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Abstract

Chordin-Like 1 (CHRDL1) mutations cause non-syndromic X-linked megalocornea (XMC) characterized by enlarged anterior eye
segments. Mosaic corneal degeneration, presenile cataract and secondary glaucoma are associated with XMC. Beside that CHRDL1
encodes Ventroptin, a secreted bone morphogenetic protein (BMP) antagonist, the molecular mechanism of XMC is not well
understood yet. In a family with broad phenotypic variability of XMC, we identified the novel CHRDLI frameshift mutation
€.807_808delTC [p.H270W{s*22] presumably causing CHRDL1 loss of function. Using Xenopus laevis as model organism, we
demonstrate that chrdll is specifically expressed in the ocular tissue at late developmental stages. The chrdl1 knockdown directly
resembles the human XMC phenotype and confirms CHRDL1 deficiency to cause XMC. Interestingly, secondary to this bmp4 is
down-regulated in the Xenopus eyes. Moreover, phospho-SMAD1/5 is altered and BMP receptor 1A is reduced in a XMC patient.
Together, we classify these observations as negative-feedback regulation due to the deficient BMP antagonism in XMC. As CHRDL1
is preferentially expressed in the limbal stem cell niche of adult human cornea, we assume that CHRDL1 plays a key role in cornea
homeostasis. In conclusion, we provide novel insights into the molecular mechanism of XMC as well as into the specific role of
CHRDL1 during cornea organogenesis, among others by the establishment of the first XMC in vivo model. We show that unravelling
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monogenic cornea disorders like XMC—with presumably disturbed cornea growth and differentiation—contribute to the
identification of potential limbal stem cell niche factors that are promising targets for regenerative therapies of corneal injuries.

Introduction

X-linked megalocornea (XMC) [MIM309300] manifests as an inborn
defect of the anterior eye segment characterized by a corneal
diameter larger than 12.5 mm and a deep anterior eye chamber.
XMC is therefore termed also anterior megalophthalmos and
occurs without elevated intraocular pressure (IOP) (1,2). It is an
important differential diagnosis for primary congenital glaucoma
(IOP-associated buphthalmos) that leads to a high risk of vision
loss and, thus, needs a fast diagnostic clarification and prompt
treatment (3). Furthermore, XMC is classified as non-syndromic
and has to be distinguished from megalocornea in the context of
syndromes, e.g. neonatal Marfan syndrome or megalocornea-
mental-retardation (MMR) syndrome [MIM249310] (4,5). Usually,
XMC patients have mild to moderate myopia and some complain
of photophobia and iridodonesis due to iris hypoplasia. Additional
ocular anomalies can be arcus lipoides, mosaic corneal degener-
ation, pigment dispersion along the inner corneal surface (Kruken-
berg’s spindle), cataract and lens dislocation (2). Although the IOP
is primarily normal, megalocornea might predispose to secondary
glaucoma due to a widened ciliary body and a potential pigment
deposition in the trabecular meshwork (6,7).

Different mutations in the Chordin-Like 1 (CHRDL1) gene have
been identified as the disease causing genetic alteration in XMC
(3,8,9). The initial finding was a 240 kb microdeletion on Xq23
encompassing the CHRDLI gene (9). Sequence analysis of further
patients with megalocornea revealed missense, nonsense and
frameshift mutations in the CHRDL1 gene. CHRDL1 encodes the
protein Ventroptin, which is a bone morphogenetic protein 4
(BMP4) antagonist (10). As a member of the regulatory network
of transforming growth factor-beta (TGF) signaling, Ventroptin
is involved in cell fate determination as well as in cell differenti-
ation. CHRDL1 is expressed in the anterior eye segment (cornea,
lens, trabecular meshwork) and in the retina, starting in embry-
onic development and lasting into adulthood (9,10). It is also
differentially expressed in fetal brain regions, with highest ex-
pression in the cerebellum and the neocortex (9). Overexpression
experiments in embryonic chick retina showed a role of Ventrop-
tin in patterning of retinotectal projections (10). In contrast, pre-
sumed loss of function mutations in humans revealed only mild
cone system dysfunction in retinal electrophysiology and inter-
hemispheric asymmetry in visual evoked potentials in one sub-
ject with a microdeletion encompassing the 3’ end of CHRDL1
(9). Although focal white matter volume reductions could be
found in some patients with megalocornea, no clinical correlate
was observed in the reported patients so far (9). Recently, in one
patient, a CHRDL1 missense variant has been detected in associ-
ation with Neuh&duser syndrome, also known as MMR syndrome
[MIM249310]. The authors postulate that this CHRDL1 variant
accounts for the eye phenotype and that the MMR syndrome, in
some cases, might be di- or multigenic (3).

In the present study, we report on a novel CHRDL1 frameshift
mutation in a family with XMC. Moreover, we investigated the
molecular mechanism underlying XMC and its phenotypic vari-
ability. By a knockdown approach, using Xenopus laevis (X1) as the
first model organism for XMC, we characterized the impact of
CHRDLI deficiency on eye development. Furthermore, we revealed
the influence on BMP signaling in Humans and Xenopus. Finally,
our data suggest that CHRDL1 (Ventroptin) is very likely a novel

limbal stem cell niche factor of the adult human cornea. These
findings could contribute to regenerative approaches for the treat-
ment of corneal lesions, as advances in cornea regeneration con-
cepts by targeting limbal stem cell niche factors are becoming
reasonable therapeutic options for allogenic transplantation
(11,12).

