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The 1sotopic difference between modern Indian Ocean and Pacific
or North Atlantic Ocean ridge mantle (e.g. variably lower *"°Ph/
“M"Pb for a given &y, and **Pb/*""Pb) could reflect processes that
occurred within a_few tens of mallions of years preceding the wnitial
breakup of Gondwana. Alternatively, the Indian Ocean isotopic
signature could be a much more ancient upper-mantle feature
inherited from the asthenosphere of the eastern Tethyan Ocean,
which_formerly occupied much of the present Indian Ocean region.
Age-corrected Nd, Pb, and Sr isotopic data for 46—150 Ma seafloor
lavas from sites in the western Indian Ocean and ocean-ridge-lype
Tethyan ophiolites (Masirah, Yarlung—Zangpo) reveal the presence of
both Indian-Ocean-type compositions and essentially Pacific—North
Atlantic-type signatures. In comparison, Jurassic South Pacific
ridge basalls from Alexander Island, Antarctica, possess normal
Pacific—North Atlantic-type isotopic ratios. Despite the very sparse
sampling of old seafloor, the age-corrected €y,(t) values of the old
Indian Ocean basalts cover a greater range than seen for the much
more thoroughly sampled present-day spreading axes and islands
within the Indian Ocean (eg. 18 ey, unils for basalls in the
60-80 Ma range vs 15 ey, units for 0—10 Ma ones). The
implications of these results are that the upper mantle in the Indian
Ocean region is becoming increasingly well mixed through time, and
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that the Indian Ocean mantle domain may not greatly pre-date the
age of earliest spreading in the Indian Ocean.
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INTRODUCTION

Isotopic studies of MORB (mid-ocean ridge basalts) have
established the existence of a vast mantle domain in the
Indian Ocean distinct from the sources of Pacific and
North Atlantic MORB. Along the present Indian Ocean
spreading axes, this domain includes the entire Central
Indian and Carlsberg ridges and most of the Southeast
and Southwest Indian ridges, stretching from about
126°E on the Southeast Indian Ridge (Klein ez al., 1988;
Pyle et al., 1992) to about 26°E on the Southwest Indian
Ridge (Mahoney et al., 1992) and northward into the
Red Sea (e.g. Schilling et al., 1992; Volker et al., 1993).
Indian MORB are characterized, in particular, by lower
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values of °Pb/*"Pb relative to &g and **Pb/**Pb than
Pacific and North Atlantic MORB, and also tend to have
comparatively high ¥Sr/®Sr (e.g. Hedge et al., 1979;
Dupré & Allegre, 1983; Hamelin et al., 1986; Michard
et al., 1986; Price et al., 1986; Dosso et al., 1988; Mahoney
et al., 1989, 1992; Hall et al., 1995). When 1sotopic data
for samples from the fringes of the Indian Ocean domain
are removed from consideration, there is remarkably
little overlap of the Indian MORB data set with the
1sotopic field defined by >95% of published Pacific and
North Atlantic MORB data in either the gy vs *°Pb/
"Pb or Pb/*Pb vs *Pb/*Pb diagrams (Fig. 1).
Furthermore, recent studies of Western Pacific back-arc
and marginal basin lavas (e.g. Hochstaedter ¢t al., 1990;
Loock et al., 1990; Hickey-Vargas, 1991, 1998; Tu et al.,
1992; Crawford et al., 1995; Hickey-Vargas et al., 1995;
Spadea et al., 1996), and of island-arc lavas in the Phil-
ippines (Mukasa et al., 1987; Castillo, 1996), show that
1sotopically Indian-MORB-like asthenosphere also un-
derlies this region and thus appears to extend far to the
east of the Indian Ocean proper. However, despite its
great size, the history and origins of this domain (L.e.
why it 1s different from Pacific and North-Atlantic-type
mantle) are understood only poorly.

Two general classes of hypotheses have been proposed
to account for the Indian Ocean asthenospheric domain.
One is that it was created shortly before and during the
breakup of Gondwana in the processes that formed
the Indian Ocean itself. Possible causes involve either
upwelling of deep, isotopically unusual plume-related
mantle or widespread introduction of small amounts
of continental lithospheric or old, shallowly subducted
sedimentary material into the MORB source mantle
(promoted by Gondwanan rifting, subduction—erosion,
and/or the erosive action of the Kerguelen, Marion,
Crozet, and Bouvet starting-plume heads) (e.g. Castillo,
1988; Klein e al., 1988; le Roex et al., 1989; Mahoney
et al., 1989, 1992; Storey et al., 1989, 1992; Pyle et al.,
1992, 1995; Weis ¢t al., 1992; Hickey-Vargas ¢t al., 1995;
Rehkdmper & Hofmann, 1997). In either case, this
material is postulated to have been dispersed to its present
extent along asthenospheric flow paths as the Indian
Ocean opened. In this class of hypotheses, older Indian
MORB would be expected to show more variable isotopic
signatures than modern ones because less time would
have been available for intermixing of ‘normal’ (i.e.
Pacific-North Atlantic type) and contaminated astheno-
sphere. Depending upon their location and age, and the
nature of asthenospheric dispersal patterns, some older
lavas might not have Indian-MORB-type isotopic sig-
natures at all; the same would probably be true of seafloor
formed north of Greater India in the eastern Tethyan
Ocean (Mahoney et al., 1992), the Mesozoic ocean that
existed in much of the same region now occupied by the
Indian Ocean before opening of the latter. An alternative
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Fig. 1. Plot of &y, (a) and *"Pb/*"Pb (b) vs **Pb/***Pb for Indian
MORB ([J) compared with the field defined by >95% of published
high-quality data for Pacific and North Atlantic MORB. Data for the
edges of the modern Indian Ocean mantle domain, where some
transitional compositions occur, are excluded (i.e. in the Australian—
Antarctic Discordance, along the western Southwest Indian Ridge, and
Red Sea—Gulf of Aden). Principal MORB data sources include those
cited in the text, plus Ito et al. (1987), White et al. (1987), Hanan &
Schilling (1989), Dosso et al. (1993), Bach et al. (1994), Mahoney et al.
(1994), and other recent studies cited therein.

hypothesis is that the Indian MORB mantle domain is
a much longer-lived asthenospheric feature that existed
well before the Indian Ocean started opening up (e.g.
Hart, 1984; Crawford et al, 1995). In this case, the
characteristic Indian-Ocean-type isotopic —signature
would be expected to be typical of both old Indian
MORB and seafloor erupted in a widespread region of
the Tethyan Ocean.

