
Comparing two evolutionary algorithm based methods
for layout generation: Dense packing versus subdivision

REINHARD KOENIG1
AND KATJA KNECHT2

1Faculty of Architecture, ETH Zurich, Zurich, Switzerland
2School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom

(RECEIVED March 1, 2013; ACCEPTED February 20, 2014)

Abstract

We present and compare two evolutionary algorithm based methods for rectangular architectural layout generation: dense
packing and subdivision algorithms. We analyze the characteristics of the two methods on the basis of three floor plan sce-
narios. Our analyses include the speed with which solutions are generated, the reliability with which optimal solutions can
be found, and the number of different solutions that can be found overall. In a following step, we discuss the methods with
respect to their different user interaction capabilities. In addition, we show that each method has the capability to generate
more complex L-shaped layouts. Finally, we conclude that neither of the methods is superior but that each of them is suitable
for use in distinct application scenarios because of its different properties.

Keywords: Dense Packing; Evolutionary Algorithm; Layout Generation; Subdivision

1. INTRODUCTION

Layout describes the arrangement of different elements with-
in a given area for a particular purpose. Layout problems can
be found in various fields, from the design of timetables or
circuit boards to the arrangement of abstract elements in a
graph, the organization of the boxes of a shipload or the
placement of metal parts to be cut out, and not least the ar-
rangement of rooms in a floor plan or of buildings in an urban
neighborhood (Hower & Graf, 1996). For solving layout
problems, certain criteria usually have to be taken into ac-
count. The elements, for example, should not overlap, and
their organization should be as compact and efficient as pos-
sible. In this paper, we focus on two-dimensional layouts be-
cause this is usually sufficient in the field of architecture, but
there is also computational support for solving three-dimen-
sional layout problems (Cagan et al., 2002).

Various floor planning systems have been developed to
address and solve the above-mentioned problems, some of
which we describe in Section 2. Because it is difficult to com-
pare the advantages and disadvantages of different generative
mechanisms with each other, we propose some useful criteria
for evaluating the algorithms used and apply them to compare
two layout solvers. We have chosen dense packing and sub-

division algorithms as the two layout solvers we compare in
this paper, because they are well suited for user interaction
(Harada et al., 1995). Both algorithms are discussed in detail
in Section 3. In the scenarios we discuss here, we start from a
fixed building outline and address the two-dimensional ar-
rangement of individual rooms. The dimensions of the rooms
are flexible within given minimum and maximum bounds,
but rooms have to adhere to a predefined surface area. The
sum of the areas of the rooms to be arranged corresponds to
the total area defined by the building outline. In addition, spe-
cific neighborhood relationships between the rooms have to
be ensured. Both methods are analyzed and compared using
two different layout scenarios, which are discussed and pre-
sented in Section 4. Section 5 presents and discusses the anal-
yses, which include the speed with which solutions are gen-
erated, the reliability with which optimal solutions can be
found, and the number of different solutions that can be found
overall. To conclude, we give a brief outlook of possible fur-
ther developments in Section 6.

2. RELATED WORK

Solving layout problems using computer-based methods is a
key issue for the application of artificial intelligence in the
field of architecture. Layout problems are usually very com-
plex problems that have to meet a variety of requirements.
With each factor that needs to be considered in a layout design

Reprint requests to: Reihard Koenig, Faculty of Architecture, ETH Zurich,
Wolfgang-Pauli-Strasse 27, HIT H 31.6, Zurich 8092, Switzerland. E-mail:
reinhard.koenig@arch.ethz.ch

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2014), 28, 285–299.
Cambridge University Press 2014 0890-0604/14 $25.00
doi:10.1017/S0890060414000237

285

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

mailto:reinhard.koenig@arch.ethz.ch
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

(e.g., number of rooms), the number of possible solutions in-
creases exponentially (March & Steadman, 1974). From the
perspective of complexity theory, layout problems fall into
the category of so-called NP-complete problems.

Since the early 1960s, various methods have been devel-
oped for the computer-based solution of layout problems
(Whitehead & Eldars, 1964; Frew, 1980). All of these
methods have in common that they employ a generative
mechanism for the creation of alternative variations and an
evaluation mechanism to assess these variations (Mitchell,
1998). A range of solutions has been developed for the appro-
priate arrangement of rectangular spaces for both general
(Krishnamurti & Earl, 1998) and architectural applications
(Mitchell et al., 1976). Previous reviews of the development
of various approaches to solving this problem (Homayouni,
2000, 2006) have proposed some possible classifications. Ka-
lay (2004) describes three primary method categories that are
relevant to layout systems: procedural, heuristic, and evolu-
tionary methods. For our investigation, we will use evolution-
ary algorithms (EAs). Algorithms for the exhaustive genera-
tion of building floor plans were already being developed in
the 1980s (Galle, 1981). In the 1990s, a system for generating
layouts using constraint programming was developed under
the name SEED (Flemming & Woodbury, 1995), which is
based on the ABLOOS Framework (Coyne & Flemming,
1990). ABLOOS is in turn a hierarchical extension of a system
named LOOS (Flemming, 1989), which uses orthogonal
structures for the representation of loosely packed arrange-
ments of rectangles. Early examples of the use of evolutionary
approaches for layout planning in architecture include those
by Gero and colleagues (Gero & Kazakov, 1996; Schnier &
Gero, 1996; Jo & Gero, 1998; Rosenman & Gero, 1999).

The study we present in the scope of this paper focuses on
two known generative methods for dense packing: first, a
heuristic, physically based method (Arvin & House, 2002;
Michalek & Papalambros, 2002), where the rooms are repre-
sented as flexible physical objects and the connections can be
modeled (e.g., as springs); and second, a more procedural slic-
ing algorithm based on a slicing tree (Harada et al., 1995) that
is used for optimization in genetic programming. We have
chosen these generative methods for our test scenarios
because they are well suited to the needs of user interaction
during the optimization process.

2.1. Dense packing

The problem of physically based dense packing occurs when
a number of spatial elements have to be arranged within a
given space without overlapping or leaving gaps. The ele-
ments as well as the enclosing space can each possess a fixed
size, for example, in the dense packing of cargo crates in a
truck. In floor plan layout design, the sizes of both the ele-
ments to be packed, the rooms, and the extensive space, the
building, vary within a certain range.

