
Bourgade, P. et al. (2009) “Circular Jacobi Ensembles and Deformed Verblunsky Coefficients,”
International Mathematics Research Notices, Vol. 2009, No. 23, pp. 4357–4394
Advance Access publication July 6, 2009
doi:10.1093/imrn/rnp092

Circular Jacobi Ensembles and Deformed Verblunsky
Coefficients

Paul Bourgade1, Ashkan Nikeghbali2, and Alain Rouault3

1ENST, 46 rue Barrault, 75634 Paris Cedex 13, Université Paris 6, LPMA,
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Using the spectral theory of unitary operators and the theory of orthogonal polynomials

on the unit circle, we propose a simple matrix model for the following circular analog of

the Jacobi ensemble:

c(n)
δ,β

∏
1≤k<l≤n

|eiθk − eiθl |β
n∏

j=1

(1 − e−iθ j )δ(1 − eiθ j )δ

with Reδ > −1/2. If e is a cyclic vector for a unitary n × n matrix U , the spectral measure

of the pair (U , e) is well parameterized by its Verblunsky coefficients (α0, . . . , αn−1). We

introduce here a deformation (γ0, . . . , γn−1) of these coefficients so that the associated

Hessenberg matrix (called GGT) can be decomposed into a product r(γ0) · · · r(γn−1) of

elementary reflections parameterized by these coefficients. If γ0, . . . , γn−1 are independent

random variables with some remarkable distributions, then the eigenvalues of the GGT

matrix follow the circular Jacobi distribution above.

These deformed Verblunsky coefficients also allow us to prove that, in the regime

δ = δ(n) with δ(n)/n → βd/2, the spectral measure and the empirical spectral distribution
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weakly converge to an explicit nontrivial probability measure supported by an arc of the

unit circle. We also prove the large deviations for the empirical spectral distribution.

1 Introduction

1.1 The circular Jacobi ensemble

The theory of random unitary matrices was developed using the existence of a nat-

ural probability uniform measure on compact Lie groups, namely the Haar measure.

The statistical properties of the eigenvalues as well as the characteristic polynomial

of these random matrices have played a crucial role both in physics (see [25] for an

historical account) and in analytic number theory to model L-functions (see [19] and

[20] where Keating and Snaith predict moments of L-functions on the critical line us-

ing knowledge on the moments of the characteristic polynomial of random unitary

matrices).

The circular unitary ensemble (CUE) is U (n), the unitary group over C
n, equipped

with its Haar probability measure μU (n). Weyl’s integration formula allows one to average

any (bounded measurable) function on U (n) which is conjugation-invariant

∫
fdμU (n) = 1

n!

∫
· · ·

∫
|�(eiθ1 , . . . , eiθn )|2 f (diag(eiθ1 , . . . , eiθn ))

dθ1

2π
· · · dθn

2π
, (1.1)

where �(eiθ1 , . . . , eiθn ) = ∏
1≤ j<k≤n(eiθk − eiθ j ) denotes the Vandermonde determinant.

The circular orthogonal ensemble (COE) is the subset of U (n) consisting of sym-

metric matrices, i.e. U (n)/O(n) = {VVT ; V ∈ U (n)} equipped with the measure obtained

by pushing forward μU (n) by the mapping V �→ VVT . The integration formula is similar

to (1.1) but with |�(eiθ1 , . . . , eiθn )|2 replaced by |�(eiθ1 , . . . , eiθn )| and with the normalizing

constant changed accordingly.

For the circular symplectic ensemble (CSE), which will not be recalled here, the

integration formula uses |�(eiθ1 , . . . , eiθn )|4.

Dyson observed that the induced eigenvalue distributions correspond to the

Gibbs distribution for the classical Coulomb gas on the circle at three different tempera-

tures. More generally, n identically charged particles confined to move on the unit circle,

each interacting with the others through the usual Coulomb potential − log |zi − zj|, give

rise to the Gibbs measure at temperature 1/β (see the discussion and references in [23]
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and [12], Chapter 2):

E
β
n( f ) = c(n)

0,β

∫
f (eiθ1 , . . . , eiθn )|�(eiθ1 , . . . , eiθn )|βdθ1 . . . dθn, (1.2)

where c(n)
0,β is a normalizing constant chosen so that

h(n)
0,β (θ1, . . . , θn) = c(n)

0,β |�(eiθ1 , . . . , eiθn )|β (1.3)

is a probability density on (0, 2π )n and where f is any symmetric function. The unitary,

orthogonal, and symplectic circular ensembles correspond to matrix models for the

Coulomb gas at β = 1, 2, 4 respectively, but are there matrix models for general β > 0 for

Dyson’s circular eigenvalue statistics?

Killip and Nenciu [23] provided matrix models for Dyson’s circular ensemble,

using the theory of orthogonal polynomials on the unit circle. In particular, they obtained

a sparse matrix model which is five-diagonal, called CMV (after the names of the authors

Cantero, Moral, and Velásquez [8]). In this framework, there is not a natural underlying

measure such as the Haar measure; the matrix ensemble is characterized by the laws of

its elements.

There is an analog of Dyson’s circular ensembles on the real line: the probability

density function of the eigenvalues (x1, . . . , xn) for such ensembles with temperature 1/β

is proportional to

|�(x1, . . . , xn)|β
n∏

j=1

e−x2
j /2 (1.4)

For β = 1, 2, or 4, this corresponds to the classical Gaussian ensembles. Dimitriu and

Edelman [10] gave a simple tridiagonal matrix model for (1.4). Killip and Nenciu [23] gave

an analog matrix model for the Jacobi measure on [−2, 2]n, which is up to a normalizing

constant,

|�(x1, . . . , xn)|β
n∏

j=1

(2 − xj)
a (2 + xj)

bdx1 . . . dxn, (1.5)

where a, b > 0, relying on the theory of orthogonal polynomials on the unit circle and its

links with orthogonal polynomials on the segment. When a and b are strictly positive

integers, the Jacobi measure (1.5) can be interpreted as the potential |�(x1, . . . , xn+a+b)|β
on [−2, 2]n+a+b conditioned to have a elements located at 2 and b elements located at

−2. Consequently, the Jacobi measure on the unit circle should be a two parameters

extension of (1.3), corresponding to conditioning to have specific given eigenvalues.
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Such an analog was defined as the circular Jacobi ensemble in [12] and [14]. If δ ∈ R, we

recover the cJUE as in Witte and Forrester [35].

Definition 1.1. Throughout this paper, we note h(n)
δ,β the probability density function on

(0, 2π ) given by

h(n)
δ,β (θ1, . . . , θn) = c(n)

δ,β |�(eiθ1 , . . . , eiθn )|β
n∏

j=1

(1 − e−iθ j )δ(1 − eiθ j )δ (1.6)

with δ ∈ C, Re(δ) > − 1
2 .

If δ ∈ β

2 N, this measure coincides with (1.3) conditioned to have eigenvalues at

1. For β = 2, such measures were first considered by Hua [18] and Pickrell [28, 29]. This

case was also widely studied in [27] and [5] for its connections with the theory of repre-

sentations and in [7] for its analogies with the Ewens measures on permutation groups.

One of our goals in this paper is to provide matrix models for the circular Ja-

cobi ensemble, i.e. a distribution on U (n) such that the arguments of the eigenvalues

(eiθ1 , . . . , eiθn ) are distributed as in (1.6). One can guess that additional problems may ap-

pear because the distribution of the eigenvalues is not rotation-invariant anymore. Nev-

ertheless, some statistical information for the circular Jacobi ensemble can be obtained

from Dyson’s circular ensemble by a sampling (or a change of probability measure) with

the help of the determinant. More precisely, let us first define the notion of sampling.