Recently, Lanyon (1995), Pyle et al. (1995), and Weis
& Frey (1996) have studied old seafloor basalts from drill
and dredge sites in the eastern Indian Ocean east of
about 90°E. Their results indicate that lavas with ages
ranging from 15 to 125 Ma exhibit rather typical Indian-
MORB-type isotopic signatures; that is, values lying to
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the low-"""Pb/*'Pb side of the Pacific-North Atlantic
MORSB fields in Fig. 1. However, ~150 Ma samples from
Deep Sea Drilling Project Site 261 (off the northwestern
corner of Australia) lack clear Indian-MORB-type char-
acteristics, and the same may be true of similar-age
MORB from nearby Site 765 (see Weis & Frey, 1996).
Although preserved within the northeastern corner of
the Indian Ocean, these basalts were formed around
30-35°S at a Tethyan spreading center some 15 my
before significant spreading began in the eastern Indian
Ocean between Greater Indo-Madagascar and Australia—
Antarctica (e.g. Ogg et al., 1992).

In this paper, we present results for 46-140 Ma lavas
from drill sites in the western Indian Ocean. Also, al-
though the eastern Tethyan Ocean no longer exists,
fragments of Tethyan seafloor are preserved in MORB-
type ophiolites along the Tethyan suture belt in southern
Asia (Fig. 2). Here, we discuss results for two such suites:
110 Ma basalts from the Yarlung—Zangpo suture of
Tibet, and a group of 150 Ma and 120 Ma rocks from
the Masirah ophiolite off the Arabian peninsula. As a
comparison, we also present isotopic data for Jurassic
Pacific MORB from Alexander Island, Antarctica.

METHODS

Several of the samples studied were fairly fresh but most
were affected by seawater-mediated alteration, ranging
from mild ‘brownschist’ to zeolite, prehnite—pumpellyite
or, in some cases, lower greenschist facies (see Davies et
al., 1974; Fisher et al., 1974; Simpson et al., 1974; Whit-
marsh et al., 1974; Moseley & Abbotts, 1979; Abbotts,
1981; Girardeau et al, 1985; Pearce & Deng, 1988;
Doubleday et al.,, 1994). Rarely, we were able to pick
enough fresh glass or clear-looking plagioclase for isotopic
and 1sotope-dilution analysis; glass and plagioclase sep-
arates were cleaned ultrasonically in ultrapure, 1 M HCI
and water before dissolution and further processing. For
other samples, we followed a preparation procedure
closely similar to that used in our previous isotopic studies
of old, non-glassy submarine basalts. Chips from the
least-altered interior portions of samples were broken to
pieces of 3-5 mm in size, which were handpicked under
a microscope to avoid visible alteration products (veins,
vesicle fillings, and more altered patches of groundmass).
The pieces selected were briefly cleaned ultrasonically in
ultrapure, weak HF-HNO; and H,O (in sequence) and
then broken into smaller (~2 mm) pieces, after which
the picking and cleaning procedure was repeated. The
pieces chosen were ground in a boron carbide mortar,
dissolved, and analyzed for isotopic ratios of Nd, Pb, and
Sr and 1sotope-dilution abundances of Nd, Sm, Pb, Th,
U, Sr, and Rb at the University of Hawaii. Several of
the samples from Masirah (those lacking MSX or MA
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Fig. 2. Map of the western Indian Ocean showing locations of the
drill sites (with basement ages or age estimates in parentheses), Masirah,
and Yarlung—Zangpo basalts. The belt of Tethyan ophiolites and
colored mélanges in southern Asia is depicted in black (after Coleman,
1981). Inset shows locations of Site 690 and Alexander Island. CIR,
Central Indian Ridge; SWIR, Southwest Indian Ridge; SEIR, Southeast
Indian Ridge. It should be noted that the large difference in age
between Site 249 and nearby Site 248 reflects a major boundary in
seafloor age provinces (e.g. Simpson et al., 1974).

prefixes in the tables) were analyzed for Nd and Pb
isotopes and Nd, Sm, Pb, and U abundances at the
University of Bern following a generally similar pre-
paration procedure; Th was analyzed for these samples
at the University of Hawaii. In addition, isotopic ratios
and parent-daughter element abundances were de-
termined for some samples on splits of powder subjected
to a multistep, HCI-dominated acid-leaching procedure
effective at removing low-temperature alteration phases
(carbonates, clays, chlorite, phosphate, zeolites, ferro-
manganese oxides; some fresh material is also removed
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in the process; see Mahoney, 1987; Mahoney & Spencer,
1991). It should be noted that because the picking pro-
cedure, as well as acid leaching, when employed, variably
modifies a sample’s mineralogical composition relative
to that of the bulk rock, the isotope-dilution data do not
strictly represent bulk-rock elemental abundances and
are used here for isotopic age-corrections only. The
results are given in Tables 1 and 2.

Very few trace element data have been published
for the western Indian Ocean drillhole lavas. Thus, we
analyzed a subset of the bulk-rock samples for a broad
suite of trace elements; we also analyzed several Masirah
samples. Slabs of fresher portions of rock with a minimum
of veins and amygdules were chosen (note that for some
of the smaller drillhole samples, the freshest looking
material had already been reserved for isotopic work).
To avoid possible drilling- and/or handling-related con-
tamination, the slabs (typically 5-30 c¢m?® were taken
from sample interiors, lapped with SiC, cleaned briefly
(~5 min) in ultrapure, weak HF-HNO; (each ~0-2 M)
and water in an ultrasonic bath and powdered in alumina;
experience has shown that this procedure does not sig-
nificantly modify bulk-basalt compositions for the ele-
ments analyzed. The resulting bulk-rock powders were
prepared and analyzed by inductively coupled plasma-
mass spectrometry at the University of Hawaii following
techniques similar to those described by Jain & Neal
(1996). The data appear in Table 3.