Based on the concept of physical objects representing
rooms that are connected with springs (Arvin & House,

2002), Elezkurtaj and Franck (2001, 2002) have shown
how this approach can be combined with an EA. The problem
to be solved was formally described as follows: minimize the
sum of all overlapping areas Sg. This sum is calculated from
the sum of the overlapping areas of all spaces to be packed
(Si > Sj) and the weighted sum of the overlapping areas re-
sulting from the overlap of the spaces to be packed within
the rectangular outline (Si \ Su).

2.2. Subdivision

Dividing a predetermined area into zones and spaces is a fre-
quently used method in architectural design to create floor
plans, which is why subdivision algorithms are increasingly
employed to automate the generation of architectural layouts.
They have been used in the past, for example, for the auto-
mated generation of interiors (Hahn et al., 2006), facades
(Müller et al., 2007), buildings (Müller et al., 2006), and urban
structures (Parish & Müller, 2001). Marson and Musse (2010)
have furthermore investigated the use of quadratic subdivision
trees for the real-time generation of architectural floor plans.

The problem that needs to be solved is to subdivide a given
area in such a way that the resulting subareas possess the de-
sired sizes and neighborhood relationships. The subdivision
of a surface or a space is usually based on recursive algorithms.
The sequence and location of the slicing lines may be stored
and organized as a tree structure, a so-called slicing tree,
wherein the subareas are represented as a node and the resulting
final areas as leaves. This type of data structure can be created,
searched, and processed very efficiently, which is why subdivi-
sion algorithms are commonly applied in computational geom-
etry, for example, for nearest neighbor queries (Moore, 1991).

2.3. EAs

The two methods we propose to study are based on evolution-
ary strategies (ES), which were elaborated in the 1960s by
Bienert, Rechenberg, and Schwefel (Bäck, 1994). In ES, the
genotypes are represented by uncoded parameter values
(usually in the form of decimal values). The variation through
crossover and mutation is directly applied to the parameter
values. This obviates the need for decoding and encoding
as is, for example, necessary in genetic algorithms (GAs).
Consequently, the ES differs from the GA primarily in the
way parameter values are represented. The subdivision
method combines ES with GA and genetic programming
(GP), which traces back to Koza (1992) and is very similar
in its functionality to GA; the difference is that in GP not
only parameter values but also parts of functions or programs
can be represented and combined.

In the formal representation of the EAs, we are guided by
Bäck et al. (1991), Bäck (2000), as well as Deb (2001). We
restrict ourselves to the main formal elements that character-
ize ES. ES use P populations of individuals a. The variables
m and l denote the number of parent and child individuals in
a population, and Pt ¼ (at

1, . . . , at
m) characterizes a population

R. Koenig and K. Knecht286

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

in generation t. When using multiple parents per generation
m . 1, r parents can be involved in the production of a child.
Accordingly, the notation of ES is as follows: (m/rþ l) – ES.

The EA employed share a common structure, which is a cy-
cle that consists of the recombination, the mutation, the evalu-
ation, and the selection of individuals in a population. On its
basis, a general process scheme for EA can be built, which is
presented in Table 1 and adapted from Bäck (2000).

3. METHODS

The systems presented in the scope of this paper employ two
requirements (constraints) in the generation of the layouts:
first, the sizes of the desired rooms, and, second, the topo-
logical neighborhood relations between rooms (which rooms
need to be adjacent). Based on these two restrictions, a lot of
different geometric layout solutions can be generated that
meet all requirements.

3.1. Dense packing

The fulfillment of both requirements, correct room sizes and
neighborly relationships, poses a multicriteria optimization
problem. To solve this multicriteria optimization problem,
we employ an implementation suggested by Koenig and
Schneider (2012), which can be considered as a combination
of the vector evaluated genetic algorithm by Schaffer (1985)
and the vector-optimized evolution strategy for Kursawe
(1990). The corresponding algorithm is described in detail
in Koenig and Schneider (2012).

In the following, we describe this procedure of floor plan
generation as the dense packing layout solver. It has been

extended for the present comparative analysis using more pop-
ulations in parallel for the solution search. A conservative
population was implemented as (þ) selection, in which the
best variant is always preserved, and several innovative
populations are implemented as (,)-selection, in which local
optima can be easily overcome. The best solutions of the (,)-se-
lection populations are copied regularly to the (þ)-selection
population.

3.2. Subdivision

In the scope of the present study, a subdivision algorithm is
understood as the recursive division of an area into smaller
rectangular areas by edge-parallel slicing. Further subdivi-
sions can be applied to the resulting subareas up to a specified
depth or according to a predetermined sequence (Table 2;
Otten, 1982). The slicing dimension and the subdivision po-
sition can be selected and determined randomly or according
to fixed rules, for example, that an area is always divided on
its longer side and at a fixed proportion ratio, or so that all of
the resulting subspaces possess the same area. In the follow-
ing, this procedure for floor plan generation is referred to as
the subdivision layout solver. It is described in full detail in
Knecht and Koenig (2012) and is reproduced here in abbre-
viated form (Table 2).

3.2.1. Calculation of specific room sizes

With the subdivision algorithm, the dividing ratio and split
values can be directly calculated on the basis of given room
sizes and a given division sequence. Unlike with the dense
packing layout solver, optimization is unnecessary in this
case. In the scope of the subdivision layout solver, layouts

Table 1. Evolutionary algorithm

Algorithm Evolutionary Algorithm

Input m: size of parent population
l: size of child population
r: recombination operator
m: mutation operator
s: selection operator
i: stop condition

Output a*: best individual at an iteration
P*: best population at an iteration

Logic Step 1: generation t ¼ 0
Step 2: initialize P(t) with m individuals
Step 3: evaluate all individuals in P(t) with evaluation function

F(t)
Step 4: recombine P(t) by r � P ′(t)
Step 5: mutate P ′(t) by m � P ′′(t)
Step 6: evaluate all individuals in P ′′t with evaluation function

F(t)
Step 7: select m individuals by s from P ′′(t) corresponding to

their fitness values F(t) � P(t + 1)
Step 8: t ¼ t + 1
Step 9: start again at Step 4 while i = true

Note: The evolutionary algorithm follows Bäck (2000).