Definition 1.2. Let (X,F , μ) be a probability space, and h : X �→ R
+ be a measurable and

integrable function with Eμ(h) > 0. Then a measure μ′ is said to be the h-sampling of μ,

if for all bounded measurable functions f ,

Eμ′ ( f ) = Eμ( fh)

Eμ(h)
.

If we consider a matrix model for h(n)
0,β , we can define (for Re(δ) > −1/2, due to an

integrability constraint) a matrix model for h(n)
δ,β by the means of a sampling, noticing

that when the charges are actually the eigenvalues of a matrix U , then (1.3) differs from

(1.6) by a factor which is a function of det(Id − U ). We define detδ for a unitary matrix U

as

detδ(U ) = det(Id − U )δdet(Id − U )δ ,

and we will use this detδ-sampling.
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Actually we look for an effective construction of a random matrix, for instance

starting from a reduced number of independent random variables with known distribu-

tions. Notice that in the particular case β = 2, the density h0,2 corresponds to eigenvalues

of a matrix under the Haar measure on U (n) and the detδ-sampling of this measure is the

Hua–Pickrell measure studied in our previous paper [7].

1.2 Orthogonal polynomials on the unit circle

We now wish to outline the main ingredients which are needed from the theory of

orthogonal polynomials on the unit circle to construct matrix models for the general

Dyson’s circular ensemble. The reader can refer to [33] and [34] for more results and

references; in particular, all the results about orthogonal polynomials on the unit circle

(hereafter OPUC) can be found in these volumes.

Let us explain why OPUC play a prominent role in these constructions. In this

paper, D denotes the open unit disk {z ∈ C : |z| < 1} and T denotes the unit circle {z ∈
C : |z| = 1}. Let (H, u, e) be a triple where H is a Hilbert space, u be a unitary operator,

and e be a cyclic unit vector, i.e. {uje}∞j=−∞ is total in H. We say that two triples (H, u, e)

and (K, v, e′) are equivalent if and only if there exits an isometry k : H → K such that

v = kuk−1 and e′ = ke. The spectral theorem says that for each equivalence class, there

exists a unique probability measure μ on T such that

〈e, uke〉H =
∫

T

zkdμ(z), k = 0, ±1, . . . .

Conversely, such a probability measure μ gives rise to a triple consisting of the Hilbert

space L2(T, μ), the operator of multiplication by z, i.e. h �→ (z �→ zh(z)) and the vector 1, i.e.

the constant function 1. When the space H is fixed, the probability measure μ associated

with the triple (H, u, e) is called the spectral measure of the pair (u, e).

Let us consider the finite n-dimensional case. Assume that u is unitary and e is

cyclic. It is classical that u has n different eigenvalues (eiθ j , j = 1, . . . , n) with θ j ∈ [0, 2π ).

In any orthonormal basis whose first vector is e, say (e1 = e, e2, . . . , en), u is represented

by a matrix U and there is a unitary matrix 	 diagonalizing U . It is then straightforward

that the spectral measure is

μ =
n∑

j=1

π j δeiθ j , (1.7)

where the weights are defined as π j = |〈e1, 	ej〉|2. Note that π j > 0 because a cyclic vector

cannot be orthogonal to any eigenvector (and we also have
∑n

j=1 π j = 1 because 	 is
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unitary). The eigenvalues (eiθ j , j = 1, . . . n) and the vector (π1, . . . , πn) can then be used as

coordinates for the probability measure μ.

Keeping in mind our purpose, we see that the construction of a matrix model

from a vector (eiθ j , j = 1, . . . , n) may be achieved in two steps: first, give a vector of

weights (π1, . . . , πn), then find a matricial representative of the equivalence class with

a rather simple form. The key tool for the second task is the sequence of orthogonal

polynomials associated with the measure μ. In L2(T, μ) equipped with the natural basis

{1, z, z2, . . . , zn−1}, the Gram–Schmidt procedure provides the family of monic orthogo-

nal polynomials 
0, . . . , 
n−1. We can still define 
n as the unique monic polynomial of

degree n with ‖
n ‖L2(T,μ)= 0, namely


n(z) =
n∏

j=1

(z − eiθ j ) . (1.8)

The 
k’s (k = 0, . . . , n) obey the Szegö recursion relation


 j+1(z) = z
 j(z) − ᾱ j

∗
j(z), (1.9)

where


∗
j(z) = zj 
 j(z̄−1) . (1.10)

The coefficients α j’s (0 ≤ j ≤ n − 1) are called Verblunsky coefficients and satisfy the

condition α0, . . . , αn−2 ∈ D and αn−1 ∈ T.

When the measure μ has infinite support, one can define the family of orthogonal

polynomials (
n)n≥0 associated with μ for all n. Then there are infinitely many Verblunsky

coefficients (αn) which all lie in D.

Verblunsky’s theorem (see for example [33, 34]) states that there is a bijection be-

tween probability measures on the unit circle and sequences of Verblunsky coefficients.

The matrix of the multiplication by z in L2(T, μ), in the basis of orthonormal polynomi-

als, has received much attention. This unitary matrix, noted G(α0, . . . , αn−1), called GGT

by Simon (see Chapter 4.1 in [33] for more details and an historical account), is in the

Hessenberg form: all entries below the subdiagonal are zero, whereas the entries above

the subdiagonal are nonzero and the subdiagonal is nonnegative (see formulae (4.1.5)

and (4.1.6) in [33] for an explicit expression for the entries in terms of the Verblunsky

coefficients, or formula (1.11) in Lemma 1.3 below).

For H an n × n complex matrix, the subscript Hij stands for 〈ei, H (ej)〉, where

〈x, y〉 = ∑n
k=1 xk yk. Killip and Nenciu state that any unitary matrix in the Hessenberg form

with nonnegative subdiagonal is the matrix of multiplication by z in L2(T, μ) for some
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measure μ. More precisely, from Killip-Nenciu [23], Lemma 3.2, we have the following

lemma.

Lemma 1.3. Let μ be a probability measure on T supported at n points. Then the

matrix H of f (z) �→ zf (z), in the basis of orthonormal polynomials of L2(T, μ), is in the

Hessenberg form.

More precisely

Hi+1, j+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−αi−1α j

∏ j−1
p=i ρp, if i < j + 1,

ρ j−1, if i = j + 1,

0, if i > j + 1

(1.11)

with ρ j = √
1 − |α j|2 and α−1 = −1, the αk’s being the Verblunsky coefficients associated

with μ. Conversely, if α0, . . . , αn−1 are given in D
n−1 × T, and if we define the matrix H by

(1.11), then the spectral measure of the pair (H , e1) is the measure μ whose Verblunsky

coefficients are precisely α0, . . . , αn−1.

Besides, there is a very useful decomposition of these matrices into product of

block matrices, called the AGR decomposition by Simon [31], after the paper [2]. For

0 ≤ k ≤ n − 2, let

�(k)(α) = Idk ⊕
(

αk ρk

ρk −αk

)
⊕ Idn−k−2,

and set �(n−1)(αn−1) = Idn−1 ⊕ (αn−1), with |αn−1| = 1. Then the AGR decomposition states

that ([31], Theorem 10.1)

G(α0, . . . , αn−1) = �(0)(α0)�(1)(α1) · · · �(n−1)(αn−1) .

Now, we state a crucial result of Killip and Nenciu which enabled them to obtain

a matrix model in the Hessenberg form for Dyson’s circular ensemble. The challenge

consists in randomizing (α0, . . . , αn−1) in D
n−1 × T in such a way that the angles (θ1, . . . , θn)

of the spectral measure

μ =
n∑

j=1

π jδeiθ j

have the density h(n)
0,β (see (1.3)). To make the statement precise, let us introduce three

definitions (for the properties of the Beta and Dirichlet distributions, see [30]).
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Definition 1.3. For a1, a2 > 0, let Beta(a1, a2) be the distribution on [0, 1] with density

(a1 + a2)

(a1)(a2)
xa1−1(1 − x)a2−1.

