, and thus k cannot belong to A. (b) A has only odd 

numbers as elements. Among these there is a smallest one n. Then again n 
has no element in common with A. Indeed such a common element k 
would be odd, and since n is of the second or third kind, we should have for 
an odd element k of n that 2* <I n or even 2k+1 ^ n, and thus k < n. 

But axiom Va obviously is not satisfied. Indeed an infinite subclass of 1 
or of any new set of the third kind is represented by a set only if it has all 
even numbers as elements. 

Similarly we find that neither Vb nor Vd holds in W2. For Vb this follows 
by considering any one-to-one correspondence of the new set 1 to a proper 
infinite subclass. As to Vd, let us show that the new set 3 is a counterexample. 
Indeed 3 = 2°-f 21; thus 3 is of the third kind, and its elements are 1 and 
the even numbers. Now the set of the second kind l-\-22-\-2ik+l whose 
elements are 1 and 2k is a subset of 3. Since k is arbitrary, there are infinitely 
many odd numbers (non-normal sets) which are subsets of 3, and thus are 
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A SYSTEM OF AXIOMATIC SET THEORY 87 

elements of the class of all subsets of 3. This class therefore cannot be 
represented by a set, because a new set of any kind has only finitely many 
odd numbers as elements. 

Now we are able to prove our aforementioned assertion that on the basis 
of the axioms I-IV, Vc and VI I : (a) the conditions on a set that it be transitive 
and that every proper transitive subset be an element of it are not sufficient 
for a characterization of ordinals, and (b) likewise the conditions constituting 
Zermelo's definition of an ordinal formulated in Part I I are not sufficient 
for the same purpose. 

This indeed follows from the consideration of the new set 1. In 9Jl2, 1 is 
not an ordinal, as can be seen as follows: 4 e 1, 2 is the only element of 4, 
and 0 i 2, therefore 4 is not transitive and thus is not an ordinal; so neither 
is 1 an ordinal. On the other hand, 1 satisfies the conditions that it be 
transitive and every proper subset of 1 be an element of 1. For, every 
element of 1 is a normal set, and each element of a normal set is again such a 
set; and further every proper subset of 1 must be of the first kind, and 
therefore is an element of 1. 

But also the Zermelo conditions for a set being an ordinal are satisfied 
by 1. In fact 0 e 1; if n e 1, then a(n, n) e 1; and if s is a subset (in the new 
sense) of 1, then the new sum of the elements of s is either 1, or is a normal 
set and then is an element of 1. 

19. Reduction of the set-theoretic basis , including classes , to 
a number-theoretic frame. Our construction of the models 9ft, Wv 9tt2 

has been performed in the frame of the axiomatic system consisting of the 
axioms I—III, VII or else I—III, Va. This basis is wider than that frame of 
set theory whose consistency, as shown by Ackermann's reasoning (I.e.), 
results as a consequence of the constructive proofs of the consistency of 
number theory given by Gentzen, Kalmar, Ackermann, Lorenzen, Schiitte 
and Stenius91. Indeed we have here the strengthening by the addition of 
the classes; however this strengthening is only of a restricted character 
in so far as we do not apply the concept of class in an impredicative way, 
so that the introduction of classes serves mainly to embody a part of 
metamathematics in the axiomatic system itself. This fact suggests the 
conjecture that it will be possible also for the frame considered to reduce the 
consistency proof to that of number-theory. A natural idea for this is 
to represent the classes by Godel numbers, or more exactly by those of 
number-theoretic expressions corresponding to the constitutive expressions 
for them. But here a difficulty arises initially with regard to the 77-relation 
(of a set belonging to a class). We should tend to express this relation by 

91 E. Stenius; Das Interpretationsproblem der formalisierten Zahlentheorie und ihre 
formate Widerspruchsjreiheit, Acta Academiae Aboensis (Math, et Phys.) vol. 18, 
no. 3, Abo Akademi, Abo 1952, 102 pp. 
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88 PAUL BERNAYS 

that of a set satisfying a constitutive expression. But this relation, as results 
from Tarski's theory of the truth concept, transgresses the formal system 
of number theory. On the other hand, if we replace the satisfaction (Er-
fiillung) of a constitutive expression by a provable satisfaction, then the 
holding or not holding of an ^-relation would no longer be exhaustive 
alternatives. 

This dilemma can be overcome by the procedure of Use Novak92 which is 
based essentially on the method developed by Leon Henkin93. We will not 
presuppose familiarity with these methods, but explain their application to 
our case independently, making use of a simplification applied by Gisbert 
Hasenjager94 to the method of Henkin. 