Table 2. Schematic subdivision algorithm and construction
of a slicing tree

Algorithm Subdivision

Input Rectangular area R
Output Subdivision layout, t of type slicing tree
Logic Step 1: generation t ¼ 0

Step 1: If R is empty return empty slicing tree
Step 2: Define and generate slicing plane s and the subdivision

node N with the following values:
SplitDim ¼ slicing dimension
SplitVal ¼ slicing line value in SplitDim calculated by
the slicing sequence resp. slicing proportion

Step 3: Define the right and left subareas Rleft and Rright:
Rleft ¼ subarea of R, to the left of or above s, with
midpoint vector v[SplitDim] ≤ SplitVal
Rright ¼ subarea of R, to the right of or below s, with
midpoint vector v[SplitDim] . SplitVal

Step 4: tleft ¼ left branch; subdivide the area further
recursively with Rleft starting at Step 2 until the given
stop condition is fulfilled.

Step 5: tright ¼ right branch; subdivide the area further
recursively with Rright starting at Step 2 until the given
stop condition is fulfilled.

Step 6: return t

Dense packing versus subdivision 287

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

therefore only have to be optimized for one criterion, namely,
the objective function of the neighborhood relations.

The calculation of the split values starts at the leaves of the
slicing tree. The weight of an area or leaf is calculated out of
the ratio of its desired size to the area average. The area aver-
age is derived by dividing the total area by the number of
rooms. For example, with a total area of 75 m2, the area aver-
age for six rooms is 12.5 m2. In this case, a room with 15 m2

has a weighting of 1.2 and a room with 10 m2 has a weighting
of 0.8. The weighting of a node is calculated out of the sum
of the weightings of its two branches, that is, a node to which
the two aforementioned rooms are assigned would have a
weighting of 2. In this manner, the weightings of all rooms
and nodes are defined from the leaves upward to the root
(Fig. 1). The corresponding layout is shown in Figure 2.

3.2.2. Search for specific neighborhood relationships

Searching for specific neighborhood conditions is a topo-
logical problem. It consists of the suitable assignment of
functions to rooms and the placement of slicing lines in nodes
so that the rooms possess the desired neighbors after sub-
division. In contrast to the problem of creating rooms with
predefined sizes, we cannot calculate required neighborhood
relations directly.

Solutions are searched by using a (m þ l) – ES in combi-
nation with GA and GP. The schematic procedure is shown in
Table 2. GA and GP are the basis for the recombination
and mutation of the parent individuals in Steps 4 and 5 of
the EA.

The GA is used to optimize the allocation of functions and
indices to the rooms in terms of required neighborhood rela-
tionships. The indices of the rooms are encoded in the se-
quence as they occur during subdivision. For optimization,
this index sequence is mutated and recombined. The se-
quence is mutated by swapping two indices within the se-
quence, which corresponds to exchanging the indices of
two rooms. In the recombination stage, new variants are cre-
ated by crossing over index sequences of two individuals
using one-point-crossover.

GP is employed to add variation to the structure, that is, the
subdivision sequence of a slicing tree. The sequence is mu-
tated by switching the slicing direction in a node from hori-
zontal to vertical or vice versa, or by using crossover. For
crossover, we exchange branches between the trees of two
parent individuals. The two parents are selected by binary
tournament selection. Then, the slicing tree branches to be ex-
changed are defined, each having the same number of leaves
so that the total number of rooms in the child individual
remains the same as its parents’. We calculate the fitness func-
tion as the sum of all distances between rooms that need to be
neighboring as follows:

f ¼
Xn

i¼1
AlBl, (1)

where A and B represent the rooms which have to be next to
each other and n is the number of neighborhoods relations.
The distance between two adjacent rooms is zero. Conse-

Fig. 1. Slicing tree: six rooms with (left) sizes and (right) corresponding weightings in leaves and nodes. Syntax: H(V(o)(H(V(o)(o))(o)))(-
V(o)(o)). Reprinted with permission from Knecht and Koenig (2012).

R. Koenig and K. Knecht288

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

quently, the unnormalized result of the fitness function is
lower when more desired neighborhood relations are fulfilled
in a layout or when the corresponding rooms are located more
closely together.

4. SCENARIOS

The comparative analyses of the two layout solvers are based
on three scenarios. We based the design of the first scenario
on a reference layout problem from Flemming et al. (1992),
with its corresponding restrictions. The number and size of
the eight rooms of this reference problem are shown in Table 3
and are referred to hereafter as layout scenario 1.

In contrast to the reference problem, we have modified the
topological restrictions, because in the scope of our layout

solvers we do not provide relations in respect to the cardinal
directions. We defined a star topology as topological restric-
tion in both scenarios in which all rooms must be adjacent to a
central room (Fig. 3). Because this requirement is relatively
difficult to meet compared with the reference problem, we
think that our investigations represent a good comparison to
the analysis carried out by Flemming et al. (1992). The
smaller number of restrictions used offers, in our view, the ad-
vantage that we can use a system that has the minimum of re-
quirements to generate floor plans when comparing two dif-
ferent layout solvers.

The second scenario extends scenario 1 and is a problem
with 10 rooms and the same topological constraints as the first
scenario. The room sizes for scenario 2 are given in Table 4.
Because two more rooms and connections have to be consid-
ered and solved, the second scenario is more difficult to solve
than the first.

The scenarios considered here are derived from real plan-
ning tasks, because it is often possible to reduce more com-
plex tasks to a simpler representation that makes it possible
to apply one of the presented layout solvers. In tasks dealing
with larger space allocation plans, meaning more rooms to
consider than in our test scenarios, functionally related parts
are usually defined, which may be related to each other at dif-
ferent hierarchical levels (Koenig & Schneider, 2012).

Layout scenario 3 has been chosen to explore the capabil-
ities of our layout solvers when faced with more complex lay-
out generation problems, that is, the generation of L-shaped
rooms and the solution of topologies of greater depth and inter-
connectivity (Fig. 3). Scenario 3 is based on a reference prob-

Fig. 2. Subdivision sequence and geometrical ratio in a layout. Syntax: H(V(o)(H(V(o)(o))(o)))(V(o)(o)). Reprinted with permission from
Knecht and Koenig (2012).