Results

XMC shows a broad intrafamilial phenotypic variability
regarding biometric abnormalities and associated ocular
anomalies

The index patient (IV-1), first son of non-consanguineous healthy
parents, was born at 40 weeks’ gestation after uncomplicated
pregnancy with remarkably large eyes reminding of buphthal-
mos (Fig. 1A). Instant diagnostic efforts were made to exclude pri-
mary congenital glaucoma and to prevent visual loss of the
patient. However, this suspected diagnosis was discarded due
to normal IOP. Since no other organ anomalies were detected, a
syndromic condition seemed not to be likely. In follow-up exam-
inations, no progression of the eye phenotype was noted and the
patient developed age-based with regard to motor and mental
function.

The family history of the patient was positive for enlarged
eyes and pedigree analysis suggested a X-chromosomal reces-
sive inheritance. Four affected males related to each other
by obligate carrier females could be identified and no male-
to-male transmission was observed (Fig. 1B). Altogether, the
clinical history of our index patient IV-1 and the pedigree ana-
lysis enabled us to diagnose non-syndromic XMC, a rare genetic
eye disorder. The deceased great-grandfather I-1 of patient IV-1
had been the first family member with obvious XMC phenotype.
Moreover, he had undergone bilateral cataract surgery at age of
~56 years and had developed loss of corneal transparency at age
of 85 years probably due to decompensation of corneal endothe-
lium. Furthermore, he had a restricted peripheral vision field on
both sides probably due to glaucoma, but retrospectively IOP
values and optic nerve findings were not available to verify
this assumption. Consistent with the X-chromosomal recessive
inheritance, none of his sons and daughters was described as
being affected. From the second, third and fourth generation
of our study family, we were able to perform ophthalmic inves-
tigations of two further affected males (III-5, III-8), besides the
index patient IV-1, who was by now 14 years old, and some of
the healthy brothers (III-3, IV-2) as well as obligate carrier
females (1I-2, III-1).

The patients IV-1 and III-5 showed spherical refraction anom-
alies on both eyes ranging from —1.5 to —2.5 dioptres revealing
mild myopia. Horizontal corneal diameters of these patients
were at 16 mm and 14.5 mm, whereas the corneal diameters of
their unaffected brothers III-3 and IV-2 were normal at 12 mm
(normal range 11-12.5 mm), respectively (Fig. 1C). The lateral cor-
neal profiles of the affected males III-5, III-8 and IV-1 appeared
pre-bulged. Although the index patient IV-1 showed a dome-
shaped cornea, the lateral aspects of the corneas of III-5 and
I1I-8 appeared to be keratoconus-like. The obligate carrier
females II-2 and III-1 as well as the unaffected male sibling IV-2
of the index patient IV-1 revealed flat corneas (Fig. 1D).
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Figure 1. Family with XMC revealing the intrafamilial phenotypic variability. (A) Index patient (IV-1) with bilateral megalocornea at age of 2 months. (B) Pedigree of the
study family revealing an X-linked inheritance pattern of megalocornea. (C) Corneal diameters of the index patient at age of 14 years (IV-1) and his affected uncle (III-5)
compared with their non-affected brothers (I1I-3, IV-2). (D) Corneal profiles from the lateral view comparing affected males (IV-1, I1I-5, I1I-8) with obligate carrier females

(11-2, 11I-1) and non-affected male relative (IV-2).

By optical interferometry, we determined elevated ratios of
anterior chamber (AC) depth versus axial length (AL) being at
0.26 in patient IV-1 and 0.20 in patient III-5 (Fig. 2E). In contrast,
the AC/AL ratios in the unaffected relatives ranged from 0.13 to
0.16. Slit lamp examinations confirmed a very deep anterior eye
chamber of patient IV-1 compared with his unaffected brother
IV-2 (Fig. 2C and D).

Consistent with a non-progressive isolated anterior mega-
lophthalmos, an underlying glaucoma could be excluded in pa-
tient IV-1 once again at the age of 14 years. His IOP was not
elevated (Fig. 2I) nor did the Heidelberg Retina Tomography
(HRT) confocal laser scanning display an pathologic cupping of
the optic nerve head (Fig. 2G and H). Corneal pachymetry indi-
cated a reduced corneal thickness up to 350 pm at the corneal
apex of patient IV-1. The corneal apex thickness of patient III-5
was decreased up to 405 pm in comparison with his unaffected
brother III-3, showing 471 pm (Fig. 2F). In addition, patient III-8
had also a reduced corneal thickness, but despite this, he was
treated for myopia by laser-assisted surface ablation elsewhere
and he suffered from severe pain postoperatively. Although pa-
tient IV-1 exhibited the most apparent anterior megalophthal-
mos in comparison with the other affected males, he did not
have further ocular anomalies, e.g. congenital cataract. Instead,
XMC-associated complications were reported in the patients
I-1, I1I-5 and III-8: as mentioned before, patient I-1 underwent

cataract surgery early in his fifth decade of life, whereas patient
111-8 needed surgical lens removal and implantation of an artifi-
cial intraocular lens even earlier in his third decade of life be-
cause of congenital cataract. Furthermore, patient III-8 suffered
from spontaneous retinal detachment on the right eye due to a
vitreous degeneration, but vision loss could be prevented by im-
mediate surgical intervention. Patient III-5 exhibited congenital
cataract and iris hypoplasia accompanied with transillumination
and intraocular straylight causing moderate photophobia. More-
over, patient III-5 had iridodonesis, mild displacement of the
pupils, slight arcus lipoides and Krukenberg’s spindle pigment
dispersion at the inner corneal surface (Fig. 2A and B).