Its generalization is the following definition.

Definition 1.4. For n ≥ 2 and a1, . . . , an > 0, let Dir(a1, . . . , an) be the distribution on the

simplex {(x1, . . . , xn) ∈ [0, 1]n :
∑n

i=1 xi = 1} with density

(a1 + · · · + an)

(a1) · · ·(an)

n∏
k=1

xak−1
k .

If a1 = · · · = an = a, it is called the Dirichlet distribution of order n ≥ 2 with parameter

a > 0 and denoted by Dirn(a). (For a = 1, this is the uniform distribution.)

Definition 1.5. For s > 1 let νs be the probability measure on D with density

s − 1

2π
(1 − |z|2)(s−3)/2.

It is the law of reiψ where r and ψ are independent, ψ is uniformly distributed on (0, 2π ),

and r2 has the Beta(1, (s − 1)/2) distribution. We adopt the convention that ν1 is the

uniform distribution on the unit circle. We denote by η(n)
0,β the distribution on D

n−1 × T

given by

η(n)
0,β = ⊗n−1

k=0νβ(n−k−1)+1 . (1.12)

Proposition 1.7 (Killip–Nenciu [23], Proposition 4.2). The following formulae express

the same measure on the manifold of probability distributions on T supported at n

points:

21−n

n!
|�(eiθ1 , . . . , eiθn )|β

n∏
j=1

π
β/2−1
j dθ1 · · · dθndπ1 · · · dπn−1

in the (θ , π ) coordinates and

n−2∏
k=0

(1 − |αk|2)(β/2)(n−k−1)−1d2α0 · · · d2αn−2
dφ

2π
(1.13)

in terms of the Verblunsky coefficients.
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Proposition 1.7 may be restated as follows: to pick at random a measure μ such

that (α0, . . . , αn−1) is η(n)
0,β distributed is equivalent to pick the support (θ1, . . . , θn) accord-

ing to h(n)
0,β (see (1.3)) and to pick the weights (π1, . . . , πn) independently according to

Dirn(β/2).

As a consequence, if one takes independent coefficients (α0, . . . , αn−1) such that αk

is νβ(n−k−1)+1 distributed for 0 ≤ k ≤ n − 1, then the GGT matrix G(α0, . . . , αn−1) will be a

matrix model for Dyson’s circular ensemble with temperature 1/β (see also Proposition

2.11 in [12]). Actually in [23], Killip and Nenciu provide a matrix model which is much

sparser (five-diagonal), as explained in Section 4.

Let us now define the laws on U (n) which we will consider in the sequel.

Definition 1.8. We denote by CJ(n)
0,β the probability distribution supported by the set of

n × n GGT matrices of the form (1.11), corresponding to the law of G(α0, . . . , αn−1) defined

above. We denote by CJ(n)
δ,β the probability distribution on U (n) which is the detδ-sampling

of CJ(n)
0,β .

The standard GGT approach is not sufficient to produce matrix models for the

circular Jacobi ensemble because, as we shall see in Section 3, under the measure CJ(n)
δ,β ,

the Verblunsky coefficients are not independent anymore. To overcome this difficulty, we

associate with a measure on the unit circle, or equivalently with its Verblunsky coef-

ficients, a new sequence of coefficients (γk)0≤k≤n−1, which we call deformed Verblunsky

coefficients. There is a simple bijection between the original sequence (αk)0≤k≤n−1 and the

new one (γk)0≤k≤n−1. These coefficients satisfy among other nice properties that |αk| = |γk|,
and that they are independent under CJ(n)

δ,β (and for δ = 0 the αk’s and the γk’s have the

same distribution). They have a geometric interpretation in terms of reflections: this

leads to a decomposition of the GGT matrix G(α0, . . . αn−1) as a product of independent

elementary reflections (constructed from the γk’s). The explicit expression of the densi-

ties allows an asymptotic study (as n → ∞) of the γk’s, and consequently of the spectral

measure, and finally of the empirical spectral distribution.

1.3 Organization of the paper

In Section 2, after recalling basic facts about the reflections introduced in [7], we define

the deformed Verblunsky coefficients (γk)0≤k≤n−1 and give some of their basic properties.

In particular, we prove that the GGT matrix G(α0, . . . αn−1) can be decomposed into a

product of elementary complex reflections (Theorem 2.8).
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In Section 3, we derive the law of the γk’s under CJ(n)
δ,β, (Theorem 3.2); in partic-

ular we show that they are independent and that the actual Verblunsky coefficients are

dependent if δ �= 0. We then prove an analog of Proposition 1.7 on the (θ , π ) coordinates

of μ (Theorem 3.3).

In Section 4, we propose our matrix model (Theorem 4.1). It is a modification of

the AGR factorization, where we transform the �k’s so that they become reflections:

�(k)(α) = Idk ⊕
(

α eiφρ

ρ −eiφα

)
⊕ Idn−k−2

with eiφ = 1−α
1−α

. Of course, the CMV representation [8], which is five-diagonal, is also

available, but this time the αk’s are not independent. Using the following elementary fact

proven in Section 2:


n(1) = det(Id − U ) =
n−1∏
k=0

(1 − γk),

we are able to generalize our previous results in [6] and [7] about the decomposition of the

characteristic polynomial evaluated at 1 as a product of independent complex variables

(Proposition 4.3).

In Section 5, we study asymptotic properties of our model as n → ∞, when

δ = βnd/2, with Red ≥ 0. We first prove that the Verblunsky coefficients have determin-

istic limits in probability. This entails that the spectral measure converges weakly in

probability to a deterministic measure (denoted by μd) which is supported by an arc of

the unit circle (Theorem 5.1). Besides, we consider the empirical spectral distribution

(ESD), where the Dirac masses have the same weight 1/n. Bounding the distances be-

tween both random measures, we prove that the ESD has the same limit (Theorem 5.4).

Moreover, starting from the explicit joint distribution (1.6), we also prove that the ESD

satisfies the large deviation principle (LDP) at scale (β/2)n2 whose rate function reaches

its minimum at μd (Theorem 5.5).

2 Deformed Verblunsky Coefficients and Reflections

In this section, we introduce the deformed Verblunsky coefficients and establish some of

their relevant properties, in particular a geometric interpretation in terms of reflections.

One remarkable property of the Verblunsky coefficients, as it appears in Proposition

1.7, is that they are independent under CJ(n)
0,β . As we shall see in Section 3, this does

not hold anymore under CJ(n)
δ,β . This motivated us to introduce a new set of coefficients
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(γ0, . . . , γn−2, γn−1), called deformed Verblunsky coefficients, which are uniquely associ-

ated with a set of Verblunsky coefficients. In particular, γk ∈ D for 0 ≤ k ≤ n − 2, γn−1 ∈ T

and the map (γ0, . . . , γn−1) �→ (α0, . . . , αn−1) is a bijection. Moreover, the characteristic poly-

nomial at 1 can be expressed simply in terms of (γ0, . . . , γn−1).