Table 3. Layout scenario 1

Spaces

No. Name Size

0 Hall 10 m2

1 Court 7 m2

2 Living room 22 m2

3 Master bedroom 14 m2

4 Bedroom 1 10 m2

5 Bedroom 2 10 m2

6 Kitchen 8 m2

7 Bathroom 5 m2

Dense packing versus subdivision 289

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

lem defined by Flack and Ross (2011) to evaluate the capabil-
ities of a system to create advanced floor plans. Table 5 gives
an overview of the rooms and their respective sizes. The living
room is composed of two subareas to allow for L-shaped
spaces, which will be described in more detail in Section 5.6.

Figure 3 shows the topologies of the three layout scenarios
using a neighborhood graph (Grason, 1971). These graphs
represent the main goal function for the optimization mecha-
nisms of both layout solvers presented in this paper.

5. COMPARATIVE ANALYSES

In this section, we compare the properties of the layout solv-
ers previously introduced for the production of floor plans
using dense packing and subdivision algorithms. The com-
parison of both systems is based on the layout scenarios de-
scribed above (Tables 3 and 4). For the application of the de-
veloped systems, it is mainly of interest to determine how
quickly solutions can be found (performance), how certain
one can be that after a specific time span a solution is found

(reliability), and how many different solutions can be found
in general (variance). In the authors’ opinion, these three pa-
rameters are suitable for characterizing the most important
properties of a layout solver, and they are therefore useful
for future comparisons with other solvers.

5.1. Performance

To analyze performance, we proceeded as follows: each lay-
out solver is run 100 times and the quality of the results is re-
corded in a diagram for the first (Fig. 4) and the second
(Fig. 5) layout scenario. This enables us to visualize both
the speed with which solutions of a certain quality are ob-
tained on average and the average quality of the solutions
within a given time period. Both systems use a (m/r þ l) –
ES. Values for the characteristic parameters are m ¼ 7, l ¼
35, r¼ 2, and rr ¼ 0.75. All calculations for both layout solv-
ers were run on a Dell Precision T7500-2 (Intel Xeon CPU,
2.40 GHz, 48 GB RAM, Windows 7, 64 bit). The diagrams
in Figure 4 and Figure 5 show the results of the performance

Fig. 3. Illustration of the three topologies used for the corresponding three layout scenarios as justified gamma graphs. The nodes represent
rooms and the lines connections (doors) between these rooms. The living room in scenario 3 is divided into two subrooms to allow the
creation of L-shaped room geometry.

Table 4. Layout scenario 2

Spaces

No. Name Size

0 Hall 10 m2

1 Court 7 m2

2 Living room 12 m2

3 Master bedroom 12 m2

4 Bedroom 1 10 m2

5 Bedroom 2 8 m2

6 Kitchen 8 m2

7 Bathroom 5 m2

8 Bathroom 2 4 m2

9 Dining room 10 m2

Table 5. Layout scenario 3

Spaces

No. Name Size

0 LivingA 11 m2

1 LivingB 8 m2

2 Entry 4 m2

3 Dining 10 m2

4 Kitchen 10 m2

5 Eating 10 m2

6 Hallway 5 m2

7 M-bedroom 10 m2

8 M-bathroom 4 m2

9 Bedroom 10 m2

10 Bathroom 4 m2

R. Koenig and K. Knecht290

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

tests. On the top, are the diagrams for the dense packing lay-
out solver, in which on the y axis the sum of all overlapping
areas (left ordinate) and all distances (right ordinate) are plot-
ted as fitness values. The mean values of the two fitness val-
ues are plotted over the course of 100 recorded generations
(or iterations) as mean value lines. The green solid line repre-
sents the average values of the overlapping and the blue dot-
ted line represents the mean values of the distances.

On the bottom, Figure 4 and Figure 5 show the diagrams
for the subdivision layout solver. Because we can calculate
the required room sizes directly in this case, we only optimize
the layouts with regard to their neighborhood relationships.
Consequently, only one criterion has to be optimized in this
layout solver. The respective fitness values are plotted on
the left y-axis ordinate in the diagrams in Figure 4 and Fig-
ure 5, called topology. A value of 0 means that all the neigh-
borhood relations are fully met, and a value of 1 means that
the rooms that are to be adjacent to each other are a maximum
distance from each other, and consequently none of the re-
quested neighborhood relationships is fulfilled. The red con-

tinuous line represents the mean value of the topology fitness
over the course of 100 recorded generations.

For layout scenario 1 with the dense packing layout solver,
both lines in Figure 4 (top diagram) fall exponentially and
reach very good results from about 50 generations onward;
after that, the quality of the results improves only marginally.
This means that we can assume that the dense packing layout
solver finds viable solutions for layout scenario 1 on average
after 50 generations. The dense packing layout solver requires
on average 27 s for the calculation of 100 generations and
13.5 s for 50 generations accordingly (Table 6). For all time
designations, we have to take into account that these represent
average values of 100 repeated program runs. The duration of
a run increases with time because of the nonoptimized pro-
gram code, the creation of the performance graphs, and the
calculation of the mean value curves in each iteration. A sin-
gle run of the program is approximately two to three times
faster than the averages given here.

For layout scenario 1 with the subdivision layout solver,
the line in Figure 4 (bottom diagram) falls exponentially

Fig. 4. Comparison of the performance of layout scenario 1 (8 rooms). Top: the dense packing layout solver, on the y axis the sum of all
overlapping areas, and all distances are plotted as fitness values. Bottom: the subdivision layout solver, the fitness values for neighborhood
relations are plotted on the y axis. The x axis shows the number of generations of the evolutionary strategies (ES).

Dense packing versus subdivision 291

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

and reaches very good results from about 50 generations on-
ward; after that, the quality of the results improves only
marginally. This means that we can assume that subdivision
layout solver also finds viable solutions on average after 50
generations for layout scenario 1. The calculation of 100 gen-
erations takes the system on average 11.5 s and of 50 genera-
tions 3.5 s (Table 6). We observed the same effect (a decrease
in computing speed over time) for the dense packing layout
solver.