Novel hemizygous CHRDL1 frameshift mutation results
in a premature termination codon causing reduced
CHRDL1 mRNA levels in patient-derived cells

To screen for disease causing mutations in the recently identified
candidate gene CHRDL1 or possible other unknown X-chromo-
somal candidate genes for megalocornea, a DNA sample of pa-
tient III-5 was analysed by next-generation sequencing after
targeted enrichment of the X-chromosomal exome. This analysis
yielded raw sequence data for the exons of the target region on
X-chromosome comprising 610 kb. 517 kb of this region was cov-
ered by more than 10 reads, and 498 sequence variants were
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Figure 2. Distinctive phenotypic features of XMC. (A) Slit lamp findings in affected male III-5, indicating ectopia pupillae and congenital cataract (B) as well as the pigment
dispersion (Krukenberg spindle) on the inner corneal surface. Note the cataract of patient III-5 is difficult to see, for better comparison, a cutout photography of the clear
lens of patient IV-1 was added. (C) Deep AC of the eye in patient IV-1 compared with his (D) non-affected brother IV-2. (E) AC and AL of the eyes from patient IV-1 and III-5
compared with their non-affected brothers (IV-2, I1I-3) and their mothers (II-2, III-1). (F) Corneal pachymetry of central corneal region (9 mm in diameter) of patient III-5
(right) and his non-affected brother (left). Color code indicates values around 400 pm or beneath in red, and values around 425 pm and above in orange up to blue. (G) HRT
confocal scanning laser ophthalmoscopy of patient IV-1, indicating a normal optical nerve papilla. In the 2D color coded topography map, neutral null plane is marked in
green, recession up to 0.1 mm in blue, excavation with more than 0.1 mm in red, also visualized in the profiles of orthogonal sections. (H) Comparison of the optical nerve
papilla excavation values of patient IV-1 with references according to Moorefield’s classification. (I) Non-contact tonometry (mmHg) reveals no elevated IOP of patient IV-1.

detected with SAMtools. Further filtering of the sequence var-
iants by GeneTalk resulted in seven variants of unknown clinical
significance including a hemizygous two basepair deletion
(c.807_808delTC) in exon 9 of the CHRDL1 gene (Fig. 3A). This de-
letion causes a frameshift mutation leading to a substitution of
histidine to tryptophane at codon 270, and a premature termin-
ation codon 22 amino acids downstream (p.H270Wfs*22). We va-
lidated the identified CHRDL1 mutation by Sanger sequencing
and showed that the allele segregates with the phenotype in
the study family (Fig. 3B) confirming a X-chromosomal recessive
inheritance pattern: the same mutation was detected in all other
affected males (III-8 and IV-1) and in the asymptomatic obligate
carrier females, showing a hemizygous or a heterozygous geno-
type, respectively. Non-affected male siblings did not carry the
CHRDLI frameshift mutation. We characterized the mutational
effect by reverse transcriptase-polymerase chain reaction (RT-
PCR) analysis of CHRDL1 mRNA extracted from mononuclear
(MNC) and polymorphonuclear (PMN) cells obtained from patient
I1I-5 and a control (Fig. 3C) as well as from patient IV-1 and his
healthy brother VI-2 (Supplementary Material, Fig. S1). The mu-
tant CHRDL1 mRNA was markedly reduced in MNC and complete-
ly missing in PMN of the patients when compared with healthy
controls.

Knockdown of chrdl1 in XI recapitulates the human XMC
phenotype and influences bmp4 expression

To proof that the XMC typical phenotypes are caused by CHRDL1
loss of function, we used the African clawed frog X1 as a model or-
ganism. First, we determined the temporal expression of chrdll in
XI at consecutive developmental stages by RT-PCR. No chrdll
transcript was traceable at early stages, whereas expression
was detectable at Nieuwkoop and Faber (NF) stage 30 until the
latest stage analysed (NF stage 42; Fig. 4A). This result was corro-
borated by whole mount in situ hybridization (WMISH) with
chrdl1-specific probes and showed a signal only in late stage em-
bryos (NF stage 37; Fig. 4B). No staining was detectable at earlier
stages (not shown). We observed chrdll expression in the optic
cup, the lens and the ciliary marginal zone indicating a specific
role of CHRDL1 during eye development. In addition, the otic
vesicle, the ependymal layer of the ventricle system and the
notochord were strongly positive for chrdll transcript signal.

To induce a chrdl1 loss of function in Xenopus, we established a
morpholino (MO) knockdown using a mixture of two different MO
anti-sense oligonucleotides (MO1 + 2) directed against the splice
sites of chrdll exonl/intron1 or intron1/exon2. We performed the
MO1 + 2 injection experiments in the 2-cell stage of XI to reach an
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Figure 3. Novel CHRDL1 frameshift mutation resulting in reduced mRNA levels. (A) Overview of previously described CHRDL1 mutations and alignment of sequence reads
after X-chromosomal exome sequencing by IGV browser. Depicted is a part of the CHRDL1 locus Xq23. Boxes indicate magnifications of CHRDL1 exon 9 that harbors the 2-
base pair deletion. Note that CHRDL1 is located on the reverse strand of the X-chromosome; therefore, the reverse complement sequence is shown. (B) Representative
results of segregation analysis by Sanger sequencing of CHRDL1 exon 9 in the study family, showing hemizygous, heterozygous or wild-type genotype for affected
males, asymptomatic carrier females or non-affected males, respectively. (C) Semi-quantitative RT-PCR analysis of CHRDL1 mRNA levels in affected male III-5 and control.