2.1 Analytical properties

Let μ be a probability measure on the unit circle supported at n points. Keeping the

notations of the introduction, we let (
k(z))0≤k≤n denote the monic orthogonal polyno-

mials associated with μ and (αk)0≤k≤n−1 its corresponding set of Verblunsky coefficients

through Szegö’s recursion formula (1.9). The functions

bk(z) = 
k(z)


∗
k(z)

, k ≤ n − 1 (2.1)

are known as the inverse Schur iterates ([34], p. 476, after Khrushchev [22], p. 273). They

are analytic in a neighborhood of D̄ and meromorphic in C. Each bk is a finite Blashke

product

bk(z) =
k∏

j=1

(
z − zj

1 − z̄ jz

)
,

where z1, . . . , zk are the zeros of 
k. Let us now explain the term “inverse Schur

iterate.”

The Schur function is a fundamental object in the study of the orthogonal poly-

nomials on the unit circle. Let us briefly recall its definition (see [33] or [32] for more

details and proofs): if μ is a probability measure on the unit circle (supported at finitely

many points or not), its Schur function f : D → D is defined as

f (z) = 1

z

F (z) − 1

F (z) + 1
, where F (z) =

∫
eiθ + z

eiθ − z
dμ(eiθ ). (2.2)

It is a bijection between the set of probability measures on the unit circle and ana-

lytic functions mapping D to D̄. The Schur algorithm (which is described in [33] or [32],

p. 438) allows us to parametrize the Schur function f by a sequence of so-called Schur

parameters, which are actually the Verblunsky coefficients associated with μ (Geronimus

theorem). In particular, there are finitely many Verblunsky coefficients (or equivalently

the measure μ is finitely supported) if and only if f is a finite Blaschke product. The

name “inverse Schur iterate” [21] for bk comes from the result (1.12) of the latter paper

where bk is identified as the Schur function corresponding to the “reversed sequence”

(−ᾱk−1, . . . , −ᾱ0, 1) (see also [34], Proposition 9.2.3).
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Let us define our sequence of functions, which shall lead us to the deformed

coefficients.

Definition 2.1. If μ is supported at n points and with the notation above, define γk(z)

for 0 ≤ k ≤ n − 1, as

γk(z) = z − 
k+1(z)


k(z)
. (2.3)

From the Szegö’s recursion formula (1.9) and notation (2.1), this is equivalent to

γk(z) = ᾱk

bk(z)
, (2.4)

so that γk is meromorphic, with poles in D and zeros lying outside D.

The next proposition shows how the functions γk(z) can be defined recursively

with the help of the coefficients αk. As a consequence, the γk(z) are very closely related to

a fundamental object in the theory of random matrices: the characteristic polynomial.

Proposition 2.2. For any z ∈ C, γ0(z) = ᾱ0 and the following decomposition for 
k(z)

holds:


k(z) =
k−1∏
j=0

(z − γ j(z)), k = 1, . . . , n . (2.5)

The γk(z)’s may be also defined by means of the α’s through the recursion

γk(z) = ᾱk

k−1∏
j=0

1 − zγ̃ j(z)

z − γ j(z)
, (2.6)

γ̃k(z) = γk(z̄−1) . (2.7)

Proof. The first claim is an immediate consequence of (2.3). Now, using 
k(z) = ∏k−1
j=0(z −

γ j(z)), we obtain


∗
k(z) =

k−1∏
j=0

(1 − zγ̃ j(z)),

and hence (we use (2.4))

γk(z) = ᾱk

k−1∏
j=0

1 − zγ̃ j(z)

z − γ j(z)
. �
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Note that when |z| = 1, |γk(z)| = |αk|. Combined with the above proposition, this

leads us to introduce the following set of coefficients.

Definition 2.3. Define the coefficients (γk)0≤k≤n−1 by

γk := γk(1), k = 0, . . . , n − 1 . (2.8)

We shall refer to the γk’s as the deformed Verblunsky coefficients.

Proposition 2.4. The following properties hold for the deformed Verblunsky

coefficients:

(a) For all 0 ≤ k ≤ n − 1, |γk| = |αk|, and in particular γn−1 ∈ T;

(b) γ0 = ᾱ0, and

γk = ᾱkeiϕk−1 , eiϕk−1 =
k−1∏
j=0

1 − γ̄ j

1 − γ j
, (k = 1, . . . , n − 1) . (2.9)

The last term is special. Since |αn−1| = 1, we set αn−1 = eiψn−1 , so that

γn−1 = ei(−ψn−1+ϕn−2) := eiθn−1 ; (2.10)

(c) Let μ be the spectral measure associated with (U , e1), U ∈ U (n). Then 
n(z) is

the characteristic polynomial of U , in particular,


n(1) = det(Id − U ) =
n−1∏
k=0

(1 − γk). (2.11)

Proof. All the results are direct consequences of the Definition 2.3 and the formulae in

Proposition 2.2 evaluated at 1. �

Remark 1. In [24], Killip and Stoiciu have considered variables which are the complex

conjugate of our deformed Verblunsky coefficients as auxiliary variables in the study of

the Prüfer phase (Lemma 2.1 in [24]). Nevertheless, the way we define them as well as the

use we make of them are different.

Remark 2. The formula (2.9) shows that the γk’s can be obtained from the αk’s recur-

sively. Hence, starting from a spectral measure associated with a unitary matrix, one can

associate with it the Verblunsky coefficients and then the deformed Verblunsky coeffi-

cients. Conversely, one can translate any property of the deformed ones into properties

for the spectral measure associated with it by inverting the transformations (2.9).
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Remark 3. The distribution of the characteristic polynomial of random unitary matri-

ces evaluated at 1, through its Mellin–Fourier transform, plays a key role in the theory of

random matrices, especially through its links with analytic number theory (see [26] for

an account). In [6] it is proven that it can be decomposed in law into a product of inde-

pendent random variables when working on the unitary and orthogonal groups endowed

with the Haar measure; since we will prove in Section 3 that the γk’s are independent

under CJ(n)
δ,β , then we can conclude that this latter result holds for any circular Jacobi

ensemble.

2.2 Geometric interpretation

We give a connection between the coefficients (γk)0≤k≤n−1 and reflections defined below.

This allows us to obtain a new decomposition of the GGT matrix associated with a mea-

sure μ supported at n points on the unit circle as a product of n elementary reflections.

Many distinct definitions of reflections on the unitary group exist, the most well

known may be the Householder reflections. The transformations which will be relevant

to us are the following ones.

Definition 2.5. An element r in U (n) will be referred to as a reflection if r − Id has rank

0 or 1.

If v ∈ C
n, we denote by 〈v| the linear form w �→ 〈v, w〉. The reflections can also be

described in the following way. If e and m �= e are unit vectors of C
n, there is a unique

reflection r such that r(e) = m, and

r = Id − 1

1 − 〈m, e〉 (m − e)〈(m − e)|. (2.12)

Let F := span{e, m} be the two-dimensional vector space which is spanned by the vectors

e and m. It is clear that the reflection given by formula (2.12) leaves F ⊥ invariant. Now

set

γ = 〈e, m〉, ρ =
√

1 − |γ |2, eiϕ = 1 − γ

1 − γ̄
, (2.13)

and let g ∈ F be the unit vector orthogonal to e obtained by the Gram–Schmidt procedure.

Then in the basis (e, g) of F , the matrix of the restriction of r is

�(γ ) :=
(

γ ρeiϕ

ρ −γ̄ eiϕ

)
. (2.14)
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Conversely, for γ ∈ D, such a matrix represents the unique reflection in C
2 provided

with its canonical basis, mapping e1 onto γ e1 +
√

1 − |γ |2e2. The eigenvalues of r are 1

and −eiϕ .

Let u be a unitary operator in C
n and e be a unit cyclic vector for u. We define

n reflections r1, . . . , rn recursively as follows. Let (ε1, . . . , εn) be the orthonormal basis

obtained from the Gram–Schmidt procedure applied to (e, ue, . . . , un−1e).