The performance tests of both layout solvers for layout sce-
nario 2 are shown in Figure 5 and follow the same concept ex-
plained above. The average lines that indicate the average
quality of the solutions also fall exponentially for both sys-
tems and reach good results from about 50 generations on-
ward, improving only marginally afterward. Therefore, for
layout scenario 2, we can also assume that both systems
find suitable solutions after an average of 50 generations.
The dense packing layout solver requires 44 s for the calcula-
tion of 100 generations. The subdivision layout solver needed
12.5 s to calculate 100 generations (Table 6).

5.2. Reliability

This section examines how reliable the considered systems
are at finding solutions for the specified layout scenario. To
ensure comparability, we take a look at the layouts found
by the systems after 100 generations, where both usually con-
verge to one solution, respectively, a local optimum. The
point clouds in the diagrams in Figure 4 and Figure 5 show
that some runs generate considerably worse results than indi-
cated by the respective mean curves.

For the dense packing layout solver, solutions are consid-
ered to be acceptable when the value of their overlapping areas
falls below a certain threshold. This value should be less than
0.1 (normalized value, the dots indicate the overlapping areas)
in the scales of the diagrams in Figure 4 and Figure 5. In the
diagrams for the dense packing layout solver, we can see that
at generation 100 some points are above this threshold: these
represent illegal solutions. Figure 6 shows the different layouts,
whose qualities regarding their evaluation criteria (overlapping
and topology respective adjacency) are represented by the

Fig. 5. Comparison of the performance in layout scenario 2 (10 rooms). Top: the dense packing layout solver, on the y axis the sum of all
overlapping areas, and all distances are plotted as fitness values. Bottom: the subdivision layout solver, the fitness values for neighborhood
relations are plotted on the y axis. The x axis shows the number of generations of the evolutionary strategies (ES).

R. Koenig and K. Knecht292

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

points in the diagrams on the left in Figure 4 and Figure 5. We
observed that the dense packing layout solver generates ap-
proximately 10% illegal solutions for both layout scenarios.
Therefore, it has a reliability of about 90%. The reliability
can be increased to nearly 100% by calculating further genera-
tions or by increasing the population size. Both options result
in longer computing times, which is relevant for user interac-
tion when a system should provide immediate feedback.

For the subdivision layout solver, solutions are considered
to be acceptable if all neighborhood relations are satisfied.
The diagrams on the right in Figure 4 and Figure 5 show
that the topological requirements are met with a reliability
of about 95% on average after 100 generations. We register

a small dispersion of the measurement points in the diagrams
for the subdivision layout solver at generation 100. Figure 7
shows different layouts generated by the subdivision layout
solver, whose properties with regard to the evaluation criteria,
that is, how well the topology of the solution matches the re-
quired adjacencies, are represented by the points in the dia-
grams on the right in Figure 4 and Figure 5. We observed
that the subdivision layout solver generates approximately
10% illegal solutions for layout scenario 1 and up to 20%
illegal solutions for layout scenario 2. Therefore, it has a
reliability of about 90% and 80%, respectively.

The discrepancy between the relatively good average fit-
ness value and the reliability of the solution output can be ex-

Table 6. Overview of calculation times for the dense packing and subdivision layout solvers
for both layout scenarios

Layout Scenario 1
(8 Rooms)

Layout Scenario 2
(10 Rooms)

Layout Scenario 3
(11 Rooms)

Layout Solver 50 100 50 100 50 100

Dense packing 13.5 s 27 s 44 s 49 s
(6 s) (12 s) (10 s) (21 s) (12 s) (24 s)

Subdivision 3.5 s 11.5 s 12.5 s 9.5 s 20 s
(3.5 s) (7 s) (5 s) (11 s) (6 s) (11 s)

Note: The calculation times are after 50 and 100 generations. The times for a single run with the dense packing
and subdivision layout solvers are given in parentheses.

Fig. 6. Screenshot of solutions for layout scenario 1 (8 rooms) found by the dense packing layout solver after 100 generations.

Dense packing versus subdivision 293

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

plained by the following characteristic of the layout solver:
especially where there are a relatively large number of rooms,
such as in layout scenario 2, the system generates solutions
that do not completely meet the topological requirements be-
cause the defined minimum contact area for the placement of
doors cannot be fulfilled for all neighboring rooms.

5.3. Variance

Variance describes the spectrum of different solutions (Rittel,
1992) that can be generated by both systems. The greater the var-
iance, the larger the number of distinct solutions a layout solver
can generate. Variance can, therefore, be understood as a mea-
sure for the diversity of possible solutions. In a perfect world,
we would expect a system for automatic floor plan generation
to generate any desired configuration. An overview of the var-
iance of the two compared layout solvers is given in Figure 6
and Figure 7. However, it is difficult to distinguish between
the different solutions based on a characteristic value and to
formulate a characteristic value for the variance of a system.

For the differentiation of solutions we introduce a proportion
parameter u, which is determined using the following function:

u ¼
Xn

i¼1

kSi

lSi

� �
=NR, (2)

where kSi represents the shorter and lSi the longer side of a room
andNR thenumberof rooms.The individual solutions in Figure6
and Figure 7 are sorted by this proportion parameter. The char-

acteristic values assist in approximately ordering the different so-
lutions. In addition, it could be used as a diversity measure to en-
sure the variety of an EA’s population. However, in some cases,
very different solutions have a similarcharacteristic value. There-
fore, for an accurate comparison, a visual inspection is required.

Using the proportion characteristic and comparing the lay-
outs in Figure 6 and Figure 7 visually, it becomes clear that a
large proportion of the solutions of the two systems are the
same, despite the different properties of the layout solvers
used. For example, the subdivision layout solver only finds so-
lutions in which at least one continuous wall exists from one to
the other outer side of the enclosing rectangle. As we can see in
Figure 6, the dense packing layout solver also rarely generates
layouts where this is not the case, at least for the star topology.
However, there are layout solutions that are predominantly
found only by one of the two systems. For instance, the subdi-
vision layout solver generates a relatively uncommon layout in
which the central room (hall) of the star topology with the most
connections (doors) to other rooms is arranged on the outer
wall. This variant is extremely rare for the dense packing layout
solver and does not occur in the solution set shown in Figure 6.