What we want to get is a model of our basic system, i.e. of the axioms 
I—III and VII, set up in the frame of the number-theoretic formal system 
Z of Grundlagen der Mathematik with certain additions to be mentioned 
presently. In making these additions we shall use an accessory result of the 
cited constructive consistency proofs for number theory, namely that 
the consistency of the system Z is preserved by the following kinds of 
additions: first addition of a finite number of primitive recursive definitions, 
second addition of a verifiable recursive formula as an axiom. Obviously 
also the consistency is not disturbed by adding numbered individual 
symbols u0, u1, u2, . . . . 

In order now to prepare the Lindenbaum completion process we first assume 
a fixed Godel numbering of the expressions of Z with the added functors 
and individual symbols included. The next step consists in adding as axioms 
the formulas (Ex)'$i(x) -»• %{u}) where (Ex)'H{x) is any closed formula of 
the indicated form and j is the Godel number of this formula. No contra­
diction can arise by the addition of these formulas to the former consistent 
system. For otherwise already finitely many such formulas (Ex)yiP(x) -> 
yLP(Uj ) (p = 1, 2, . . . t) would yield a contradiction, and if j t is the greatest 
of the / j , , then by the deduction theorem it would follow that from the 
formulas (Ex)%v{x) -> ^^Uj ) with p < r (on the basis of our number-
theoretic system) the negation of (Exj^t^x) -> 2Ir(w,r) and thus the formulas 

92 I. Novak, A construction for models of consistent systems, Fundamenta tnathe-
maticae, vol. 37 (1950), pp. 87-110. 

3:1 L. Henkin, The completeness of the first-order functional calculus, this JOURNAL, 
vol. 14 (1949), pp. 159-166. An essential step in Hcnkin's procedure is the construc­
tion of a complete set of formulas from any consistent set of formulas, on some logical 
basis. This method goes back to A. Lindenbaum; see A. Tarski, Fundamentale Begriffe 
der Methodologie der deduktiven Wissenschaften I, Monatshefte fiir Mathematik 
und Physik, vol. 37 (1930), Satz I. 56, p. 394. We shall therefore refer to this method, 
which (in the form in which we have to use it) will be explained, as the "Lindenbaum 
completion process". 

81 G. Hasenjager, Eine Bemerkung zu Henkin s Beweis fiir die Vollstdndigkeit des 
Prddikatenkalkiils der ersten Stufe, this JOURNAL, vol. 18(1953), pp. 42-48. 
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A SYSTEM OF AXIOMATIC SET THEORY 89 

(Ex)tyir{x) and 3lr(M3-r) could be derived. But then also, since uir cannot 
occur within 5l„(#) for p < x, %{v) would be derivable for any free variable v 
and thus also (#)9Ir(#). So already the first r— 1 of the formulas (Ex)%v(x) -> 
%v{tij ) would lead to a contradiction. However this possibility can be 
excluded by assuming from the beginning that the index r has been chosen 
as the minimal one for which a contradiction arises from formulas (Ex)(ii{x) -> 
%(Uj) (out of our series) with j <, t. 

Let us denote by Zl the formal system which we obtain by adding to the 
system Z the said recursive definitions— we introduce as many of them as 
are sufficient for performing the Godel arithmetization of syntax and the 
elementary theory of dyadic expansion (as used in our model) — , the 
individual symbols uv and the accessory axioms (Ex)^[(x) -> 9l(w,-). As 
we have seen, Zx like Z is a consistent system.— 

Now we are to perform Lindenbaum's completion process; however it will 
be sufficient to do this only implicitly by defining a number-theoretic 
predicate formulating the property of a number ! of being the Godel number 
of a closed formula which is derivable in the completed system. This pred­
icate corresponds fully to I. Novak's predicate T, and we shall denote it 
by the same letter. 

Let us first give the definition of T(k) in an informal way, and afterwards 
indicate how to formalize it in the frame of Zv We begin by introducing the 
concept of an extension set of Zv By an extension set of Z1 we understand 
a finite set of closed formulas of Zx which, if added to Zj, do not yield a 
contradiction. An extension set can be indicated by the set of the Godel 
numbers of its formulas, and this set can be represented by that number 
in whose dyadic expansion those Godel numbers are the exponents 
which occur. Thus a number n will be said to represent an extension set of ZT, 
if the exponents in the dyadic expansion of n are the Godel numbers of 
closed formulas which added to Zx as axioms preserve consistency. One 
extension set deviates from another, if neither of them is a subset of the 
other.— Of two extension sets deviating from each other, that one is 
called anterior which contains the formula with the smallest of those Godel 
numbers occurring for one of them but not for both. Now T(k) is the following 
number predicate: "k is the Godel-number of a formula of some extension 
set which is anterior to every extension set that deviates from it". 