efficient knockdown. As chrdll interferes in early developmental
stages with bmp4 and influences body patterning, we desisted
from rescue experiments by simultaneous chrdll overexpression
(10). As shown by RT-PCR analysis (Fig. 5E), the application of
MO1 + 2 efficiently repressed chrdll splicing in treated embryos.
Figure 5A shows representative photographs of stage 42 embryos.
Phenotypic alterations caused by chrdll MO1 + 2 injection include
changes of the eye size, mainly enlargement and, in addition,
coloboma (Fig. 5A and B). As indicated, some embryos revealed
pre-bulging of the lens and cornea, similar to the dome-shaped
cornea in XMC patients. Histological sections demonstrated
that XI, in contrast to the human eye, reveals only a single eye
compartment at least at tadpole stage. This may explain the en-
largement of the whole eye instead of just the anterior part
(Fig. 5C). Interestingly, the pupil and lens of the MO-treated X1
eye appeared to be slightly ectopic, a feature also observed in
XMC patients with regard to the pupil (Figs 1C and 2A).

From three clutches, 81% of chrdll MO1 + 2 injected embryos
showed an alteration of the eye’s structure, compared with 19%
of standard MO-injected controls (total number of embryos
n=384) (Fig. 5B). Statistical analysis confirmed the correlation
of the eye phenotypes observed with chrdll MO1+2 injection
(P<0.001; x>-test). Next, average eye diameters were measured

and compared between the chrdll-injected site (is) and the non-in-
jected site (nis) (Fig. 5C and D). Interestingly, we observed a statistic-
ally significant increase in the eye’s size when chrdll function was
suppressed (P = 0.0028, one-tailed t-test). We measured an increase
in the average eye diameter from 477 to 515 um at NF stage 42 (n=9).

CHRDL1 interacts with BMP4 in vertebrates (10,13). To investi-
gate the correlation of chrdll and bmp4 in the X1 XMC model, we
performed WMISH using a bmp4-specific probe in chrdll MO-
injected embryos (Fig. 6A). Similar to chrdll, bmp4 is specifically
expressed in the ocular and periocular regions. Additionally, we
detected strong expression in the otic vesicle and to a broader
extent in the ventricular zone of the forebrain. In contrast to
the chrdll, the lens expresses bmp4 at a much lower level. Bmp4
expression appears to be reduced on the chrdll MO-injected
side, especially in the ventral ocular and periocular region as
well as in the otic vesicle (Fig. 6B).

Altered BMP signaling in association with CHRDL1
mutation
To determine whether the CHRDL1 mutation of our XMC patients

influences the BMP pathway, intracellular phospho-SMAD1/5
was quantified in lymphoblastoid cell lines (LCLs) by flow cytometry
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Figure 4. Chrdl1 expression in Xl displays a phylogenetic conserved function for eye development. (A) Temporal RT-PCR analysis of chrdl1 expression (top panel); different
developmental stages indicated at the top. Odc functions as RNA input control (bottom). (B) Spatial analysis of chrdll expression. Whole mount in situ hybridization
(WMISH) of wild-type XI embryos at NF stage 37 (top panel) and corresponding sections (bottom panel). Expression of chrdll in the lens (white star), the optic cup
(black arrows), the otic vesicle (blue arrow), the ependymal layer of the ventricle system (yellow arrow) and the notochord (red arrow).

as functional read-out for BMP signaling activity. Under unstimu-
lated conditions, we measured a slightly higher level of intracel-
lular phospho-SMAD1/5 in LCLs of patient IV-1 (AMFI: 133) when
compared with LCLs obtained from his healthy brother VI-2
(AMFT: 81) (Fig. 7A). In contrast, BMP2/4 stimulation caused an in-
creased phospho-SMAD1/5 induction in LCLs from the healthy
brother IV-2 (AMFI: 534) compared with LCLs from patient IV-1
(AMFT: 300) (Fig. 7B). This correlates with less abundance of BMP
receptor 1A (BMPR1A) on the cellular surface (Fig. 7C) as well as
in the intracellular compartment (Fig. 7D) of LCLs from patient
IV-1 (AMFI: 19 and AMFI: 5510, respectively) compared with LCLs
from his healthy brother IV-2 (AMFIL: 62 and AMFI: 7422).

CHRDL1 (Ventroptin) is expressed like a limbal stem cell
niche factor in adult human cornea

Immunohistochemistry of the CHRDL1-encoded protein and BMP4
on healthy human cornea samples from anatomical sections re-
vealed an almost mutual exclusive pattern of CHRDL1 and BMP4
proteins, especially in the corneal epithelium (Fig. 8A). Although
BMP4 is uniformly distributed over the whole corneal epithelium,
CHRDL1 is markedly expressed in the basal epithelium with a
high-low expression gradient from the limbal stem cell niche to
the mid corneal region. Additionally, the CHRDL1 protein signal
is enhanced in stromal keratocytes of the limbus with fadinglevels
centripetally. In contrast, BMP4 is expressed to a lesser extent in
corneal stroma. Both proteins are strongly expressed in the
corneal endothelium as well.

Discussion

Based on the finding of a novel CHRDL1 frameshift mutation in a
large family with XMC, we initiated a comprehensive investiga-
tion to understand the molecular mechanism. By clinical assess-
ment and segregation analysis, we show that the CHRDL1
mutation is fully penetrant, but the broad intrafamilial pheno-
typic variability is challenging with respect to an appropriate
medical management and prognostic estimation: first, clinical
signs of XMC can be overlooked in newborns or be misdiagnosed
as primary congenital glaucoma, leading to unnecessary sed-
ation for the IOP measurement. Second, the severity of biometric
abnormalities does not correlate with congenital cataract or pig-
ment dispersion. Third, spontaneous retinal detachment due to
vitreous degeneration has to be considered (14). Therefore, a ro-
bust genetic testingis important for early diagnosis and adequate
patient care (Table 1).