As a simple parameter for the variance n of a system, we use
the difference between maximum and minimum proportion
characteristics of u of a solution set of 100 individual solutions:

n ¼ umax � umin: (3)

In a set of 100 solutions, the dense packing layout solver
shows a variance n8 ¼ 0.52 for 8 rooms and n10 ¼ 0.44 for

Fig. 7. Screenshot of solutions for layout scenario 1 (8 rooms) found by the subdivision layout solver after 100 generations.

R. Koenig and K. Knecht294

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

10 rooms. For the subdivision layout solver, the correspond-
ing variances are n8 ¼ 0.52 and n10 ¼ 0.45. The values for
variance n may vary slightly from the specified values depen-
dent on the individual run.

Besides the illustrated characteristic value for the variance
n of a system, the distribution of the proportion parameters is
of interest. It gives us an idea about the probability with which
certain variants are generated, and whether the layout solver
tends to find solutions within a certain proportion parameter
area. Our goal is a system that can generate solution sets
with the largest possible variance with a uniform distribution
of the proportion parameters.

The histograms in Figure 8 and Figure 9 show the corre-
sponding distributions of proportion parameters for 100 gen-
erated layouts for both systems. In the diagrams for the dense
packing layout solver in Figure 8, we can see clearly that the
proportion parameter values accumulate strongly in a particu-
lar area and that the distribution of the values tends to a nor-
mal distribution. This means that the system has a preference
to generate specific configurations (Fig. 6). The diagram for
the subdivision layout solver in Figure 9 shows that the pro-
portion parameters are spread relatively evenly across the en-
tire variance spectrum. The subdivision solver seems to have
no strong tendency for certain configurations; only the upper
proportion characteristics are less common.

5.4. Evaluation

The performance of the subdivision layout solver is better
compared to that of the dense packing layout solver because
it generates solutions many times faster. The quality of the
generated solutions and the reliability of both systems are
roughly equal. In addition, the variance of both systems can
be considered equally strong. Both layout solvers are able
to find all possible configurations with a few exceptions
only, as mentioned above. Comparing the distribution of pro-
portion characteristic values, the subdivision layout solver
provides advantageous results, because the characteristic val-
ues of the solutions generated by this layout solver are distrib-
uted relatively evenly and configurations do not occur in clus-
ters. This means that the subdivision layout solver explores
the solutions space in all areas relatively equally, which is
ideal, for example, if we were to add further restrictions or
goal functions for even more complex scenarios.

5.5. Interaction characteristics

The two layout solvers differ primarily in the way one can inter-
act with individual elements of the layout. The interaction pos-
sibilities depend on the characteristics of the algorithms used.
The subdivision algorithm allows only line-based interaction.
This means that the walls of a layout can be moved, the graphi-

Fig. 8. Histograms of proportion parameters for the dense packing layout
solver after 100 generations and a set of 100 solutions. Top: for 8 rooms;
bottom: for 10 rooms. The y-axis values are for proportion parameter u,
and the x-axis values are the number of solutions in the u range.

Fig. 9. Histograms of proportion parameters for the subdivision layout solver
after 100 generations and a set of 100 solutions. Top: for 8 rooms; bottom: for
10 rooms. The y-axis values are for proportion parameter u, and the x-axis
values are the number of solutions in the u range.

Dense packing versus subdivision 295

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

cal displacement of a room border by s thus resulting in the dis-
placement of the splitting line by distance s. Consequently, one
can primarily change the room sizes through interaction. A
problem is that long splitting lines cannot be divided, that is,
moving one line changes the borders and therefore also the sizes
of several rooms. However, in this system one cannot directly
manipulate the positions of individual rooms. This characteris-
tic makes it hard to predefine the placement of certain rooms,
such as stairwells, precisely above each other in multistory
building layouts and to fix them within the layout.

In contrast, the dense packing layout solver does permit ad-
ditional room-based interaction, which offers more extensive
possibilities than the line-based one. In addition to the adjust-
ment of room sizes through the manipulation of boundary lines,
individual rooms can be displaced within the layout and fixed in
their position. This makes it possible to realize precise vertical
spatial alignments as well as links to higher hierarchy levels.

5.6. More complex layouts

To prove that we can generate other, more complex layouts
with both layout solvers, we introduced layout scenario 3
(Fig. 3 and Table 5). The room topology of this scenario has
a higher depth (¼5) compared with the first two scenarios
(depth ¼ 2). The primary intention, however, is to show the

possibility of creating L-shape rooms by removing a joint
wall between two adjacent rooms. We therefore decomposed
the living room into two subareas (livingA and livingB) in lay-
out scenario 3 and connected them appropriately. The results
generated by the dense packing layout solver are illustrated
in Figure 10, those of the subdivision layout solver in Figure 11.
The dense packing layout solver requires on average 24 s for
the calculation of 100 generations and 12 s for 50 generations,
and the subdivision layout solver requires on average 20 s for
the calculation of 100 generations and 9.5 s for 50 generations
(Table 6). We can see that the decomposition of one large room
does not necessarily result in L-shaped rooms (Figs. 10a, 11a).
This layout scenario shows that it is possible to generate quite
different kinds of floor plans. The decomposition method (for
combined rooms, e.g., L-shaped ones) is also useful for the
generation of long branched corridors in complex buildings,
but it is more efficient to represent very complex layout scenar-
ios in a hierarchical way (Koenig & Schneider, 2012).

To show that using evolutionary optimization techniques for
the presented layout solver can solve problems with as many as
22 rooms, we undertook the same test using two layout scenar-
ios 3 and coupled the individual graphs via their entry rooms.
Figure 12 shows a solution generated with the dense packing
layout solver. For this solution the solver needs approximately
50 s, which makes useful user interaction no longer practicable.

Fig. 10. Screenshot of four solutions for layout scenario 3 (11 rooms) found using the dense packing layout solver.

R. Koenig and K. Knecht296

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

Fig. 11. Screenshot of four solutions for layout scenario 3 (11 rooms) generated by the subdivision layout solver.

Fig. 12. Screenshot of a solution for two layout scenarios 3 (22 rooms) coupled via their entry rooms generated by the dense packing layout
solver.

