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Reply to Srinivas

To the Editor—We thank Dr. Srinivas [1]

for his interest in our recent review article

[2] and appreciate the opportunity to re-

spond to his thoughtful comments.

We agree that interactions between ri-

fampin and other medications, including

antiretrovirals, can be clinically or phar-

macologically unpredictable and that

close monitoring of patients taking rifam-

pin with other medications is essential [3,

4]. Srinivas brings to light an interesting

mechanism—inhibition of hepatic up-

take via blockage of organic anion trans-

port— by which rifampin may cause

acute paradoxical drug interactions. He

further reminds us that the complexity of

drug interactions with rifampin is com-

pounded when the companion drug’s

metabolite is pharmacologically active, as

is the case with nelfinavir. It is fortunate,

however, that the hepatic transporter

blockade drug-drug interaction mecha-

nism he describes appears to be rare, af-

fecting only a few drugs, most of which

are not commonly used in resource-

limited settings. It is also fair to say that

this type of interaction is unlikely to occur

with antiretrovirals, the vast majority of

which have been evaluated in drug-drug

interaction studies with rifampin. In ad-

dition, given that the interaction he de-

scribes results in higher plasma concen-

trations of a coadministered drug, the

potential impact on antiretrovirals may

not be deleterious.

The comments by Srinivas are timely

and serve as a much-needed reminder

that mechanisms for drug interactions are

increasingly complex and that clinicians

need to maintain vigilance whenever add-

ing drugs to an existing regimen.
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Use of Mathematical
Modeling to Inform
Chlamydia Screening Policy
Decisions

To the Editor—Regan et al. [1] predict

that Chlamydia trachomatis prevalence in

women in Australia will fall by �70% in

10 years with a screening program that

tests 30% of 15–24-year-olds each year.

This means that 70% of the target popu-

lation would remain untested every year

and that participants would be tested, on

average, once every 3 years. This is an op-

timistic view of the impact that limited

screening coverage would have, given the

absence of evidence that opportunistic

testing at this level has controlled chla-

mydia transmission up to now [2]. We

think that there are reasons for caution in

using predictions from this model to in-

form decisions on “the most effective

chlamydia screening program for Austra-

lia” [1, p. 357].

First, the inability to model long-term

partnerships explicitly in this compart-

mental model is a fundamental limitation
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that makes predictions about reductions

in prevalence unreliable. Reinfection of

the index case patient from a current un-

treated sex partner cannot be taken into

account in Regan et al.’s model because

the model does not keep track of ongoing

partnerships and all infected individuals

are returned to the susceptible state, after

either treatment or natural clearance of

infection [1]. Within an ongoing partner-

ship, reinfection can take place if the part-

ner is not treated along with the index

case patient. In this model, repeat infec-

tions only occur in subsequent partner-

ships. In reality, early reinfection with

chlamydia after screening and treatment

of an individual who has untreated part-

ners is common [3]. Regan et al. assert

that “screening . . . will be the primary in-

tervention in Australia” [1, p. 357]. They

assume that their model provides a con-

servative estimate of the effect of a chla-

mydia screening intervention because

partner notification would provide addi-

tional benefits compared with those of

screening alone. This can be shown to be

the case when the impact of chlamydia

screening is investigated in an individual-

based model, because the net effect of

screening without partner notification

takes into account the reinfection of index

case patients in partnerships in which the

partner was not screened [4]. Additional

partner-notification efforts then have an

incremental effect. Regan et al.’s com-

partmental model, however, overesti-

mates the effect of chlamydia screening

because it ignores reinfections that do not

contribute to reducing prevalence. After

dissolution of the old partnership and

formation of a new partnership, the infec-

tion could be transmitted to a new sex

partner. The impact of ignoring reinfec-

tion would be greater when only one sex is

screened and at low levels of coverage.

Second, predicted reductions in chla-

mydia prevalence cannot currently be

used as a proxy for the overall effective-

ness of a chlamydia screening program. A

proxy (or surrogate marker) has to have a

known relationship with the outcome [5].

The primary objective of chlamydia

screening programs is to prevent compli-

cations, such as tubal infertility, that re-

sult from chlamydia infections that as-

cend to damage the upper genital tract

[2]. It is not known, however, whether

there is a relationship between increasing

screening coverage and reducing female

reproductive tract morbidity.

Regan et al.’s model is more complex

than some other compartmental models

of C. trachomatis transmission [6] and

might be useful for examining the relative

importance of different strategies, but it

cannot be used to quantify the effects of

different levels of screening coverage ac-

curately. The need for empirical studies

that demonstrate the impact of chlamydia

screening programs on both chlamydia

transmission and the incidence of com-

plications remains [2]. Mathematical

models that dynamically incorporate the

progression to fertility-related complica-

tions of chlamydia are needed to help

understand the impact of screening pro-

grams on primary outcomes [7, 8]. Fur-

ther methodological studies that directly

compare the assumptions and predic-

tions of compartmental and individual-

based models to help us understand how

reinfection and partner notification affect

the incidence and prevalence of chla-

mydia are also needed. We suggest that it

is premature for health policy makers to

base decisions about chlamydia screening

programs on this mathematical model,

which does not represent the dynamics of

chlamydia transmission adequately.
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Reply to Low et al.

To the Editor—In our article [1], we de-

scribed the results from a compartmental

model of chlamydia transmission in a het-

erosexual population. We calibrated our

model using the best Australian epidemi-

ological and behavioral data available as

well as biological data from the literature.

The stated primary aims of our work were

to compare various screening strategies in

terms of their effectiveness in reducing

the incidence and prevalence of chla-
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