A note on effects of alteration on isotopic
ratios

Because seawater has a fairly high concentration of Sr
(~8 ppm; e.g. Li, 1991) and high ¥Sr/*Sr (today ~0-709)
relative to oceanic mantle, ¥Sr/*Sr values in basalts
altered by seawater-derived solutions are typically el-
evated above values in pristine samples; in constrast, Nd
and Sm abundances are extremely low in seawater (4 X
10° and 8 x 107 ppm, respectively) and Nd isotopes
are resistant to modification by even rather high amounts
of alteration (e.g. McCulloch et al., 1981; Staudigel et al.,
1995). Like Nd, Pb abundances in seawater are very low
(2 x 10° ppm), so that Pb isotope ratios are affected
little by seawater interaction. Pb can be mobile in hy-
drothermal systems, but redeposition of Pb from one part
of a volcanic system to another will normally not be
isotopically distinguishable (unless the system possesses
significant local-scale isotopic heterogeneity). However,
unlike ""Sm/'"*¥Nd values, **U/***Pb ratios (and to a
lesser extent, **Th/***Pb) can be affected markedly by
mobility of U and uptake of U from seawater (3-2 X
10 ppm), in particular, as well as Pb (and sometimes
Th) mobility (e.g. Tatsumoto, 1978; Macdougall et al.,
1979; Chen & Pallister, 1981). If alteration of an oceanic
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basalt occurs within several million years after eruption,
as typically appears to be the case (e.g. Staudigel et al.,
1981), and the rock remains a nearly closed system
thereafter, then age-correction of Pb isotope ratios will
result in values close to the initial magmatic values
even for an old specimen. Indeed, previous studies have
demonstrated that good initial-Pb isotope information
can be obtained on a range of crystalline magmatic rocks
with hydrothermal overprints as high as greenschist facies
(e.g. Chen & Pallister, 1981; Gopel et al., 1984). However,
if alteration of parent-daughter ratios occurs long after
eruption, or repeatedly over many millions of years, then
age-adjusted Pb isotopic values will be erroneous. As a
hypothetical illustration, let us consider a basalt erupted
at 100 Ma whose **U/*"*Pb ratio has been elevated from
an original value of, say, 10 to 40 by some very recent
seawater-alteration process; using the measured value of
40 to calculate an ‘initial’ **Pb/**Pb ratio leads to a
substantial overcorrection of 0-47.

RESULTS
Old Pacific MORB

The basalts of Alexander Island represent faulted slices
of Jurassic seafloor formed by spreading between the
Pacific and Phoenix plates, and preserved in an ac-
cretionary wedge complex (Doubleday et al., 1994). Ages
are well determined at 150 Ma in one location (Sullivan
Glacier; samples KG 3513-27 and KG 3513-4) and
relatively poorly known at a second (Herschel Heights),
where a 150 Ma age is assumed; a third area (Lully
Foothills) is well dated at Early Jurassic (~200 Ma).
Chemically, the basalts include both normal-type and
incompatible-element-enriched MORB (N- and E-
MORB); ocean-island-type compositions are also present
(Doubleday et al., 1994). The samples we analyzed iso-
topically are altered to zeolite and prehnite—pumpellyite
facies.

In an initial &xy(#) vs (7Sr/*Sr), diagram (Fig. 3), most
of the Alexander Island data lie to the high-*’Sr/*Sr side
of the MORB field: although &y(f) is between +8-6
and + 54, within the range of modern N- and E-MORB,
the (¥Sr/®Sr), of unleached splits varies from 0-70295 to
0-70439. In contrast to many of the drillhole and Masirah
samples (see below), acid-leaching of the two Alexander
Island samples whose unleached splits had the highest
age-adjusted Sr isotope ratios produced only modest
decreases in (*’Sr/®Sr), not enough to move their data
points into the MORB field in Fig. 3. This result probably
reflects the fact that the main repository of Sr, plagioclase
(which along with clinopyroxene typically makes up most
of the residue for leached tholeiites; e.g. Mahoney, 1987),
was largely replaced by secondary feldspar in these rocks
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Table 2: continued

(206Pb/204pb)0 (207Pb/204pb)0 (ZOSPb/Z[MPb)G (ZDGPb/ZOAPb)‘ (ZO7Pb/20APb)‘ (ZOSPb/ZOAPb)‘

238U/204Pb 232Th/204Pb Th/U

Th

U

Pb (ppm)

Age

Sample

(Ma)

location

Yarlung-Zangpo (Xigaze)
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204pp),, and +0-019 on (*®Pb/**Pb),. Total procedural blanks: Pb 4-34 pg in Hawaii and <70 pg in Bern; U <5 pg in Hawaii and <30 pg in Bern; Th <3 pg.
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during alteration (Doubleday et al., 1994) and that little
material with pristine *Sr/*Sr remains.