Let r1 be the reflection, mapping e = ε1 onto u e = uε1. More generally, for k ≥ 2

let rk be the reflection mapping εk onto r−1
k−1r−1

k−2 . . . r−1
1 uεk. We will identify these reflec-

tions and establish the decomposition of u. Following the basics recalled about GGT

matrices in the introduction, we note that the matrix of u in the basis (ε1, . . . , εn) is the

GGT matrix associated with the measure μ, i.e. the matrix G(α0, · · · , αn−2, αn−1), where

(α0, · · · , αn−2, αn−1) are the Verblunsky coefficients associated with the measure μ. We

will use formula (4.1.6) of [33] or formula (1.11) of (our) Lemma 1.3 for the identification

of scalar products.

Proposition 2.6. (1) For every 1 ≤ k ≤ n − 1, the reflection rk leaves invariant the

n − 2-dimensional space Span{ε1, . . . , εk−1, εk+2, . . . , εn}. The reflection rn leaves invariant

Span{ε1, . . . , εn−1}.
(2) The following decomposition holds:

u = r1 · · · rn . (2.15)

Proof. (1) In view of Section 2.1, it is enough to prove that for j /∈ {k, k + 1}, the vectors

ε j and rkεk are orthogonal.

For k = 1, 〈ε j, r1ε1〉 = 〈ε j, uε1〉 = 0 as soon as j ≥ 3 from (1.11).

Assume that for every � ≤ k − 1, the reflection r� leaves invariant

Span{ε1, . . . , ε�−1, ε�+2, . . . , εn}. For every j = 1, . . . , n, we have

〈ε j, rkεk〉 = 〈
ε j, r−1

k−1r−1
k−2 . . . r−1

1 uεk
〉 = 〈r1 · · · rk−1ε j, uεk〉 . (2.16)

For j ≥ k + 2, by assumption, the reflections r1, . . . , rk−1 leave invariant ε j, so that

the above expression reduces to 〈ε j, uεk〉, which is 0 again by (1.11).

For j = k − 1, we have r1 · · · rk−1εk−1 = uεk−1 by definition of rk−1, so that (2.16)

gives 〈εk−1, rkεk〉 = 〈uεk−1, uεk〉, which is 0 since u is unitary.

For j < k − 1, by assumption, the reflections rj+1, . . . , rk−1 leave invariant ε j, so

that the right-hand side of (2.16) reduces to 〈r1 · · · rjε j, uεk〉. By definition of rj, it is

〈uε j, uεk〉 which is 0.
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(2) For k fixed, it is clear from (1) that r1 · · · rnεk = r1 · · · rkεk, which is uεk by

definition of rk. �

Proposition 2.7. For k = 1, . . . , n − 1, the matrix of the restriction of rk to the basis

(εk, εk+1) is �(γk−1) as defined in (2.14). In particular

〈εk, rkεk〉 = γk−1 . (2.17)

The restriction of rn to Cεn is the multiplication by γn−1.

Proof. Note that for every k ≤ n − 1

〈εk+1, rkεk〉 = 〈r1 · · · rk−1εk+1, uεk〉 = 〈εk+1, uεk〉 = ρk−1 . (2.18)

Since rk is a reflection acting on the subspace Span{εk, εk+1}, identities (2.18) and (2.17)

entail that the matrix representing rk in the basis (ε1, . . . , εn) is precisely �(γk−1) (see

(2.14)). It is then enough to prove (2.17).

For k = 1 it is immediate that

〈ε1, r1ε1〉 = 〈ε1, uε1〉 = ᾱ0 = γ0 .

Let us proceed by induction. For j ≥ 1 set qj := 〈ε j, rjε j〉. Assume that qj = γ j−1 for j ≤ k.

We have qk+1 = 〈εk+1, rk+1εk+1〉 = 〈r1 . . . rkεk+1, uεk+1〉. Equation (2.12) implies

rkεk+1 = εk+1 − 1

1 − γ̄k−1
(rkεk − εk)〈rkεk, εk+1〉, (2.19)

and since rjε� = ε� for � ≥ j + 2, we get

r1 . . . rkεk+1 = εk+1 − 1

1 − γ̄k−1
(r1 . . . rkεk − r1 . . . rk−1εk)〈uεk, εk+1〉.

Now, it is known that 〈uεk, εk+1〉 = 〈εk+1, uεk〉 = ρk. If we set v1 = ε1,

v j = r1 . . . rj−1ε j, aj = ρ j−1

1 − γ̄ j−1
, w j+1 = ε j+1 − ajuε j,

we get the recursion

v j+1 = ajv j + w j+1 , ( j ≤ k) , (2.20)

which we solve in

vk+1 =
⎛⎝ k∏

j=1

aj

⎞⎠ ε1 +
k+1∑
�=2

⎛⎝ k∏
j=�

aj

⎞⎠w�. (2.21)
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Taking the scalar product with uεk+1 yields

qk+1 =
⎛⎝ k∏

j=1

ā j

⎞⎠ 〈ε1, uεk+1〉 +
k+1∑
�=2

⎛⎝ k∏
j=�

ā j

⎞⎠ 〈w�, uεk+1〉.

But 〈w�, uεk+1〉 = 〈ε�, uεk+1〉 − ā�−1〈uε�−1, uεk+1〉, and since � ≤ k + 1, we have

〈w�, uεk+1〉 = 〈ε�, uεk+1〉 = −ᾱkα�−2

k−1∏
m=�−1

ρm,

which yields (with α−1 = −1)

−qk+1

ᾱk
=

k+1∑
�=1

⎛⎝ k∏
j=�

ā j

⎞⎠α�−2

k−1∏
m=�−1

ρm

=
k+1∑
�=1

k−1∏
m=�−1

ρ2
m

�−3∏
j=0

(1 − γ̄ j)
γ̄�−2∏k−1

s=0 (1 − γs)
(1 − γ�−2)

= 1∏k−1
s=0 (1 − γs)

k+1∑
�=1

⎡⎣ k−1∏
m=�−2

ρ2
m

�−3∏
j=0

(1 − γ̄ j) −
k−1∏

m=�−1

ρ2
m

�−2∏
j=0

(1 − γ̄ j)

⎤⎦
= −

k−1∏
s=0

(1 − γ̄s)

(1 − γs)
,

and eventually qk+1 = γk. �

Now, we can summarize the above results in the following theorem.

Theorem 2.8. Let u ∈ U (n) and e a cyclic vector for u. Let μ be the spectral measure of the

pair (u, e), and (α0, . . . , αn−1) its Verblunsky coefficients. Let (ε1, . . . , εn) be the orthonormal

basis obtained from the Gram–Schmidt procedure applied to (e, ue, . . . , un−1e). Then, u

can be decomposed as a product of n reflections (rk)1≤k≤n:

u = r1 . . . rn (2.22)

where r1 is the reflection mapping ε1 onto uε1 and by induction for each 2 ≤ k ≤ n, rk

maps εk onto r−1
k−1r−1

k−2 . . . r−1
1 uεk.

This decomposition can also be restated in terms of the GGT matrix:

G(α0, · · · , αn−1) = �(0)(γ0)�(1)(γ1) . . . �(n−1)(γn−1), (2.23)

where for 0 ≤ k ≤ n − 2, the matrix �(k) is given by

�(k−1)(γk−1) = Idk−1 ⊕ �(γk−1) ⊕ Idn−k−1, (2.24)
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with �(γ ) defined in (2.14). For k = n − 1,

�(n−1)(γn−1) = Idn−1 ⊕ (γn−1). (2.25)

3 Deformed Verblunsky Coefficients and independence

We now use the point of view of sampling (or change of probability measure) to compute

the distribution of the deformed Verblunsky coefficients under CJ(n)
δ,β . Let us first remark

that if the αk’s are independent and with rotational invariant distribution, then from

(2.9)

(α0, . . . , αn−1)
law= (γ0, . . . , γn−1) . (3.1)

This is the case under CJ(n)
0,β .