The identified CHRDL1 mutation in our study family confirms
the homogeneous genetic origin of XMC (3,8,9). It emphasizes the
pathomechanistic role of the TGF signaling, which has also been
found in connective tissue disorders associated with megalocor-
nea, e.g. Marfan syndrome (5). The autosomal-recessive type of
megalocornea with marfanoid habitus and zonular weakness
[MIM251750], caused by genetic alterations in the Latent trans-
forming growth factor-beta-binding protein 2 (LTBP2) [MIM602091],
is associated with the same pathway (15,16).

The CHRDL1 frameshift mutation in our patients leads to a pre-
mature stop codon presumably resulting in decreased CHRDL1
mRNA levels. One frequently used mechanism to abolish
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of injected versus non-injected eyes with two diameters (measured orthogonal to each other). (D) Bar graphs of the average eye diameter (um) with statistical analysis
(one-tailed t-test). (E) Semi-quantitative RT-PCR analysis measuring the MOs MO1 + 2 induced chrdl1 knockdown efficiency.

non-functional mRNA molecules is nonsense-mediated RNA
decay (NMD) (17,18). Indeed, we measure complete loss of
CHRDL1 mRNA in PMN cells and mRNA reduction in MNC cells.
Therefore, as reported for most XMC-associated CHRDL1 muta-
tions, we assume a CHRDL1 loss of function as the underlying mo-
lecular mechanism. On the one hand, cell type-specific differences
in NMD efficiency are known (18), which could explain the differ-
ent degrees of CHRDL1 mRNA reduction observed in different cells
of our patients. On the other hand, the known CHRDL1 transcripts
could differ in their stability, since they vary in their 3’ UTR or pos-
sibly in their transcriptional rate depending on cell type. The
abundance of different transcripts in the cell types could also ex-
plain the difference in the level of CHRDL1 mRNA reduction. In
MNCs, the resulting truncated protein, containing only two of
the three cysteine-rich highly conserved von Willebrand factor,
type C domains (VWFC), with BMP binding affinity, should have
a reduced antagonistic effect on BMP4. So far, 13 from 19 currently
described CHRDL1 mutations cluster to the VWFC domains. Most
of them lead to premature stop codons at the beginning of the cod-
ing sequence and should effectively be null mutations due to NMD

(3). Two whole gene deletions support the assumed CHRDL1 loss of
function mechanism in XMC. Regarding the broad phenotypic
variability of XMC, even in an intrafamilial setting, an interfamilial
genotype-phenotype correlation with respect to ocular and most
probably subclinical non-ocular organ manifestations is quite
challenging and remains to be elucidated. It is not yet fully under-
stood how CHRDL1 mutations can cause an eye-specific pheno-
type, although it is widely expressed in different tissues
(9,10,13,19). Among others, the functional outcome of the muta-
tion (loss versus gain of function), the co-expression with redun-
dant BMP antagonists (e.g. CHRD) in certain tissues and the
above-mentioned cell type-dependent NMD efficiency or RNA
stability should play an important role in the organ-specific
manifestation.

According to the currently prevailing model, cornea growth is
achieved by differentiation of limbal stem cells during eye devel-
opment (20,21). Therefore, we postulate that XMC results from
premature cornea development due to accelerated growth and
differentiation of limbal stem cells by an imbalanced CHRDL1-
BMP4 antagonism in favor of BMP signaling and vice versa in
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Figure 6. Chrdll knockdown influences bmp4 expression in XI. (A) Chrdll MOs MO1 + 2-injected embryos (NF stage 37) were used for in situ hybridization with bmp4 as a
marker probe. is, injected side; nis, non-injected side. Expression of bmp4 in the optic cup (red arrows), the otic vesicle (green arrow) and the ependymal layer of the

ventricle system (yellow arrow) in the embryo (A) and its corresponding sections (B).

the case of microcornea (Fig. 8B). Consistent with this hypothesis,
BMP4 loss of function is known to cause microcornea in the form
of syndromic microphtalmia type 6 (MCOPS6; MIM607932) (22,23).
To proof our hypothesis, we established the first in vivo XMC
model using a knockdown approach in X1. Until now, only the im-
pact of chrdll overexpression was tested on Xl development.
These results demonstrate that chrdll similar to chordin is able
to induce secondary axis formation after mRNA injection (10).
We show that the suppression of chrdl1 function induces eye phe-
notypes in the Xenopus tadpole that resemble the human XMC
phenotype, i.e. larger eyes with specific findings in the anterior
eye segment. Together with the spatiotemporal expression of
chrdll at tadpole stages, we give compelling evidence that chrdll
plays a conserved role during eye development. We therefore
speculate that chrdll knockdown in Xl induces accelerated ocular
growth. Our additional finding of pathologically widened colo-
boma has not previously been reported for the phenotypic spec-
trum of XMC. Thus, we propose that CHRDL1 gene analysis
should be considered for patients with iris coloboma. Interesting-
ly, the mild ectopic pupils observed in XMC patients can be the re-
sult of a mild variant of iris fissure closure. This observation is
consistent with the association between coloboma and loss of
function of Smocl (SPARC-related modular calcium binding 1),

another BMP antagonist, in gene-trap mice (24). Furthermore,
we observe a difference between chrdll and bmp4 expression le-
vels in the lens of X1. We speculate that CHRDL1 physiologically
prevents the development of cataract by preserving either a
metabolic or structural homeostasis to maintain the transpar-
ency of the lens. Additionally, we are the first to report on
chrdll expression in the otic vesicle and the ependymal layer of
the cerebral ventricular system. A possible clinical relevance of
these findings remains to be elucidated in XMC patients.