Unlike Sr isotopes, the age-corrected Nd and Pb iso-
topic data all fall in a restricted field within the Pacific—
North Atlantic MORB mantle array in Fig. 4c and d,
particularly when the modern array i1s adjusted to the
approximate position it would have occupied at 150
Ma (assuming the only changes have been caused by
radioactive decay of parent nuclides in the MORB source
mantle). The data plot in the low-gyg, high-**Ph/***Pb,
high-"Ph/*"*Pb region of this array. Values of (*’Pb/
2*Ph), lie within the range for MORB and oceanic islands
as well (Fig. 5a). The one sample for which we determined
Nd and Pb isotopes on both acid-leached and unleached
splits (KG 3513-27) has identical &xq({), within errors, for
each split, at +7-8 and +7-9; leaching also produced
only small changes in the age-adjusted Pb isotope ratios
of this sample [e.g. (**°Pb/*™Pb), of 18-98 and 18-91; see
linked light and dark squares in Fig. 4]. Because the age-
corrected Pb isotopic values of all the samples (1) plot in
a small field within the narrow Pacific-North Atlantic
MORB array in both panels ¢ and d of Fig. 4 and (2)
have a lesser total spread in **Pb/**Pb and ***Pb/***Pb
relative to the measured, present-day range (0-33 vs 0:70
and 0-28 vs 047, respectively; the range in *’Pb/*'Pb
1s the same within analytical error), and because (3) values
for the leached and unleached splits of KG 3513-27
agree well with each other, it appears that alteration
affecting U/Pb or Th/Pb ratios mainly occurred within
a few million years after eruption. The same appears to
be true of most samples from the other localities studied
(see below).

Western Indian Ocean drill sites

The drillhole samples display a wide range in elemental
composition. Primitive-mantle-normalized incompatible
element patterns of several samples are illustrated in
Fig. 6, and can be seen to vary from typical N-MORB
type (sloping generally downward to the left; e.g. Site
235-20-5) to E-MORB type (moderate upward slope to
the left; e.g. Site 250A-26-5). The basalt from Site 690C
(on Maud Rise) has an ocean-island-like pattern re-
sembling those of Gough Island lavas (South Atlantic),
including a spike at Ba and trough at Th and Uj this
rock is an unusual xenocryst-bearing alkalic basalt that
Schandl ¢ al. (1990) concluded originated from a hydrous
source containing small amounts of phlogopite and ap-
atite. The Site 224 sample shows somewhat similar, but
less extreme, ocean-island-like features. In contrast, the
pattern for a Site 249 lava has a sizeable trough at Nb
and Ta (as well as a larger than usual peak at Pb), a
characteristic commonly seen in lavas influenced by
continental lithosphere, and in arc-related basalts, but
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Fig. 3. Age-corrected exq(f) vs (’Sr/®Sr),. It should be noted that not all samples were acid-leached and that for samples with data on both
unleached and acid-leached or glass splits, only values for leached or glass splits are shown. Present-day fields for Pacific-North Atlantic MORB,
Indian MORB [including the 39°-41°E section of the Southwest Indian Ridge (SWIR)], and Réunion and Crozet hotspot volcanoes are shaded;
the adjacent unshaded fields are positioned for 150 Ma, assuming the modern MORB and Réunion—Crozet mantle sources have average '’Sm/
"Nd of 0-24 and 0-17, and “Rb/*Sr 0-02 and 0-10, respectively (see Peng & Mahoney, 1995). Data sources for the fields are as in Fig. 1 and,
for Réunion and Crozet, W. M. White (unpublished data, 1993) and Mahoney et al. (1996, and references therein).

rarely in either fresh or altered oceanic basalts (compare
Site 248 pattern). Patterns of the visibly fresher N- and
E-MORB samples (e.g. Site 236-33-3, Site 250A-26-5)
are relatively smooth, and even the more altered samples
lack the pronounced spikes or troughs seen for some
elements in patterns of highly altered basalts (Bienvenu
et al., 1990; Staudigel et al., 1995; Jochum & Verma,
1996). Alteration eflects are most evident in a marked
elevation of Rb in the N-MORB lavas; Ba is also elevated
significantly in many of these lavas (e.g. the Site 223
sample). Small peaks or troughs, which may reflect al-
teration, are present at Pb in several patterns, whereas
U peaks and/or low Th/U ratios indicate significant U
uptake in several samples (e.g. Site 245-19-1).

We determined Sr and Pb isotopes on both unleached
and leached (or glass) splits of seven of the drill-core
basalts studied and Nd isotopes on six pairs. The (¥’Sr/
%Sr), values of all but one of the leached splits are
significantly lower (by as much as 0-:0006) than those of
the unleached splits, whereas only negligible differences
are observed in &xy(?) (0-0-4 epsilon units). The differences
in age-corrected Pb isotope ratios for the members of
each unleached-leached (or glass) pair are also relatively
small, with one exception (see linked symbols in Fig. 4a
and b). For example, the difference in (**Pb/*"*Pb),ranges
from 0-04 to 0-14, except for sample 245-19-1, which
shows a difference of 0-26, by far the largest observed

for any of the samples in our study. As with Nd isotopes,
the age-corrected Pb isotope ratios of an unleached split
can be either slightly higher or lower than for the
corresponding leached residue or glass separate. Values
of (**"Pb/*"*Pb), are all within the range for MORB and
ocean islands (Fig. 5a), except for sample 248-17-2, for
which both leached and unleached splits have high (**"Ph/
2%Ph), (1565, 15:63) relative to (**Ph/*'Pb), (1840,
18-49). Abundances of Nd, Sm, Pb, U, Th, and Rb
typically dropped substantially with leaching. Although
the "Sm/"*Nd ratios of leached splits tend to be higher
than for their unleached counterparts, consistent with a
relative enrichment of clinopyroxene in most of these
residues (e.g. Mahoney, 1987), the **U/**Pb and **Th/
“™Ph values can be either higher or lower, probably
depending on the particular combination of altered and
unaltered phases remaining in the leached residue. It is
important to note that, except in the glasses, neither set
of values necessarily corresponds to those in the pristine
rock.