For the formalizing we make use of the primitive recursive relation e 
of our model 5ft. Further we denote by "Es(w)" the predicate "n represents 
an extension set of Z j " . The above definition of this predicate obviously 
can be formalized by means of the Godel arithmetization of the syntax of Z r 

The concepts "deviating" and "anterior" are formalized by the explicit 
definitions 

Dv(k, I) <- (Ex)(x e k & xTT) & (Ex)(xTk &xel), 
Ant (k, I) «-> (Ex)[(y)(y < x .—*. y e k <-+ y e I) & x e k & x e l). 
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Now the formal definition of T(k) is 

T(k) «-> (Ex)[Es(x) & (y)(Es(y) & Dv(x, y) -+ Ant(%, y))&kex]. 

This definition of T(k) can be shown by means of complete induction to 
be equivalent to the following recursive condition: T(k), if and only if k 
is the Godel-number of a closed formula which on the basis of Zx is compat­
ible with all those closed formulas whose Godel-numbers are lower than k 
and have the property T. Using the consistency of Zv which is formally 
expressible by a verifiable primitive recursive formula whose addition to 
Zj as an axiom preserves the consistency, we can prove that there are 
infinitely many numbers k such that T(k). By calling a formula whose 
Godel number has the property T a T-formula, as we shall do in the 
following, we can express the last statement by saying that there are in­
finitely many T-formulas. 

Also it can be seen that every closed formula provable in Z : is a T-
formula, and that every closed formula derivable by means of Zz from 
T-formulas is again a T-formula. 

Further with regard to the logical operations we have the statements: 
(1) 91 is a T-formula, if and only if 91 is not a T-formula. (2) 9( & 93 is a 
T-formula, if and only if 91 and 93 are T-formulas. (3) (Ex)'H(x) is a T-
formula, if and only if there is a number / such that %{ii,) is a T-formula. 
We can say even more, namely that (Ex)%(x) is a T-formula, if and only if, 
when r is its Godel-number, 21 (wr) is a T-formula. In order to express 
formally in Zx the last condition we have to apply the primitive recursive 
function U(r) (which can be composed out of the recursive functions in­
troduced in Zj) whose value for a definite value r of r is the Godel-number 
of ut. Statements corresponding to (l)-(3) hold for the other logical con­
nectives in virtue of their expressibility by means of the three mentioned. 
For illustration let us consider the following example, for which we use the 
original form of Godel numbering of formulas. Let t), $, p, n be the numbers 
(Zeichennummern) of the symbols = , -f- •, 0, and let i be the number of 
the formula (x) (x ^ 0 - > (Ey)(Ez)(x-y = u128 -\- z)). Then we have 

7(1) «-»(*)|T(2U(I)-3J>-5B) ^(£y)(£*)T(2U(*)-3»-5U(y)-7«-llU(m,-13--17U(0 ,);i. 
We are now ready to set up our number-theoretic model of the system of 

the axioms I - I I I and VII. We do this by describing the model in the frame 
of the metarnathematics of Zx including the theory of the predicate T. The 
whole reasoning can be formalized in the frame of ZY with the addition of the 
consistency formula as an axiom. As this formal frame is shown to be 
consistent by Gentzen's and the other constructive proofs, from the same 
proofs it will follow that our system I - I I I and VII is also consistent, and so 
the consistency of the system of our axioms I -V and VII proved by the 
model 9ft and the independencies proved by means of the models l$H1, 9Ji2 

hold also as a consequence of the constructive consistency proofs. 
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A SYSTEM OF AXIOMATIC SET THEORY 91 

In describing the metamathematical model we do not enter into all the 
details of the number-theoretic formalization, the method of which is indeed 
well known. We shall apply the number-theoretic notations, where it seems 
useful for clarity. 

As sets we take the individual-symbols u0, ux . . . . Equality between 
Mt and M, is not to be understood as simple identity, but rather we define 
M; to be equal to ut if the equation u{ = «, is a T-formula, or what is the 
same, if T(2U(i).3t).5U(I)). As we see, this relation, briefly "i = k", is not 

T 

directly a predicate of ut and uk but rather of i and k; yet we can regard it 
as referring to the symbols uit since these are assigned in a one-to-one way 
to their indices. 