The establishment and preservation of stable developmental
gradients appears to require multiple mechanisms to balance ag-
onistic and antagonist effects on BMP signaling. Consistent with
this theory, we observe a down-regulation of bmp4 expression
caused by chrdll knockdown. This implies that an overactive
Bmp signaling due to the deficient antagonist is additionally con-
trolled on the transcriptional level by a negative feedback mech-
anism (25,26). Moreover, using intracellular phospho-SMAD1/5 as
functional BMP signaling read-out, we measure paradoxical and
obviously pathological effects in association with the here re-
ported CHRDL1 mutation. On the one side, the basal BMP signal-
ing activity is elevated comparing XMC versus healthy state. On
the other hand, the BMP signaling is less inducible in correlation
with lower superficial and intracellular BMPR1A abundance
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Figure 7. BMP signaling is altered in association with reported CHRDL1 mutation. BMP signaling was analyzed in lymphoblastoid cell lines of XMC patient IV-1 and his
healthy brother IV-2 by flow-cytometry. Unprocessed MFIs are given for each specific staining and background measurement. (A) Basal level of intracellular pPSMAD1/
5. One representative experiment out of three is shown. (B) BMP-induced intracellular pSMAD1/5. One representative experiment out of three is shown. (C) Surface
and (D) intracellular staining of BMPR1A. One representative experiment out of two is shown.

comparing lymphoblastoid cells from XMC patient versus
healthy brother. Together, we assume that the higher BMP sig-
naling baseline in our XMC patient is the result from a failing
BMP antagonism and consequently increased binding of BMP to
BMPR1A. This induces a negative-feedback mechanism and
leads to a compensatory down-regulation of BMP receptors (26).
We assume that this kind of negative-feedback regulation

modifies the mutational outcome in a cell-dependent manner
and can also be a reason for organ-specific manifestations and
phenotypic variability.

Finally, the protein distribution pattern in our adult human
cornea studies suggests that the developmentally important
CHRDL1-BMP4 antagonism could play a role in postnatal homeo-
stasis of the cornea. We speculate that CHRDL1 acts as a stem cell
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endothelium. Hematoxylin was used for counterstaining. (B) Model of molecular pathomechanism of megalocornea during late embryonic development of the

anterior eye segment.

niche factor by attenuating the BMP4-mediated growth and dif-
ferentiation, thereby preventing the exhaustion of the limbal
stem cell pool. A similar role has been postulated for CHRDL1 in
the intestinal stem cell niche (19). This concept is additionally
supported by in vitro studies showing that the application of
recombinant CHRDL1 inhibits differentiation and/or enhances
proliferation of human mesenchymal stem cells and osteoblast
precursor cell lines (25). Moreover, CHRDL1-mediated repression
of BMP signaling leads to reactivation of embryonic homeobox
genes like MSX1 in immature lymphoblastic leukemia cells
(T-ALL) (27,28).

In the case of superficial lesions, FGF2 signaling regulates the
reconstitution of the cornea layers without fibrosis, while deep
lesions lead to the activation of TGFB/BMP signaling in stromal
keratocytes resulting in fibrosis (29). The increased expression
of CHRDL1 in the stromal keratocytes of the corneal limbus sug-
gests that CHRDL1 is also involved in repair mechanisms of the
cornea.

Here, we propose a model, in which CHRDL1 influences BMP4
signaling to prevent fibrosis and limbal stem cell insufficiency,
the latter often accompanied with irreversible lesions of the cor-
nea. We suggest that CHRDL1 is a limbal stem cell niche factor
and therefore an attractive target for regenerative medical ther-
apies of corneal injuries.

Materials and Methods

Human and animal research

All subjects or their legal representatives gave written informed
consent to the study, which was performed in accordance with

the Declaration of Helsinki. The informed-consent protocol for
diagnostic genetic testing complies with the regulations of the
German law for gene diagnostics (Gen-Diagnostik Gesetz).
Cornea tissue samples were obtained from human anatomical
sections performed at the Kantonsspital Basel (Switzerland) in
accordance with the local ethics committee. All animal research
procedures were performed according to guidelines set by the
German animal use and care laws (Tierschutzgesetz) and
approved by the German state administration Saxony-Anhalt
(Projekt/AZ: 42502-3-600 MLU).

Ophthalmic examination

An ophthalmologist (P.R.) clinically assessed patients and their
family members. Standard evaluation consisted of assessment of
refraction anomalies and photographic documentation including
scale-adjusted corneal diameter measurement, lateral view cor-
neal profile and slit lamp findings. Measurement of the axial eye
length and the AC depth was performed by optical interferometry
(IOLMaster, Carl Zeiss Meditec). For corneal pachymetry, the Dual
Scheimpflug Analyzer (Galilei) was used. Glaucoma in patients
and their relatives were excluded by non-contact tonometry,
stereoscopic evaluation of the optic nerve and confocal scanning
laser ophthalmoscopy (HRT, Heidelberg Engineering) (30).