Dense packing versus subdivision 297

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

6. CONCLUSION AND OUTLOOK

In this article, we presented dense packing and subdivision al-
gorithms as two evolutionary algorithm based methods for
rectangular architectural layout generation and compared
the two respective layout solvers with respect to their perfor-
mance, that is, the speed with which they find possible solu-
tions, their reliability in finding suitable solutions, and the
variance of their solutions found. Both systems represent
practical solutions for the automatic creation of floor plans
in the context of complex planning processes. The differences
are mainly in detail. The subdivision layout solver has better
performance, while the dense packing layout solver is better
suited for user interaction. The variance of both systems is
comparable. This property is essential in order to ensure
that a large number of different layouts can be generated,
which may then be refined by applying other constraints.

We compared the two layout solvers based on three differ-
ent layout scenarios. Scenario 1 was based on a reference sce-
nario defined by Flemming et al. (1992), and a comparison of
the performance of our two layout solvers shows the follow-
ing: at first glance, the performance of the layout solvers we
present here is better because a single solution is found in
about 4 s. However, Flemming et al.’s systems are more
than 20 years old, and their fastest solver required 12 s
for the solution of a comparable layout scenario. It is likely
that the performance of this system would achieve much bet-
ter results on a contemporary machine.

The method we present here for dealing with more rooms
with more complex geometry is based on the explicit represen-
tation of subareas. This means a designer has to decide in ad-
vance which space needs to be more complex or flexible. In
principle, this is not a huge problem, because complex spaces
are usually needed for special rooms like corridors, entrance
halls, and living rooms, which are known from the planning
program. However, for a generally applicable layout algorithm,
it would be more convenient to generate complex space geome-
tries automatically as needed. We therefore need to extend the
genetic representation for the geometry, although this has the
disadvantage that the search space for the optimization system
increases and with this the time needed to find good solutions.

In future developments of the floor plan layout system, we
plan to extend it to cover as many criteria as possible for mul-
ticriteria optimization as exemplified by Flack and Ross
(2011). As mentioned, more fitness criteria will probably re-
quire a more complex chromosome structure, resulting in
larger search spaces and higher computing times. One of
the central aspects in developing successful layout systems
is how to find a good compromise that offers designers usable
and useful user interaction while still making it possible to
optimize as many criteria as possible.

ACKNOWLEDGMENTS

This project was undertaken primarily at Bauhaus-University Weimar
and funded by the German Research Council under Funding Number

DO 551/19-1. One author was supported by the Media and Arts Tech-
nology program, which is funded by UK Research Councils. Many
thanks to Julian Reisenberger for the language editing.

REFERENCES

Arvin, S.A., & House, D.H. (2002). Modeling architectural design objectives in
physically based space planning. Automation in Construction 11, 213–225.

Bäck, T. (1994). Evolutionary Algorithm in Theory and Practice. Oxford:
Oxford University Press.

Bäck, T. (2000). Introduction to evolutionary algorithms. In Evolutionary
Computation: 1. Basic Algorithms and Operators (Bäck, T., Fogel,
D.B., & Michalewicz, T., Eds.), pp. 59–64. New York: Taylor & Francis.

Bäck, T., Hoffmeister, F., & Schwefel, H.-P. (1991). A survey of evolution
strategies. Proc. 4th Int. Conf. Genetic Algorithms.

Cagan, J., Shimada, K., & Yin, S.S. (2002). A survey of computational ap-
proaches to threedimensional layout problems. Computer-Aided Design
34, 597–611. doi:10.1016/S0010-4485(01)00109-9

Coyne, R.F., & Flemming, U. (1990). Planning in design synthesis: abstrac-
tion-based LOOS. In Artificial Intelligence in Engineering V (Gero, J.S.,
Ed.), Vol. 1, pp. 91–111. New York: Springer.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algo-
rithms. New York: Wiley.

Elezkurtaj, T., & Franck, G. (2001). Evolutionary algorithm in urban plan-
ning. Proc. CORP 2001, Information Technology in Urban- and Spatial
Planning Conf., Vienna.

Elezkurtaj, T., & Franck, G. (2002). Algorithmic support of creative architec-
tural design. Umbau 19, 129–137. Accessed at http://www.iemar.tuwien.
ac.at/publications/

Flack, R.W.J., & Ross, B.J. (2011). Evolution of architectural floor plans. Proc.
9th European Event on Evolutionary and Biologically Inspired Music,
Sound, Art and Design, EvoMusArt 2011. Torino, Italy: Springer–Verlag.

Flemming, U. (1989). More on the representation and generation of loosely
packed arrangements of rectangles. Environment and Planning B: Plan-
ning and Design 16(3), 327–359.

Flemming, U., Baykan, C.A., Coyne, R.F., & Fox, M.S. (1992). Hierarchical
generate-and-test vs. constraint-directed search: a comparison in the con-
text of layout synthesis. In Artificial Intelligence in Design ’92 (Gero,
J.S., Ed.), pp. 817–838. Boston: Kluwer Academic.

Flemming, U., & Woodbury, R. (1995). Software environment to support
early phases in building design (SEED): overview. Journal of Architec-
tural Engineering 1, 147–152.

Frew, R.S. (1980). A survey of space allocation algorithms in use in architec-
tural design in the past twenty years. Proc. 17th Design Automation
Conf., DAC ’80, New York.

Galle, P. (1981). An algorithm for exhaustive generation of building floor
plans. Communications of the ACM 24, 813–825.

Gero, J.S., & Kazakov, V.A. (1996). Learning and re-using information in
space layout planning problems using genetic engineering. Artificial In-
telligence in Engineering 11, 329–334.

Grason, J. (1971). An approach to computerized space planning using graph
theory. Proc. Design Automation Workshop, Atlantic City, NJ.

Hahn, E., Bose, P., & Whitehead, A. (2006). Persistent realtime building in-
terior generation. Sandbox Symposium 2006, Boston.

Harada, M., Witkin, A., & Baraff, D. (1995). Interactive physically-based
manipulation of discrete/continuous models. Proc. 22nd Annual Conf.
Computer Graphics and Interactive Techniques. New York: ACM.

Homayouni, H. (2000). A survey of computational approaches to space lay-
out planning (1965–2000), pp. 1–18. Seattle, WA: University of Wash-
ington, Department of Architecture and Urban Planning.

Homayouni, H. (2006). A literature review of computational approaches to
space layout planning, pp. 1–27. Seattle, WA: University of Washington,
Department of Architecture and Urban Planning.