In a like indirect way we define the element-relation between u{ and 
M, by a number-theoretic predicate "i e k" which holds for t and ! if and 

T 

only if the result of substituting uK for a and ut for b in the number-theoretic 
formula @(a, b) which expresses the relation alb (i.e. "a occurs as 
exponent in the dyadic expansion of b") is a T-formula. 

As classes we take the propositional expressions of our system Zv with 
a distinguished variable c (Nennvariable) as their only free variable. These 
expressions of course have Godel numbers and therefore can be enumerated 
as ty0{c), tyi{c), . . . . I t may be noted that the Godel number of ^5t(c) 
depends primitive recursively on !, since we can give a primitive recursive 
majorant for the sequence of the Godel numbers of the $((c) (f = 0, 1,...). 

As the predicate of a set belonging to a class we take the relation "i r\ k" 
which holds for t and ! if the formula ^t(u^ is a T-formula. T 

Finally we define equality between ^ ( c ) and tyt(c) l o m e a n that the 
formula (%)( t̂(%) <-+%t{x)) is a T-formula. 

We can now show that the axioms I—III and VII are satisfied. For 
these verifications we have to make repeated use of the fact, already stated, 
that the predicate "being a T-formula" commutes with the logical connec­
tives (including the quantifiers). 

From this it follows that first the (preliminary) axioms of equality and 
the axioms of extensionality are satisfied. Let us illustrate this by the case 
of the extensionality axiom for sets. What we have to show is that , if for 
every u{ t e t holds if and only if t e 1, then ! = t. By the mentioned 

T T T 

commutativity of the predicate "being a T-formula", this comes to the 
same as: 

if (*)((£(#, «,) <-> (£(#, «,)) 

is a T-formula, then ut = ux 

is a T-formula. Now in Zx we can prove 

(*)((£(*, ut) «-> ©(*, M:)) -> ut = uv 
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92 PAUL BERNAYS 

Thus this formula— let us abbreviate it 2( -» 93 — is a T-formula, and so, 
if 91 is a ^-formula, S3 is a T-formula. But just this had to be shown. 

As to the axiom II 1, we have that the formula (Ex)(z)((£(z, x)) is provable 
in Zx and thus is a T-formula. Let n0 be the Godel number of this formula; 
then also (z)({B(z, «nJ) is a ^-formula. Thus un has the role of the null set. 

For the verification of I I 2, we have to prove 

(x)(y)(Ez)(v)(v e z +-> v e xVv = y). 
T T T 

By the commutativity of the predicate "being a T-formula" this is equiva­
lent to stating that the formula 

(x)(y)(Ez)(v)(&(v, z) <-> @(w, x)Vv = y), 

is a T-formula. However this results from the fact that this formula is 
provable in Zv 

For the axioms I I I the task of verification amounts to showing that in 
each case the class stated in the axiom to exist is characterized in our model 
by the condition on the elements u-x that i rj f holds for a certain propo-

T 

sitional expression tyt(c). For this a difficulty might seem to arise from the 
circumstance that in the defining conditions for the classes certain classes 
occur as parameters. However, since in our model the classes are themselves 
predicates (i.e. propositional expressions), this is no hindrance. Besides 
we have everywhere to make use again of the commutativity of the pred­
icate "being a T-formula". 

Let us illustrate the method of verification for the case of the axiom c(l), 
which we can satisfy even in the strengthened form (as it occurs in Godel's 
monograph95): "For every class A there exists a class whose elements are 
those sets which are the first members of ordered pairs belonging to A." 
In order to express that this assertion holds for our model, we have to 
translate the condition "a is the first member of an ordered pair belonging 
to a given class A", i.e. 

(Et){(Ex)(Ey)(Ez)(u)(v)(w)[(u ex<^>u = a)&(vez<->v = aVv = y)8c 

& (w € t <~> w — x V w = z)] & t r] A}, 

into a condition for a uK with respect to a propositional expression tyt(c). 
This is to be done by the following steps: First we replace the set variables 
by number variables (ranging over the indices of the w-symbols), but we 
need not change the letters. Further we change every "e" into "e", every 

T 

" = " into " = " ; and finally we replace the conjunctive member tr\ A by 
T 

95 K. Godel, The consistency of the continuum hypothesis, Annals of mathematics 
studies, No. 3 (1940), axiom B5. 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2268864
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:56:31, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2268864
https:/www.cambridge.org/core