X-chromosomal exome capture and next-generation
sequencing
Genomic DNA samples from the patients were extracted from

ethylenediaminetetraacetic acid (EDTA) peripheral blood sam-
ples. We enriched the X-chromosomal exome from 4 ng DNA of
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Table 1. Comparison of etiology, phenotypes, management and prognosis of different disorders affecting cornea biometry

Differential
diagnosis: altered
corneal biometry

XMC/anterior
megalophthalmos/
megalocornea 1
[MIM309300] (1, 2,9)

Megalocornea with

microspherophakia [MIM251750]
allelic to primary congenital
glaucoma 3D [MIM613086] (15,16)

Keratoconus
[MIM148300)/
keratoconus with
cataract [MIM614303]
(42-44)

Primary congenital
glaucoma 3A [MIM231300})/
open angle glaucoma 1A
[MIM137750] (39-41)

CHRDL1
Xq23
X-chromosomal recessive

LTBP2
14q24.3

Disease gene
Locus
Inheritance

Diagnostic findings

Autosomal recessive

CYP1B1, MYOC

2p22.2, 1q24.3

Autosomal recessive/
dominant

VSX1, miR-184
20p11.21, 15¢25.1
Autosomal dominant

Corneal >12.5 mm >12.5 mm >12.5 mm (asymmetrical) <12.5mm
diameter
Corneal profile Dome-shaped Flat Dome-shaped Cone-shaped
AC Deep Deep/Flat Deep Normal
Pigment Krukenberg spindle Unknown Sporadically present Unknown
dispersion
Lens shape Normal Spherophakia Normal Normal
Iris/ciliary ring Enlarged + zonular Enlarged + zonular weakness Primarily normal Primarily normal
weakness
10P Primarily normal Elevated in the case of lens Primarily elevated Primarily normal
dislocation
Optic nerve Primarily normal Primarily normal Excavated Normal
cupping
Medical implications
Refraction Mild myopia/astigmatism ~ Mild myopia/astigmatism Primarily normal Severe myopia/
anomalies astigmatism
Lens luxation Elevated risk Highly elevated risk No luxation No luxation
Lens haze Congenital cataract Unknown Unknown Unknown
Corneal Mosaic corneal Unknown Descement-related Unknown
opacification degeneration
Retinal Axial eye length-related Unknown Unknown Unknown
detachment
Medical management
Surgery Electively: trabeculotomy,  Electively/instantly: lens removal Instantly: goniotomy Contact lenses, cross-
cataract surgery, linking, electively
keratoplasty keratoplasty
Follow-up Regularly, long-term Short intervals, short-term Short intervals, short-term  Regularly, mid-term
complication adjusted complication adjusted complication adjusted complication
adjusted
Prognosis Low to middle risk for Middle to high risk for vision Middle to high risk for Low to middle risk for

vision impairment impairment

vision impairment vision impairment

patient III-5 using the Agilent SureSelect enrichment Kit accord-
ing to the manufacturer’s instructions. Single reads with a read
length of 76 nucleotides were obtained by next-generation se-
quencing of one sample per lane with a mean coverage >30-
fold on the Illumina Genome Analyzer IIx. The raw sequence
data were aligned to the NCBI37/hg19 assembly of the human
genome by Novoalign (31). Sequence variants were called by
SAMtools and analyzed for an X-linked recessive inheritance
mode using GeneTalk (32,33). Sequence variants with an allele
frequency above 0.1% in healthy controls were removed and re-
duced to alleles with a predicted effect on the protein level (mis-
sense, stop-gain, stop-loss, frameshift, non-frameshift, splicing).

Validation of CHRDL1 mutation by Sanger sequencing

PCR amplification and bidirectional sequencing of the identified
CHRDL1 mutation were performed using exon 9 forward 5'-CCA
TGG CTA TGA CAA GAA CAA A-3’ and reverse 5'-TCT TCC AAG
CAA CTG CCT TT-3' primers according to the standard protocols.
The sequence analysis was performed on an ABI3130xl capillary

sequencer (Applied Biosystems). Sequence data were processed
using ABI software and were analyzed using Sequence Pilot (JSI
medical systems GmbH) based on the complementary DNA
(cDNA) reference sequence for CHRDL1 (NM_001143981; ENST00
000372042). The identified mutation was submitted to the public
database ClinVar http:/www.ncbi.nlm.nih.gov/clinvar/ (ClinVar-
Accession SCV000195644, date last accessed, 20 February 2015).

Semi-quantitative RT-PCR

Peripheral blood samples were fractionated into MNC cells and
granulocytes using the Ficoll-based standard protocol. RNA ex-
traction was performed after cell lysis with TRIzol reagent (Invi-
trogen, Carlsbad, CA, USA) according to the phenol-chloroform
standard protocol. Approximately 500 ng of RNA was extracted
and reversely transcribed into cDNA with oligo-dT primers
using MMLV RT (Life Technologies, USA). The CHRDL1 exon-span-
ning PCR was performed with exon 2 forward primer 5'-AAG GAG
GCA AAA ACA GAG CAA-3'and exon 3 reverse primer 5-AAC CAA
CCC ATA AGG TTC CA-3'. The PCR products were visualized by
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running a 2% agarose gel with a mix molecular weight marker
(NEB), staining with ethidium bromide and photo documentation
under an UV transilluminator.

LCL culture and treatment with BMPs

Lymphoblastoid cell lines were generated from peripheral blood
MNC cells according to a previously described protocol (34). LCLs
from XMC patient IV-1 and his healthy brother IV-2 were kept in
the Roswell Park Memorial Insitute medium supplemented with
10% fetal calf serum (FCS), 1% penicillin/streptomycin and 1%
glutamine. Stimulation with 125ng/ml recombinant human
BMP2 (355-BM-010, R&D Systems, Germany) or 100 ng/ml recom-
binant human BMP4 (314-BP-010, R&D Systems, Germany) was
performed on 5 x 10° LCLs /well in 24-well plates for 24 h.