We first prove that when δ �= 0 the Verblunsky coefficients are not independent

anymore by studying the simple case n = 2, β = 2, and then we compute the distribution

of (γ0, . . . , γn−1) under CJ(n)
δ,β . We then show that under this distribution, the weights of the

measure associated with the Verblunsky coefficients (α0, . . . , αn−1) are independent from

the points at which the measure is supported and follow a Dirichlet distribution.

Let δ ∈ C such that Reδ > −1/2. The formula

λ(δ)(ζ ) = (1 + δ)(1 + δ)

(1 + δ + δ)
(1 − ζ )δ(1 − ζ )δ , ζ ∈ T (3.2)

defines a probability density with respect to the Haar measure on T, which is discontin-

uous at 1 when Im δ �= 0 (see [7]).

When β = 2 and δ �= 0, the Verblunsky coefficients are dependent. Indeed, let

M ∈ U (2) with Verblunsky coefficients α0 and α1. Then

det(Id − M) = [1 − ᾱ0 − ᾱ1(1 − α0)],

with |α0| < 1 and |α1| = 1. Under CJ(2)
0,2, the variables α0 and α1 are independent and

uniformly distributed on D and T respectively (see [23] or Proposition 1.7). The CJ(2)
δ,2 is a

detδ sampling of CJ(n)
0,2 (see the Introduction for the definition and notation for the detδ-

sampling). So, the joint density of (α, ϕ) on D × T is proportional to

f (α0, α1) = [1 − ᾱ0 − ᾱ1(1 − α0)]δ̄[1 − α0 − α1(1 − ᾱ0)]δ

= (1 − ᾱ0)δ̄(1 − α0)δ[1 − γ ᾱ1]δ̄[1 − γ̄ α1]δ ,
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where

γ = 1 − α

1 − ᾱ
.

It is then clear that the conditional density of α1 given α0 is

α1 �→ λ(δ)(γ ᾱ1), α1 ∈ T,

and this last quantity does not depend on α0 (i.e. on γ ) if and only if δ = 0. Otherwise,

the Verblunsky coefficients α0 and α1 are dependent.

The next theorem illustrates our interest in the deformed Verblunsky coefficients:

under CJ(n)
δ,β , they are independent. For the proof of this theorem, we need the following

lemma which will also be useful when we study limit theorems.

Lemma 3.1. Let s, t , � ∈ C such that Re(s + � + 1) > 0, Re(t + � + 1) > 0. Then, the follow-

ing identity holds:∫
D

(1 − |z|2)�−1(1 − z)s(1 − z̄)td2z = π(�)(� + 1 + s + t )

(� + 1 + s)(� + 1 + t )
. (3.3)

Proof. A Taylor expansion yields

(1 − z)s(1 − z̄)t =
∑

m,n≥0

ρm+n (−s)n(−t )m
n!m!

ei(m−n)θ ,

with z = ρe iθ and 0 ≤ ρ < 1. We obtain by integrating∫
D

(1 − |z|2)�−1(1 − z)s(1 − z̄)td2z = 2π
∑
n≥0

(−s)n(−t )n
n!n!

∫ 1

0
(1 − ρ2)�−1ρ2n+1dρ

= π
∑
n≥0

(−s)n(−t )n
n!

(� − 1)!

(n + �)!
= π

�
2 F1(−s, −t ; � + 1; 1) ,

where 2 F1 is the classical hypergeometric function (see [3]) and an application of Gauss

formula (see [3]) shows that the last expression is exactly the right-hand side of (3.3). �

Theorem 3.2. Let δ ∈ C with Re δ > −1/2 and β > 0. Set β ′ = β/2. Under CJ(n)
δ,β , the dis-

tribution of (γ0, . . . , γn−1), denoted hereafter η(n)
δ,β , is the following:

(1) the variables γ0, . . . , γn−2, γn−1 are independent;

(2) for k = 0, . . . , n − 2 the density of γk with respect to the Lebesgue measure

d2z on C is

ck,n(δ)(1 − |z|2)β
′(n−k−1)−1(1 − z)δ̄(1 − z̄)δ1D(z) ,
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where

ck,n(δ) = (β ′(n − k − 1) + 1 + δ)(β ′(n − k − 1) + 1 + δ)

π(β ′(n − k − 1))(β ′(n − k − 1) + 1 + δ + δ)
; (3.4)

(3) the density of γn−1 with respect to the Haar measure on T is λ(δ) (given by

(3.2)).

Proof. The distribution of the α’s in the β-circular unitary ensemble is η(n)
0,β . More pre-

cisely, as seen in Definition 1.4 they are independent and if

αk = rkeiψk (0 ≤ k ≤ n − 2), αn−1 = eiψn−1 ,

then rk and ψk are independent, ψk is uniformly distributed and r2
k has the Beta(1, β ′(n −

k − 1)) distribution. Moreover, αn−1 is uniformly distributed on T. From (2.11), the sam-

pling factor is

det(Id − U )δ̄det(Id − Ū )δ = (1 − γn−1)δ̄(1 − γ̄n−1)δ
n−2∏
k=0

(1 − γk)δ̄(1 − γ̄k)δ ,

so that, under CJ(n)
δ,β , the density of (r0, . . . , rn−2, ψ0, . . . , ψn−1) is proportional to

λ(δ)(γn−1)
n−2∏
k=0

(
1 − r2

k

)β ′(n−1−k)−1
rk(1 − γk)δ̄(1 − γ̄k)δ1(0,1)(rk) ,

with

γk = rkeiθk (0 ≤ k ≤ n − 2), γn−1 = eiθn−1 .

Thanks to the relations (2.9) and (2.10), the Jacobian matrix of the mapping

(r0, . . . , rn−2, ψ0, . . . , ψn−1) → (r0, . . . , rn−2, θ0, . . . , θn−1)

is lower triangular with diagonal elements ±1, so that under CJ(n)
δ,β the density of

(r0, . . . , rn−2, θ0, . . . , θn−1) is proportional to

λ(δ)(γn−1)
n−2∏
k=0

(
1 − r2

k

)β ′(n−1−k)−1
rk(1 − γk)δ̄(1 − γ̄k)δ1(0,1)(rk) , (3.5)

which proves the required independence and the expression of the distributions, up to the

determination of ck,n(δ). This quantity is obtained by taking � = β ′(n − k − 1), s = δ, t = δ

in (3.3), which gives (3.4) and completes the proof of the theorem. �

Starting with a set of deformed Verblunsky coefficients, with distribution η(n)
δ,β , we

obtain the coefficients (α0, . . . , αn−1) by inverting formula (2.11). These are the coordinates
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of some probability measure μ supported at n points on the unit circle

μ =
n∑

k=1

πkδe iθk ,

with πk > 0 and
∑n

k=1 πk = 1. The next theorem gives the distribution induced on the

vector (π1, . . . , πn, θ1, . . . , θn) by (γ0, . . . , γn−1).