A SYSTEM OF AXIOMATIC SET THEORY 93 

t r\ k. Now what we have to recognize is that the resulting formula 
T 

(Et){(Ex)(Ey)(Ez)(u)(v){w)[(u ca;<->M = a ) & ( v € Z < - H J = a V j ) = y)& 
X T T T T 

(w e t <-> w = x V w = z)] & t r\ k}, 
T T T T 

with the variable a replaced by the numeral i and k by the index f of the 
propositional expression ^5t(

c) to be substituted for A, expresses that, for 
a certain propositional expression ^Jr(c), the formula ^r(«t) is a T-formula. 
But it is easy to find a %t{c) of this kind. Indeed by virtue of the already 
repeatedly applied commutativity of the predicate "being a T-formula", 
we get it from our first formula by letting the variables t, x, y, z, u, v, w 
range over the M-symbols instead of over sets, and replacing a by c, and 
every expression a e b by the corresponding (£(a, b), and the expression 
tr, A by %(t). 

The method used in this instance applies correspondingly to all the 
axioms I I I . 

Now it only remains to state that also axiom VII is fulfilled in our model. 
Its assertion for this model is that for any propositional expression *Pt(c) 
such that there is a u-x for which ^5t(

Mi) ^s a T-formula, there is a u^ for which 
^((Mj) is a T-formula, whereas there is no M( such that (S(Mt, U^ and ^£(wt) 
are both T-formulas. Or formally expressed, 

(z){(Ex)(x rj z) -> (Ex)[x r\ z & (y)(y e x -> y rj z)]}. 
T T T T 

The proof of this can be sketched as follows. In Zx we can prove 

%(Ui) -> (Ex)[%(x) &(y)(y<x-> %{y)] 

where y < x stands for (Ez)(z =£ 0 & y-\-z = x). Further we have in Zx 

(Ex)[%(x) & (y)(y < x - * f ^ ) ] ->• ̂ ( u j & (y)(y <ym^ ^ T ) ) 

where rtt is the Godel number of the formula standing in the antecedent. 
Thirdly in Zx we have (y)((S(y, u) -> y <u). Combining the three formulas, 
we obtain as a provable formula 

$ , K ) -> %{uj & (y)((S(y, um) -> %&)). 

From this provability it follows that, if ^PtK) *s a T-formula, then the 
consequent is also; and by virtue of the often mentioned commutativity 
of T, we get the assertion to be proved. 

So now we have shown that all the axioms I—III and VII hold for our 
metamathematical model. By this, as already mentioned, the consistency 
of the system of these axioms is established in a constructive sense. 
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Remark. It may be noticed that it is possible also to show that the 
axioms IV and V are likewise satisfied for our model. But for our purpose 
this statement is not needed, since indeed the model ffi can be established 
on the basis of the axioms I—III and VII. 

20. Elimination of one of the axioms III. Among the axioms III 
one, as we found, is redundant, namely b(l). We give here its derivation 
from the other axioms III (without a(l)) and the extensionality axiom 
1(1) (using also some of the equality axioms.) 

The assertion of b(l) is that there exists the class A of all unit sets. We 
have A = B—T where B is the class of those sets which have at least one 
element, and F the class of the sets with at least two different elements. 

(1) We first observe that on the assumption of the existence of B and T 
also B—T exists by a(2), a(3); indeed it is the intersection of B with the 
complementary class of F. Furthermore the existence of B is immediate 
from b(2), c(2) and c(l). For, if E is the class required to exist by b(2), then 
B is the converse domain of E. So it will be sufficient to prove the existence 
of T. 

(2) A set c is an element of T, if and only if there exists a triplet «a , by, c> 
such that a e c, b « c and a # b. If A is the class of these triplets, then F 
is the converse domain of A. Thus the proof of the existence of F reduces 
to the proof of the existence of A. Now A can be characterized as an inter­
section of three classes of triplets «a , by, c> : (1) those with arbitrary a and 
b e c (class Aj), (2) those with arbitrary b and a e c (class A2), (3) those with 
arbitrary c and a =£ b (class A3). The existence of these three classes, under 
the provisional assumption of the existence of the class 0 of all pairs <a, by 
with a ^ b, can be shown as follows: Aj results by coupling to left (c(3)) 
from the converse class (c(2)) of the class of triplets «6, c>, ay with <fi, c> rj E, 
which exists by b(3). A2 results from the class of triplets «c, ay, by, where 
<c, ay belongs to the converse class of E, which class of triplets exists by 
b(2), c(2), b(3); the passage from this class of triplets to A2 is by applying 
successively c(2), c(3), c(2), c(3). A3 exists by b(3) as the class of pairs whose 
first members belong to 0. 