The total range in eyxqy(Y) (unless otherwise specified, in
the text hereafter we use isotopic values for leached
residues or glass, when available) is considerable: 4 10-3
to —0-6. That for (¥Sr/*Sr),is also large, from 0-70277
to 0:70431. In contrast to the Alexander Island basalts,
most of the age-adjusted drillhole-basalt data plot within
or very close to the MORB fields in the Nd—Sr isotope
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Fig. 4. Age-corrected &xy()) (a, c) and (**Pb/*"*Pb), (b, d) vs (*"Pb/**Pb),. Acid-leached (or glass) and unleached pairs are indicated by light and
dark symbols, respectively, linked by tie lines. As in Fig. 3, the field for the modern Pacific-North Atlantic MORB source at 150 Ma (c, d) and
60 Ma (a, b) is unshaded, and additionally assumes an average **U/**Pb = 5 and **Th/***U = 23 in the source mantle (White, 1993); that
for the Réunion—Crozet field at 150 Ma (c, d) is also unshaded and assumes source values of 12 and 3-3, respectively (Peng & Mahoney, 1995).
Site numbers are shown adjacent to data points in (a) and (b), with ages in parentheses. Diamonds labeled AN at &xy(/) ~—8 are for Afanasy-
Nikitin Seamount (Mahoney et al., 1996); that at (**Ph/**Pb), ~17-2 is for a seamount southwest of Afanasy-Nikitin estimated at 60 Ma (our
unpublished data, 1997). Field for Samail ophiolite is from data of Chen & Pallister (1981) (for Pb isotopes) and McCulloch et al. (1981) [for

exd)]-

diagram (Fig. 3). An interesting exception is the chem-
ically and petrographically unusual alkalic lava from Site
690C (Schandl ¢t al., 1990) on Maud Rise, which may
have formed in association with a jump of the ancestral
Southwest Indian Ridge toward the Bouvet hotspot in
the 85-100 Ma period (e.g. Barker et al, 1990); this
sample has anomalously low (*’Sr/*Sr), (0-70376) for its
low exqg(?) (—0-6).

Pb isotopes also exhibit a wide range, with (**Pb/
*"Pb),, varying from 17-40 (the Site 690C sample) to
19-28 (the Site 236 glass). Many of the old western Indian
Ocean basalts resemble modern Indian MORB and
hotspot islands in that their age-corrected Pb and Nd

isotopic ratios place them on the low-""Pb/**Pb side of
the Pacific-North Atlantic MORB-source field in Fig. 4a
and b. The oldest lavas, from Site 249, were erupted at
~140 Ma during early spreading between Africa and
southern Greater Indo-Madagascar, and display a strong
Indian-Ocean-type signature in both Fig. 4a and b.
Samples from Sites 690C, 239, 248, 235, 224, and 221,
with ages between ~85 and 46 Ma, also have clear Indian-
Ocean-type isotopic signatures. In addition, dredged lavas
from Afanasy-Nikitin Seamount (Fig. 2), erupted on or
near the western Southeast Indian Ridge at ~80 Ma in
a location far from continental landmasses, recently have
been shown to possess lower &xy(f) (-8) and (***Pb/**Pb),
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Fig. 5. Age-corrected (*"Pb/*"Pb), vs (**Pb/***Pb),. Symbols, fields, and data sources are as in Figs 3 and 4, plus Sun (1980) for Bouvet.

(16:77) values than any modern Indian Ocean (or any
other oceanic) lavas (see Fig. 4). Thus, Indian-MORB-
type isotopic compositions clearly were present in the
old western Indian Ocean mantle, in good agreement
with results for old lavas from the eastern Indian Ocean
(Lanyon, 1995; Pyle et al., 1995; Weis & Frey, 1996).
However, data for several sites overlap the Pacific—
North Atlantic MORB-source array. As noted earlier,
such characteristics appear to be very rare within the
main part of the Indian Ocean domain today (Fig. 1).
The Site 250A samples (including an N-MORB and an
E-MORB), the two flows we analyzed from Site 240,
and the upper of two petrographically distinct units
(Fisher et al., 1974) at Site 236 have values that fall within
the Pacific-North Atlantic MORB-source field in both
Fig. 4a and b. The same is true for the Site 245 basalt,
despite the significant difference in age-corrected Pb
1sotopic values between the leached and unleached splits
of this sample. Moreover, the Site 250A-26-5 (90 Ma)
E-MORB and the Site 236-33-3 glass—crystalline-rock
pair (60 Ma) have age-corrected (**Pb/**Pb) >19,

significantly greater than seen for any modern Indian
MORB (most of which have **Pb/*Pb <18-4). [Al-
though it was not age-corrected, an even higher present-
day *®Pb/*Pb value of 19-580 was reported by Hart
(1988) for a Site 250A lava deeper in the core than our
E-MORB sample, with a value of 19-322.] Some modern
Indian Ocean island lavas have values around 19, but
they also have markedly lower &xq (~+4 or less vs +6-2
and + 7-4), higher relative **Ph/*'Pb, and usually higher
¥Sr/®Sr (e.g. ~0-704 for Réunion and Crozet). Two
samples display notably ambiguous ‘mixed’ isotopic char-
acteristics, one from the lower unit at Site 236 and one
from Site 223 (both ~60 Ma). In Fig. 4a, values for both
the unleached and leached splits of these samples fall
near the edge of but within the estimated Pacific-North
Atlantic MORB-source array for 60 Ma. However, in
Fig. 4b, data for both samples lie well above this field.
Along the present-day spreading ridges, qualitatively sim-
ilar mixed signatures have been found only in some lavas
at the fringes of the Indian MORB domain (Mahoney
et al., 1992; Pyle et al., 1992; Volker & et al., 1993).
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Fig. 6. Incompatible element patterns of several western Indian Ocean drillhole lavas. Shown for comparison are average N-MORB and
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OIB averages are Sun & McDonough’s (1989). The Site 690C pattern is from data of Schandl et al. (1990). The Ta value for the Site 245

pattern is inferred from the measured Nb value assuming Nb/Ta = 17.