Theorem 3.3. The following formulae express the same measure on the manifold of

probability distribution on T supported at n points:

K (n)
δ,β |�(eiθ1 , . . . , eiθn )|β

n∏
k=1

(1 − e−iθk )δ(1 − eiθk )δ
n∏

k=1

π
β ′−1
k dθ1 · · · dθndπ1 · · · dπn−1

in the (θ , π ) coordinates and

K (n)
δ,β

n−2∏
k=0

(1 − |γk|2)β
′(n−k−1)−1

n−1∏
k=0

(1 − γk)δ̄(1 − γ̄k)δd2γ0 · · · d2γn−2dφ

in terms of the deformed Verblunsky coefficients, with γn−1 = eiφ . Here, K (n)
δ,β is a constant:

K (n)
δ,β = (1 + δ)(1 + δ̄)

2n−1π(1 + δ + δ̄)

n−2∏
k=0

ck,n(δ),

with ck,n(δ) given in Theorem 3.2. Consequently, if (γ0, . . . , γn−1) is η(n)
δ,β distributed, then

(π1, . . . , πn) and (θ1, . . . , θn) are independent; the vector of weights (π1, . . . , πn) follows the

Dirn(β ′) distribution and the vector (θ1, . . . , θn) has the density h(n)
δ,β .

Proof. In the course of this proof, we shall adopt the following point of view. Starting

with a measure supported at n points on the unit circle, we associate with it its Verblun-

sky coefficients (α0, . . . , αn−1) and then the corresponding GGT matrix which we note G

for simplicity. Then e1 is a cyclic vector for G and μ is the spectral measure of (G, e1).

Conversely, starting with the set of deformed Verblunsky coefficients with ηδ,β distribu-

tion, we construct the coefficients (α0, . . . , αn−1) with the transformations (2.9), then the

GGT matrix associated with it and finally μ the spectral measure associated with this

matrix and e1.

We use the following well-known identity (see [33] or [23] Lemma 4.1):

|�(eiθ1 , . . . , eiθn )|2
n∏

k=1

πk =
n−2∏
k=0

(1 − |αk|2)n−k−1. (3.6)
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Since |γk| = |αk|, we can also write

|�(eiθ1 , . . . , eiθn )|2
n∏

k=1

πk =
n−2∏
k=0

(1 − |γk|2)n−k−1. (3.7)

Moreover, from (2.11),

det(Id − G) =
n∏

k=1

(1 − eiθk ) =
n−1∏
k=0

(1 − γk). (3.8)

In our setting, πi is modulus squared of the first component of the ith eigenvector of the

matrix G. Now, define

q2
k = πk, for k = 1, . . . , n.

It is known (see for example Forrester [12], Chapter 2 and [13] Theorem 2) that the

Jacobian of the map (α0, . . . , αn−1) �→ (θ1, . . . , θn, q1, . . . , qn−1) is given by∏n−2
k=0(1 − |αk|2)

qn
∏n

k=1 qk
.

Moreover, the map (γ0, . . . , γn−1) �→ (α0, . . . , αn−1) is invertible and its Jacobian is 1, as

already seen. The result now follows from simple integral manipulations combined with

the identities (3.7) and (3.8). �

4 Matrix Models for the Circular Jacobi Ensemble

The results of the previous sections can now be used to propose some simple matrix

models for the circular Jacobi ensemble. There are mainly two ways to generate matrix

models for a given spectral measure encoded by its Verblunsky coefficients.

The AGR decomposition. If U = �(0)(α0)�(1)(α1) · · · �(n−1)(αn−1) (the �k’s are defined

in the introduction), the Verblunsky coefficients for the spectral measure associated with

(U , e1) are precisely (α0, . . . , αn−1) (see [2] or [31], Section 10). Therefore, taking independent

αk’s with law η(n)
0,β , the density of the eigenvalues of

U = �(0)(α0)�(1)(α1) · · · �(n−1)(αn−1)

is proportional to |�(eiθ1 , . . . , eiθn )|β . The matrix U obtained above is the GGT matrix

associated with the αk’s. It is in the Hessenberg form.

The CMV form. Set {
L = �(0)(α0)�(2)(α2) . . . ,

M = �(1)(α1)�(3)(α3) . . . .
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Cantero, Moral, and Velazquez [8] proved that the Verblunsky coefficients associated with

(LM, e1) are precisely (α0, . . . , αn−1). Therefore, taking as previously independent αk’s with

distribution η(n)
0,β , the density of the eigenvalues of the spectral law of LM is proportional

to |�(eiθ1 , . . . , eiθn )|β [23]. This matrix model is very sparse: it is pentadiagonal.

We now propose a matrix model for the circular Jacobi ensemble: it is reminiscent

of the AGR factorization with the noticeable difference that it is based on the deformed

Verblunsky coefficients and actual reflections as defined in Section 2.

Theorem 4.1. If (γ0, . . . , γn−1) is η(n)
δ,β distributed, then with the notation of (2.24) and

(2.25),

�(0)(γ0)�(1)(γ1) · · · �(n−1)(γn−1)

is a matrix model for the circular Jacobi ensemble, i.e. the density of the eigenvalues is

h(n)
δ,β (see (1.6)).

Proof. We know from Theorem 2.8 that

G(α0, . . . , αn−1) = �(0)(γ0)�(1)(γ1) · · · �(n−1)(γn−1). (4.1)

We also proved in Theorem 3.3 that the set of deformed Verblunsky coefficients with

probability distribution η(n)
δ,β induces a distribution on the eigenvalues of the GGT ma-

trix G(α0, . . . , αn−1), which has exactly the density hδ,β . This completes the proof of the

theorem. �

Remark 3. We now explain the CMV form obtained by Killip and Nenciu in [23]. Cantero,

Moral, and Velazquez [8] introduced the basis χ0, . . . , χn−1 obtained by orthogonalizing

the sequence 1, z, z−1, . . .. They prove that in this basis the matrix is pentadiagonal. We

name this matrix C(α0, . . . , αn−1). It turns out that there exists a unitary P such that

PG(α0, . . . , αn−1)P � = C(α0, . . . , αn−1) , Pϕ0 = χ0.

The two pairs (G(α0, . . . , αn−1), ϕ0) and (C(α0, . . . , αn−1), χ0) are equivalent, they admit the

αk’s as Verblunsky coefficients and have the same spectral measure. We conclude that if

we start with the γk’s distributed as η(n)
δ,β and build the αk’s by inverting the transformation

(2.9), then C(α0, . . . , αn−1) will be a matrix model for the circular Jacobi ensemble. But,

we do not know how to construct the CMV matrix from the γk’s directly. We saw at the

beginning of this section that Cantero et al. introduced the matrices L and M as direct
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product of small blocks �(k)(αk) and obtained C as C = LM. It would be interesting to

have an analog construction based on the independent γk’s.

Theorem 2.8, which is a deterministic result, has also the following consequence.

Proposition 4.2. Let (α0, . . . , αn−2, αn−1) ∈ D
n−1 × T be independent random variables

with rotationally invariant distribution. Then

�(0)(α0)�(1)(α1) · · ·�(n−1)(αn−1)
law= �(0)(α0)�(1)(α1) · · ·�(n−1)(αn−1).

Proof. We give two proofs of this result. The first one is a consequence of Theorem 2.8

from which we know that

�(0)(α0)�(1)(α1) · · · �(n−1)(αn−1) = �(0)(γ0)�(1)(γ1) · · · �(n−1)(γn−1) ,

and the remark at the beginning of Section 3.

For the second proof, we proceed by induction on n. For n = 1 the result is

obvious. Suppose the result holds at rank n − 1: thanks to the recurrence hypothesis

�(0)(α0)�(1)(α1) · · · �(n−1)(αn−1)
law= �(0)(α0)�(1)(α1) · · · �(n−1)(αn−1).

Let eiφ0 = 1−α0
1−α0

. An elementary calculation gives

�(0)(α0)�(1)(α1) · · · �(n−2)(αn−2)�(n−1)(αn−1)

= �(0)(α0)�(1)(e−iφ0α1) · · · �(n−2)(e−iφ0αn−1)�(n−1)(e−iφ0αn−1).