(3) So now it remains only to prove the existence of 0. By the axiom 
1(1) and some of the equality axioms, this class can be characterized as 
the class of the pairs <«, by for which there exists a set c such that either 
cea&cjb or cja&ceb. Thus it is the sum of the classes of pairs <a, by 
with a c existing of the one kind or the other, respectively. Both these 
classes exist according to the composition lemma, applied for one to the 
converse class of E and to <J>—E, where <& is the class of all pairs, and for 
the other to the converse class of O—E and to E. Note that the existence 
of $ follows by applying b(3) to the class of all sets, which exists as the sum 
of the class E and its complement, also that the sum of any two classes is 
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A SYSTEM OF AXIOMATIC SET THEORY 95 

the complement of the intersection of their complements, and finally that 
the composition lemma has been derived from the axioms a(3), b(3), c(l), 
c(2), c(3).96 — So indeed b(l) can be spared.97 

We add here the following remark: The axiom b(l) was especially used 
in Part I to prove the existence of the class of pairs (a, by such that a — b; 
and there we observed that this derivation depended on our special def­
inition of the ordered pair. Now we see that the existence of this class of 
pairs follows directly and without applying a definition of the ordered pair. 
Indeed the class in question is nothing else than 0—0. 

Remark. We showed how the models no, Ilj, Il2 can be constructed 
on a narrower axiomatic basis, in particular avoiding the use of the axiom 
whose independence is to be proved. 

On this point Firestone in his review of Part VI98 made the observation 
that generally, if we have a model, based on all the axioms of a system ©, 
for the independence of a particular axiom 91 from the set <B0 of the other 
axioms, then this independence follows under the condition of the consistency 
of @0. For, on the assumption that the axiom 91 is derivable from <30, 
we should be able to construct our model also on the basis of ©0. In this 
model we should have the negation 91 of 91, and on the other hand, since all 
axioms of <B0 are satisfied in the model and these (as is assumed) entail 91, 
we should likewise have 91. So a contradiction would follow from <B0. 

From the point of view of deducibility this reasoning is of course suf­
ficient. But we are interested not only in the statements of independence 
resulting from certain models, but also in the models themselves and in the 
method of their construction. In this respect the above indirect argument 
certainly cannot replace the second direct constructions of II0, II^ II2. 
Moreover we have there been able not only to avoid the use of the axiom 
to be proved independent, but also to obtain some further reductions (e.g. 
Vc is not used in II0, Ylv U2). 

Concerning our statement that Zermelo's axioms are satisfied by the 
system of II*-sets, the reviewer raised the question whether this agrees with 

56 This JOURNAL, vol .2 (1937), pp. 75-76. 
57 With regard to a remark made by Godel (I.e., footnote 94, p. 7), it may be noticed 

that as a consequence of our preceding reasoning Godel's axioms B7 and B8 are 
derivable from the axioms I I I without using b(l). 

In fact Godel's axioms B7 and B8 stand not only for our axiom I I I c(3), but also 
for c(2), as results from the derivability of B6 from B4, B5 and B8 stated by A. A. 
Markov in On the dependence of axiom B6 on the other axioms of the Bernays-Godel 
system, Izvistiyd Akademii Nauk. SSSR, ser. mat., vol. 12 (1948), pp. 569-570; 
cf. Mathematical reviews, vol. 10 (1949), p. 421. On the other hand, it may be ob­
served that upon assuming B6, which is the same as our c(2), Godel's B7 is equivalent 
to our c(3); thus it follows that B8 is provable from B1-B7. 

93 This JOURNAL, vol. 13 (1948), pp. 220-221. 
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Zermelo's assumption of "Urelemente" different from the null-set. From 
Zermelo's paper Vber Grenzzahlen und M engender eiche" it appears however 
that Zermelo included the case in which the empty set is the only „Ur-
element". In fact he speaks of an ,,Einheitsbereich" as a possible kind of a 
model, although he intended that the axiom system for set theory in view 
of its applications should not exclude models with more "Urelemente". 

ZURICH 

99 Fundamenta mathematicae, vol. 16 (1930), pp. 29-47, especially pp. 37-38. 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2268864
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:56:31, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2268864
https:/www.cambridge.org/core