Masirah

Masirah is an island off the coast of Oman that contains
well-preserved exposures of uplifted abyssal oceanic crust.
An older suite of MORB-type magmatic and ultramafic
rocks is present, as well as a younger group of magmatic
rocks, principally alkalic basalts and their differentiates
but also amphibole—clinopyroxene gabbros and rare
oceanic granites (e.g. Moseley & Abbotts, 1979; Abbotts,
1981; Moseley, 1990; Smewing et al., 1991; Gnos &
Perrin, 1996; Nagler & Frei, 1997). Recent dating reveals
that the MORB-type suite is ~150 Ma, whereas the
younger suite is ~120 Ma (Smewing e/ al, 1991; Im-
menhauser, 1996; Nigler & Frei, 1997). The Masiran
seafloor appears to have formed on the slow-spreading,
transform-fault-dominated ridge system (e.g. Fisher et al.,
1986) linking the main Tethyan and early western Indian
Ocean (northeastern Somali Basin) spreading centers in
the narrow basin between northwestern Greater Indo-
Madagascar and the northeastern corner of Arabia—
Africa (see Fig. 7) (e.g. Mountain & Prell, 1990; Smewing

et al., 1991; G. Mountain, personal communication,
1993). (Note that the similar-age basement at Site 249
was formed in the Mozambique Basin farther southwest,
to the southwest of Madagascar.) The cause of the later
magmatism at ~120 Ma is uncertain but may be related
to lithospheric fracturing and passage of the region near
a hotspot (Meyer et al., 1996; Négler & Frei, 1997).
Primitive-mantle-normalized element patterns of rep-
resentative tholeiitic and alkalic Masiran lavas (the latter
represented by an E suffix in the tables) are shown in
Fig. 8a and b. Low, MORB-like abundances of in-
compatible elements characterize the 150 Ma tholeiitic
basalts, and their patterns range from typical N-MORB
type to transitiona-MORB type (relatively flat). The
patterns of the 120 Ma alkalic lavas slope generally
upward to the left and broadly resemble those of many
oceanic island basalts [compare the average OIB pattern
in Fig. 8; see also Meyer et al. (1996)]. Overall, the
patterns are relatively smooth. However, Rb and Ba can
be mildly to dramatically enriched or depleted relative
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to Th in the visibly more altered samples analyzed (e.g.
MA-401, MSX-219E). Small to moderate troughs or
peaks at Pb are present in some patterns as well, and a
substantial negative Eu anomaly can be seen in the
pattern for MSX-219E, a trachytic lava.

As with the drillhole samples, acid-leaching of the
Masiran rocks reduced their (¥Sr/*Sr), values while
causing negligible changes in &y4(¢) and only modest ones
in age-corrected Pb isotope ratios. In several cases, a
large reduction in (’Sr/*Sr), occurred: for example, from
0-70466 to 0-:70305 for MSX-171. In the Nd-Sr isotope
diagram (Fig. 3), the data for most of the Masiran rocks
plot in or very close to the estimated 150 Ma MORB-
source field (in the broad area of this diagram where
Pacific-North Atlantic and Indian fields overlap), al-
though leaching failed to bring the Sr isotope values of
MA-401 or MSX-219E into this field. The plagioclase
separate—which we did not leach—of a gabbro (MSX-
71g) also yielded higher (¥Sr/®Sr), (0-70335) than the
leached splits of basalts MSX-75 and MSX-171 [with Sr
isotopic values of ~0-7030 at similar eyq(f)], evidently
indicating that the plagioclase was somewhat affected by
interaction with seawater.

For the 150 Ma samples, &xq4(f) ranges from 4105
to + 6-4, indicative of intrinsic heterogeneity in the
mantle source; however, eight of the 11 samples have
values between +9-0 and + 7-6. Values of (**Pb/*"'Pb),
vary from 18-17 to 18-88, with eight of the samples
having ratios between 18-32 and 18:64. Moreover, most
of the Pb isotope data define good positive correlations
close to 150 Ma reference isochrons in plots of present-
day *Pb/*"*Pb vs **U/*'Pb and **Pb/*'Pb vs **Th/

"Pb (Fig. 9a,b), consistent with alteration largely oc-
curring within a few million years after eruption for most
of these samples. In both Fig. 4c and d, data for the 150
Ma rocks lie within the Pacific-North Atlantic MORB-
source field, except for the leached split of sample MA-
401, which falls slightly to the left of this field.

The 120 Ma alkalic lavas have lower eyy(f) than the
150 Ma rocks, from +6:0 to +2-9. Six of the ten samples
show little variation in age-corrected (**Pb/**Pb), ratios,
which are between 18:81 and 19:00. In Fig. 4c, data
points for these six samples plot toward the low-gxy(f)
end of the Pacific-North Atlantic MORB-source array
and in or near the Réunion—Crozet source field. In
Fig. 4d, the data for these alkalic lavas lie beneath this
field, and straddle the Pacific-North Atlantic MORB-
source array. The remaining four samples analyzed have
significantly lower (**Pb/*"Pb), between 1849 and
17-71, yet have &yy() in exactly the same range as the
other alkalic lavas. In Fig. 4d, the data point for one of
these four samples falls well below the Pacific-North
Atlantic MORB field, unlike any modern ridge or oceanic
island basalts, and in Fig. 9c and d data for these samples
lie far from the array defined by the others. We infer
that relatively recent alteration (including variable loss
of Pb) has seriously disturbed the Pb isotope systematics
of these four alkalic lavas.

In addition to our work, Niagler & Frei (1997) have
recently analyzed 120 Ma Masiran oceanic granites and
amphibole-bearing gabbros, as well as several 150 Ma
samples, for Nd and Pb isotopic ratios and U, Pb,
Nd, and Sm abundances. Their age-corrected &yq(f) and
(*Pb/**Pb), values are similar to ours in that their data
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Fig. 8. Incompatible element patterns of selected Masirah 120 Ma alkalic lavas (a) and 150 Ma tholeiites (b).

fall largely within the estimated 150 Ma Pacific-North
Atlantic MORB-source field of Fig. 4c or, for one granite,
close to the Réunion—Crozet source field; also, as with
our alkalic lavas, their 120 Ma gabbros and granites tend
to have lower exy(f) values than those of the 150 Ma
rocks.