Flow cytometry

Flow cytometric analyses for surface receptor expression on live
cells and for intracellular components on fixed/permeabilized
cells were essentially performed as recently described (35). Brief-
ly, 1 x 10° cells were stained with specific antibodies in fluores-
cence-activated cell sorting (FACS) buffer [phosphate-buffered
saline (PBS) with 1% FCS and 0.3 mm EDTA]. Prior to specific anti-
body staining with anti-BMPR1A (ab38560, abcam, UK) and sec-
ondary anti-rabbit IgG-Alexa488 (A-11034, Invitrogen) on live
cells, treatment with Fcy block for 10 min on ice was performed.
For live cell analyses, dead cells were excluded using PI staining.
For intracellular analyses, cells were fixed for 10 min at 37°C with
4% paraformaldehyde. Followed by two washing steps, cells were
permeabilized with 90% methanol buffer for 30 min on ice. Prior
to specific antibody staining with anti-phospho-SMAD1/5
(Ser463/465) (13820P, Cell Signaling, USA) and anti-rabbit IgG-
Alexa488 in FACS buffer, cells were incubated with Fcy block for
15 min. Flow cytometry was performed using LSR Fortessa™
(Becton Dickinson) flow cytometer and FACS-Diva™ and Flow-
Jo™ (Tree Star) software. To compare the protein levels between
individuals, we calculated delta mean fluorescence intensities AMFI,
meaning the subtraction of background MFI from specific MFIL.

Immunohistochemistry

To investigate the physiological protein expression pattern of
CHRDL1 (Ventroptin) and BMP4 in the human anterior eye seg-
ment, paraffin-embedded ophthalmic tissues were analyzed by
immunostaining. We used a polyclonal rabbit anti-CHRDL1 anti-
body (HPA000250, ATLAS, Sweden) and a polyclonal rabbit anti-
BMP4 antibody (ab39973, abcam) diluted 1:2000, respectively.
Secondary Biotin-labeled anti-rabbit antibodies as diluted by
the manufacturer (KPL, USA) were incubated and detected by
Streptavidin-conjugated horseradish peroxidase using True-
Blue™ (CHRDL1) or Vectorred (BMP4) as a substrate.

Organisms and maintenance

Frogs (Xl) were obtained from commercial suppliers (NASCO,
USA). Production and rearing of embryos was performed as de-
scribed previously (36) and embryos were maintained at 15°C
and staged according to NF.

X1 histology

For the preparation of vibratome sections, stained and fixed
embryos were equilibrated in PBS containing 4.4 mg/ml gelatin,
0.27 g/ml bovine serum albumin and 0.18 g/ml sucrose. After

equilibration, embryos were mounted by cross-linking the solu-
tion with glutaraldehyde. 30 um sections were obtained with a
Vibratome and mounted onto gelatin-coated slides. Photographs
were taken on a Zeiss Imager M1 using Nomarski interference
optics.

WMISH and RT-PCR

To analyze the spatiotemporal expression of chrdll during Xl em-
bryogenesis, a DIG-labeled ‘antisense’ RNA probe was generated
by linearizing with Hind3-HF (NEB) and in vitro transcription with
T7 RNA polymerase (Roche) as described before (37). Xenopus
embryos were fixed at different developmental stages and
whole-mount in situ hybridization was carried out as described
previously (38). Embryos probed with antisense RNAs of chrdll
were vibratome sectioned (30 pm) and photographed. RT-PCR
was performed with the following intron spanning primers to
amplify both possible chrdll transcript variants scaffold71612
and scaffold10201, as annotated in Xenbase: chrdl1fwd-RT 5'-
CTA GAG CCC TAT GGC CTT G-3/, chrdllrev-RT 5'-TGG TTC GTG
ATG CTC CCA G-3', odcfwd-RT 5-GCC ATT GTG AAG ACT CTC
TCC ATT C-3’, odcrev-RT 5-TTC GGG TGA TTC CTT GCC AC-3'.

X1 knockdown experiments

25-mer MOs (Gene Tools, LLC Philomath, Oregon) were designed
to target the splice site between Exonl and Intronl (MO1: 5'-ATC
GAA ATG ATA TTA CCT CTC GGC A-3’) or between Intronl and
Exon2 (MO2: 5'-CCA CCC TGA AAG ATA AAT CTC ACA T-3') in
chrdll mRNA transcripts. A mismatch standard MO was used as
control (5'-CCT CTT ACC TCA GTT ACA ATT TAT A-3’). To measure
the silencing efficiency by RT-PCR (see the above-mentioned pri-
mer pair), 2.5 pmol of either the chrdll MO1 + 2 mixture or stand-
ard MO was injected into both blastomeres of 2-cell stage
embryos, grown and collected at NF-stage 42. For unilateral
knockdown experiments, we injected either the chrdll MO1 +2
mixture or the standard MO into one blastomere of 2-cell stage
embryos. For statistical analysis of the differing eye phenotype
between both injection categories, we used the y? test including
a total number of 384 embryos from three independent clutches.
For biometric comparison of individual XI eyes (injected side
versus non-injected side), we calculated the mean value of both
indicated diameters that are orthogonal to each other. We imple-
mented the mean values of nine animals for statistical analysis
using the one-tailed t-test.

Supplementary Material

Supplementary Material is available at HMG online.
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