Hower, W., & Graf, W.H. (1996). A bibliographical survey of constraint-
based approches to CAD, graphics, layout, visualization, and related
topics. Knowledge-Based Systems 9, 449–464.

Jo, J.H., & Gero, J.S. (1998). Space layout planning using an evolutionary
approach. Artificial Intelligence in Engineering 12(3), 149–162.

Kalay, Y.E. (2004). Architecture’s New Media: Principles, Theories, and
Methods of Computer-Aided Design. Cambridge, MA: MIT Press.

Knecht, K., & Koenig, R. (2012). Layouts mittels Unterteilungsalgorithmen.
In Kremlas: Entwicklung einer kreativen evolutionären Entwurfsmeth-

R. Koenig and K. Knecht298

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

http://www.iemar.tuwien.ac.at/publications/
http://www.iemar.tuwien.ac.at/publications/
http://www.iemar.tuwien.ac.at/publications/
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

ode für Layoutprobleme in Architektur und Städtebau (Donath, D., Koe-
nig, R., & Petzold, F., Eds.), pp. 113–129. Weimar, Germany: Bauhaus-
Universität Weimar.

Koenig, R., & Schneider, S. (2012). Hierarchical structuring of layout prob-
lems in an interactive evolutionary layout system. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 26(2), 129–142.

Koza, J. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press.

Krishnamurti, R., & Earl, C.F. (1998). Densely packed rectangulations. Envi-
ronment and Planning B: Planning and Design 25, 773–787.
doi:10.1068/b250773

Kursawe, F. (1990). A variant of evolution strategies for vector optimization.
Parallel Problem Solving From Nature I (Schwefel, H.-P., & Männer, R.,
Eds.), LNCS Vol. 496, pp. 193–197. Berlin: Springer.

March, L., & Steadman, P. (1974). The Geometry of Environment: An Intro-
duction to Spatial Organization in Design, 2nd ed. Cambridge, MA: MIT
Press.

Marson, F., & Musse, S.R. (2010). Automatic real-time generation of
floor plans based on squarified treemaps algorithm. International
Journal of Computer Games Technology. Advance online publication.
doi:10.1155/2010/624817

Michalek, J.J., & Papalambros, P.Y. (2002). Interactive design optimization
of architectural layouts. Engineering Optimization 34(5), 485–501.
doi:10.1080/03052150214016

Mitchell, W.J. (1998). The Logic of Architecture: Design, Computation, and
Cognition, 6th ed. Cambridge, MA: MIT Press.

Mitchell, W.J., Steadman, P., & Liggett, R.S. (1976). Synthesis and optimi-
zation of small rectangular floor plans. Environment and Planning B:
Planning and Design 3(1), 37–70.

Moore, A.W. (1991). An introductory tutorial on kd-trees. Report No. 209,
Computer Laboratory, University of Cambridge.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Pro-
cedural modeling of buildings. Proc. ACM SIGGRAPH 2006/ACM
Transactions on Graphics Conf., Boston.

Müller, P., Zeng, G., Wonka, P., & Van Gool, L. (2007). Image-based proce-
dural modeling of facades. Proc. ACM SIGGRAPH 2007/ACM Transac-
tions on Graphics Conf., San Diego, CA.

Otten, R.H.J.M. (1982). Automatic floorplan design. Proc. 19th Design Au-
tomation Conf., Piscataway, NJ.

Parish, Y.I.H., & Müller, P. (2001). Procedural modeling of cities. Proc. SIG-
GRAPH, Los Angeles.

Rittel, H.W.J. (1992). Planen, Entwerfen, Design: Ausgewählte Schriften zu
Theorie und Methodik. Stuttgart: Kohlhammer.

Rosenman, M.A., & Gero, J.S. (1999). Evolving designs by generating useful
complex gene structures. In Evolutionary Design by Computers (Bentley,
P.J., Ed.). San Francisco, CA: Morgan Kaufmann.

Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated
genetic algorithms. Proc. 1st Int. Conf. Genetic Algorithms.

Schnier, T., & Gero, J.S. (1996). Learning genetic representations as alterna-
tive to hand-coded shape grammars. In Artificial Intelligence in Design
’96 (Gero, J.S., & Sudweeks, Eds.), pp. 39–57. Dordrecht: Kluwer.

Whitehead, B., & Eldars, M.Z. (1964). An approach to the optimum layout of
single-story buildings. Architects’ Journal 17, 1373–1379.

Reinhard Koenig is a Senior Assistant and Lecturer at ETH
Zurich and has worked as a Research Assistant and Interim
Professor at Bauhaus-University Weimar. He completed his
PhD thesis in 2009 at the University of Karlsruhe, and he
studied architecture and urban planning. He heads research
projects on the complexity of urban systems and societies,
the understanding of cities by means of agent-based models
and cellular automata, as well as the development of evolu-
tionary design methods. Dr. Koenig’s current research inter-
ests are the applicability of multicriteria optimization tech-
niques for planning problems and correlations of computed
measures of spatial configurations with human cognition
and usage of space.

Katja Knecht is a Researcher and Designer with a back-
ground in media technology and architecture. After graduat-
ing from the Bauhaus-University Weimar with a master of
science degree in media architecture in 2011, she worked as
a Research Assistant at the Chair of Computer Science in
Architecture. In 2012 she joined Queen Mary University of
London to pursue a PhD in the Media and Arts Technology
Programme. Her research is cross-disciplinary and situated
at the interface among architecture, media, and computing.
The range of Ms. Knecht’s work is from the development
of generative and media-based tools to support architectural
design and work processes to the creation of tangible environ-
ments and mediated spatial experiences.

Dense packing versus subdivision 299

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060414000237
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:09:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060414000237
https:/www.cambridge.org/core

	Comparing two evolutionary algorithm based methods for layout generation: Dense packing versus subdivision
	Abstract
	INTRODUCTION
	RELATED WORK
	Dense packing
	Subdivision
	EAs

	METHODS
	Dense packing
	Subdivision
	Calculation of specific room sizes
	Search for specific neighborhood relationships

	SCENARIOS
	COMPARATIVE ANALYSES
	Performance
	Reliability
	Variance
	Evaluation
	Interaction characteristics
	More complex layouts

	CONCLUSION AND OUTLOOK
	ACKNOWLEDGMENTS
	REFERENCES