Yarlung—Zangpo suture zone

The samples from the Yarlung—Zangpo suture zone were
collected from along the length of basalt outcrops to the
southwest of Lhasa in the Xigaze area. Elemental and
petrographic analyses of lavas from several of the same
general areas show them to be chemically N-MORB
(Pearce & Deng, 1988) altered to prehnite-pumpellyite
or lower greenschist facies, with plagioclase replaced by
albite and with abundant secondary groundmass ac-
tinolite and chlorite (Girardeau et al., 1985). The lavas
were erupted at an eastern Tethyan spreading center
north of Greater Indo-Madagascar and to the south of
the Tibetan block (see Fig. 7; Pozzi et al., 1984). An age
of 110 Ma was determined by Marcoux et al. (1982) from
Radiolaria in cherts interbedded conformably with pillow
basalts. Previous isotopic work on magmatic rocks con-
sisted of Pb isotope and Pb and U (but not Th) abundance
measurements by Gopel et al. (1984). Their results

revealed a rough U-Pb whole-rock isochron (120 4+ 10
Ma) which gave nearly the same age as the pa-
leontologically derived age, indicating that the alteration
affecting these rocks (including their U/Pb ratios) oc-
curred fairly soon after eruption and that the rocks had
remained nearly closed systems thereafter.

As with the Alexander Island basalts, Sr isotope ratios
of the Yarlung—Zangpo samples are elevated relative to
end(f), and acid-leaching yielded only modest reductions
in (*’Sr/*Sr), (to 0-70380-0-70406; Fig. 3). These results
are consistent with the similar level of alteration in the
two suites, specifically with the extensive replacement of
original plagioclase by albite (in the Yarlung—Zangpo
basalts, clinopyroxene is also partly replaced with sec-
ondary phases). Values of ex4(f) show very little variation
in the Yarlung—Zangpo samples, all being between +8-0
and +8-5, indicating a nearly homogencous mantle
source. The age-corrected Pb isotope ratios also vary
only slightly: the spread in (***Ph/***Pb),, for example, is
only 17-:42—-17-55 (in the same range as for Gopel e al.’s
samples) and only 37-27-37-38 in (**Pb/***Pb). Our
results confirm the good overall positive correlation of
present-day *Pb/**Pb with **U/**Pb as well. Most
important for our present purposes, the Yarlung—Zangpo
basalts define a very small field with a clear Indian-
MORB-type signature in both Fig. 4c and d.
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DISCUSSION AND CONCLUSIONS

Consistent with the results for the Jurassic South Pacific
lavas from Alexander Island, basalts of roughly similar
age from several drill sites in the North Pacific recently
have been shown to also possess Pacific-North-Atlantic-
type age-adjusted isotopic signatures ( Janney & Castillo,
1997). Allowing for relatively small changes in &y, and
Pb isotope ratios resulting from radiogenic ingrowth in
the source mantle during the last 150 my, the available
data thus imply that the Pacific MORB mantle in the
Jurassic and earliest Cretaceous was isotopically very
similar to that of today.

In the western Indian Ocean, the ~140 Ma Site 249
basalts reveal that Indian-Ocean-type isotopic com-
positions were present from almost the very beginning
of the ocean itself—at least in some locations. However,
the ~150 Ma rocks of Masirah and Site 261 (Weis &
Frey, 1996) essentially lack normal Indian-MORB-type
signatures. The crust at both sites formed near the
southern boundary of the Tethyan Ocean, Masirah on
the northwest and Site 261 on the northeast side of what
would later become Greater India (see Fig. 7). Thus, the
data for these sites provide no evidence that the Indian
Ocean isotopic signature was inherited from Tethyan

asthenosphere or, indeed, that the Indian Ocean mantle
domain existed in anything like its present form north of
East Gondwana in the Late Jurassic.

On the other hand, the Yarlung—Zangpo basalts dem-
onstrate the existence of Indian-MORB-type mantle in
at least a part of the equatorial Tethys by 110 Ma. In
addition, some high-quality, age-corrected Pb and Nd
isotopic data have been published for the Samail ophiolite
of Oman, the crust of which appears to have formed at
a low northern latitude (Perrin et al., 1994) at ~95 Ma
(e.g. Tilton et al., 1981), to the west of that preserved in
the Yarlung—Zangpo suture (see Fig. 7). In Fig. 4d, the
Samail Pb isotope data occupy a restricted field above
the Pacific-North Atlantic MORB-source array, and in
Fig. 4c the combined Nd and Pb isotopic results [which
were obtained on different samples (Chen & Pallister,
1981; McCulloch ¢t al., 1981)] define a rectangle that
again largely falls outside the Pacific-North Atlantic
MORB-source field (adjusted to a 95 Ma position; not
shown in figure). Thus, the available data indicate an
essentially Indian-Ocean-type mantle source for Samail
crust at 95 Ma [see also Benoit (1997)].

Although very few locations have been studied as yet,
the differences between the older and younger Tethyan
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sites suggest the possibility of a temporal change in
asthenospheric composition. A period of continental li-
thospheric thinning was followed by spreading in the
eastern Indian Ocean at ~135 Ma (e.g. Powell et al,
1988), and one possibility is that some Indian-MORB-
type asthenosphere flowed northward out of the widening
rift between Greater Indo-Madagascar and Australia—
Antarctica, into parts of the Tethyan region. On the west
side of Greater Indo-Madagascar, spreading and linkage
with the Tethys began around 160-170 Ma (e.g. Lawver
& Gahagan, 1993) (slightly before the 150 Ma Masiran
rocks were formed), and northward flow of Indian-Ocean-
type mantle may have begun earlier there. If so, to reach
the paleolatitude of the Samail crust by 95 Ma, such
asthenospheric flow must have occurred at rates of ~70—
100 mm/yr; in comparison, rates of 25—40 mm/yr are
indicated for westward flow of Pacific-type asthenosphere
into the southeastern Indian Ocean between Antarctica
and Australia since 43 Ma (Pyle et al., 1992, 1995). Possible
driving forces for significant asthenospheric outflow from
the young, narrow Indian Ocean include (1) the ascent
mto the upper mantle of the large starting-plume heads
of the Kerguelen, Marion, Bouvet, and Crozet hotspots
[all of which may have reached the base of the lithosphere
in the 200-120 Ma period; e.g. Storey (1995) and ref-
erences therein], and (2) the upward advection of the
660 km boundary between upper and lower mantle
proposed to have occurred beneath East Gondwana early
in the Cretaceous in response to accelerated circum-
Pacific subduction of slabs into the lower mantle (Larson
& Kincaid, 1996). However, dispersion of stringers of
Indian-Ocean-type mantle into the Tethys is not a unique
explanation of the existing isotopic data. Although evi-
dence is lacking for a widespread, pre-110 Ma Tethyan
upper mantle possessing Indian-MORB-type char-
acteristics, an alternative possibility is that the Tethyan
asthenosphere may have contained pockets of both
Pacific-North-Atlantic-type and Indian-MORB-type
compositions (the latter presumably generated by the
same types of processes as those acting in the Indian
Ocean mantle) as far back as 150 Ma or even earlier.
Study of Tethyan basalts from other locations along the
southern Asian suture belt i1s required to evaluate these
possibilities.

The 120 Ma alkalic lavas of Masirah have ocean-
island-like elemental signatures, and six have isotopic
compositions rather similar to those of modern Réunion
(21°S) and Crozet (46°S) hotspot basalts, particularly in
Fig. 4c. Recent plate reconstructions in the hotspot
reference frame (e.g. Curray & Munasinghe, 1991;
Lawver & Gahagan, 1993; Miiller et al, 1993) differ
somewhat but suggest the Masiran region was situated
between about 15°S and 25°S at 120 Ma, and thus
appear to permit a Réunion connection of some sort
(e.g. see Fig. 7) while ruling out an association with the
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Crozet hotspot, other than perhaps a ‘far-field’ effect
related to dispersion of Crozet plume-head material.
Meyer et al. (1996) recently suggested that the Marion
(Prince Edward) hotspot, located to the west of Crozet,
could have been the source of the alkalic magmatism;
however, like Crozet, the Marion hotspot 1s located at
~46°S. Also, the volcanoes of the Marion hotspot have
different isotopic compositions (e.g. &xg = +5'7to +7-4,
“Ph/*Ph = 18:5-18:6; Hart, 1988; Mahoney et al.,
1992) from those of Réunion and Crozet. However, the
origin of the 120 Ma Masiran rocks remains problematic,
because although the isotopic signature of the main
component in the Réunion plume appears to have
changed little in the last 66 my (White et al., 1990; Peng
& Mahoney, 1995), the Réunion hotspot is believed by
most workers to have appeared only shortly before 66
Ma, the Deccan Traps event being interpreted as the
hotspot’s initial, plume-head phase [e.g. Basu et al. (1993)
and references therein].

Both Indian-Ocean-type and some Pacific-INorth-
Atlantic-type isotopic signatures are preserved in the old
western Indian Ocean drill sites. Moreover, when results
for the drillholes are combined with those for Afanasy-
Nikitin Seamount, a 3 €y, unit wider total spread of &xy(f)
1s encompassed than is found for present-day Indian
MORB and oceanic islands (compare Figs la and 4a).
This comparison excludes the Early Cretaceous Ker-
guelen and Naturaliste plateaux, which reach even lower
eng(f) values than Afanasy-Nikitin but, unlike Afanasy-
Nikitin, probably contain blocks of continental lith-
osphere [e.g. see Mahoney ef al. (1996) and references
therein]; it also excludes recent lavas (with less extreme
values; e.g. Weis et al., 1992) erupted through the thick
lithosphere of the Kerguelen Plateau. As such, the total
range in &yy() for modern (0-10 Ma) Indian Ocean
basalts is —4-0 to + 11-3, whereas that for the old lavas
is —=8:0 to 4 10-3, with both maximum and minimum
values seen in lavas formed at 60-80 Ma (note that Site
261 in the northeastern Indian Ocean, although formed
at a Tethyan ridge, yielded an even higher value of
+14-4; Weis & Frey, 1996). This difference is much
greater than achievable by plausible isotopic evolution
(i.e. ‘aging’) in the source mantle since the Cretaceous.

The larger isotopic range observed for the old basalts
1s remarkable in view of the very sparse sampling of old
Indian Ocean crust relative to sampling of the present-
day spreading centers and islands; further, it is unlikely
that the few existing old sites have fortuitously sampled
the full isotopic range present in old Indian Ocean
seafloor. Admittedly, substantial sections of the modern
spreading system remain unsampled or have only recently
been dredged, and could potentially harbor more extreme
isotopic compositions than found elsewhere. However,
continuing work on the largest previously unsampled
stretch of the system, the Southeast Indian Ridge between
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the Australian—Antarctic Discordance and St Paul Island,
thus far reveals 1sotopic values that are all well within
the previous range for modern Indian MORB (Hall et
al., 1995; unpublished data, 1997). Nor does it appear
that the difference in isotopic ranges can be ascribed in
any simple way to differences in spreading rate. Greater
1sotopic heterogeneity along ridges generally is associated
with slower spreading rates—for example, both the high-
est and lowest &yy values observed in the modern Indian
Ocean (4 11-3 and —4-0) are found on the central part
of the very slowly spreading Southwest Indian Ridge
(Mahoney et al., 1992). However, the old Indian Ocean
samples with both the highest and lowest €y4 values were
formed (also on-ridge or very near-ridge) in the 60-80
Ma period of super-fast spreading (e.g. Fisher & Sclater,
1983). The most straightforward interpretation of the
existing data is therefore that the Indian Ocean as-
thenosphere was isotopically more heterogeneous in the
past and 1s gradually becoming better mixed on a time
scale of tens of millions of years. In turn, greater hetero-
geneity in the not too distant past, including the presence
m some locations of Pacific-North-Atlantic-type com-
positions, is most consistent with a relatively young origin
for the Indian Ocean mantle domain; that is, one not
considerably older than the age of the Indian Ocean
itself.
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