As the αk’s are independent with law invariant by rotation:

(α0, e−iφ0α1, . . . , e−iφ0αn−2, eiφ0αn−1)
law= (α0, α1, . . . , αn−2, αn−1),

which completes the proof. �

Now that we have a matrix model for the circular Jacobi ensemble, we can study

the characteristic polynomial for such matrices; the key formula will be (2.11).

Proposition 4.3. Let U be a unitary matrix of size n and let Zn = det(Id − U ) be its

characteristic polynomial evaluated at 1. Then, in the circular Jacobi ensemble, Zn can
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be written as a product of n independent complex random variables:

Zn =
n−1∏
k=0

(1 − γk) ,

where the laws of the γk’s are given in Theorem 3.2. Consequently, for any s, t ∈ C, with

Re(t ) > − 1
2 , the Mellin–Fourier transform of Zn is

E[|Zn|teis arg Zn ] =
n−1∏
k=0

(β ′k + 1 + δ)(β ′k + 1 + δ̄)(β ′k + 1 + δ + δ̄ + t )

(β ′k + 1 + δ + δ̄)
(
β ′k + 1 + δ + t−s

2

)

(
β ′k + 1 + δ̄ + t+s

2

) . (4.2)

Proof. The first part is an easy consequence of (2.11) and Theorem 3.2. To prove the

second part, we note that if Xk = (1 − γk), then |Xk|teis arg Xk = (1 − γk)a(1 − γ̄k)b, where

a = (t + s)/2 and b = (t − s)/2. Consequently, by independence of the γk’s, we obtain

E[|Zn|teis arg Zn ] =
n−1∏
k=0

E[(1 − γk)a (1 − γ̄k)b],

and formula (4.2) then easily follows from Lemma 3.1. �

5 Limiting Spectral Measure and Large Deviations

In (1.7) we defined the spectral measure, which is a central tool for the study of our

circular ensembles. Let us rewrite this measure on T as

μ(n)
sp :=

n∑
k=1

π (n)
k δ

eiθ (n)
k

, (5.1)

where we put a superscript (n) to stress on the dependency on n. Besides, in classical

random matrix theory, many authors are mainly interested in the empirical spectral

distribution (ESD) defined by

μ(n)
esd = 1

n

n∑
k=1

δ
eiθ (n)

k
. (5.2)

We are concerned with their asymptotics under CJ(n)
δ,β when n → ∞ with

δ = δ(n) = β ′nd,

where Re d ≥ 0 (and as usual β ′ = β/2). In this framework the variables (θ (n)
1 , . . . , θ (n)

n )

and (π (n)
1 , . . . , π (n)

n ) are distributed as in Theorem 3.3. It is well known that in the CUE

(i.e. for d = 0 and β ′ = 1), the sequence (μ(n)
esd) converges weakly in probability to the
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uniform measure on T and that it satisfies the large deviation principle at scale n2 ([16],

Chapter 5).

In this section, we prove that in our model, both sequences (μ(n)
sp ) and (μ(n)

esd) con-

verge weakly in probability to the same limit measure supported by an arc of the unit

circle, and that (μ(n)
esd) satisfies the large deviation principle at scale n2. In the next two

subsections, we first recall some definitions (which may be skipped by probabilist read-

ers) and then state the main results, which are Theorems 5.1, 5.4, and 5.5.

5.1 Weak convergence of measures

Let M1(T) be the space of probability measures on T. The weak topology on M1(T)

is defined from the duality with the space of continuous functions on T; that is, νn

weakly converges to ν means
∫

fdνn → ∫
fdν for every continuous function f . Since T

is compact, it is equivalent to the convergence of moments. If we define the distribution

function of ν ∈ M1(T) as Fν (t ) = ν({eiθ ; θ ∈ [0, t )}), then νn → ν weakly if and only if

Fνn (t ) → Fν (t )

for all t ∈ [0, 2π ) at which Fν (t ) is continuous. The Lévy distance dL (whose precise

definition is not needed here, see [9], Theorem D8) is compatible with this topology and

makes M1(T) a compact metric space. It should be noted that for all pair of elements of

M1(T)

dL (μ, ν) ≤ sup
t

|Fμ(t ) − Fν (t )| . (5.3)

In the following, we consider random probability measures (νn) and the weak

convergence in probability of (νn) to a deterministic ν ∈ M1(T). This means that for every

n ≥ 1 we have a probability space (�n,Fn, Qn), an M1(T)-valued random variable νn,

and that d(νn, ν) → 0 in probability, where d is any distance compatible with the weak

topology (e.g. the Lévy distance dL ). In other words,

lim
n

νn = ν (in probability) ⇔ lim
n

d(νn, ν) = 0 (in probability)

⇔ ∀ε > 0 lim
n

Qn(d(νn, ν) > ε) = 0. (5.4)

5.1.1 The spectral measure

The following theorem states the convergence of the sequence (μ(n)
sp ) to an explicit limit,

which we identify now, with the help of some more notation. We assume that Red ≥ 0.
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Let

αd = − d

1 + d
(5.5)

and let θd ∈ [0, π ) and ξd ∈ [−|θd|, |θd|] be such that

sin
θd

2
=
∣∣∣∣ d

1 + d

∣∣∣∣ , eiξd = 1 + d

1 + d
.

If Red ≥ 0, d �= 0, let wd be defined by

wd(θ ) =

⎧⎪⎨⎪⎩
√

sin2((θ − ξd)/2) − sin2(θd/2)

|1 + αd| sin(θ/2)
, if θ ∈ (θd + ξd, 2π − θd + ξd),

0, otherwise.

(5.6)

In this case, let

dμd(ζ ) := wd(θ )
dθ

2π
(ζ = eiθ ) , (5.7)

and for d = 0, let

dμ0(ζ ) := dθ

2π
(ζ = eiθ )

the Haar measure on T.

Theorem 5.1. Assume Red ≥ 0. As n → ∞,

lim μ(n)
sp = μd (in probability).

To prove this convergence, we use the parameterization of measures by their mod-

ified Verblunsky coefficients and the following two lemmas, whose proofs are postponed

until the end of the section.

Lemma 5.2. For every fixed k ≥ 0, as n → ∞,

lim γ (n)
k = − d

1 + d
(in probability), (5.8)

and, consequently,

lim α(n)
k = αde−i(k+1)ξd (in probability). (5.9)

Lemma 5.3. The sequence of Verblunsky coefficients of μd is precisely (αde−i(k+1)ξd )k≥0.
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Proof of Theorem 5.1. For ν ∈ M1(T), let mk(ν) = ∫
eikθdν(θ ) be its kth moment and let

αk(ν) be its kth Verblunsky, in short V-coefficient. Moments are related to V-coefficients

in a continuous way: for every j ≥ 1, mj(ν) is a continuous function of (α0, . . . , α( j∧N)−1),

where N is the cardinal of the support of ν. We know for Lemma 5.2 that for every fixed

k, lim α j(μ(n)
sp ) = α j(μd) for j ≤ k, in probability. It entails the convergence of mk(μ(n)

sp ) to

mk(μd), in probability, hence the weak convergence of the measures. �

Remark 3. The above method can be easily adapted to show the trivial asymptotics of

two different scaling regimes:

• if δ(n) = o(n), the limit is the uniform measure on T;

• if δ(n) is real and n = o(δ(n)), the limit is the Dirac measure at −1.

Proof of Lemma 5.2. For γ (n)
k we use the Mellin transform

E
((

1 − γ (n)
k

)s) = (β ′(n − k − 1) + δ + δ + s + 1)(β ′(n − k − 1) + δ + 1)

(β ′(n − k − 1) + δ + δ + 1)(β ′(n − k − 1) + δ + s + 1)

(this comes immediately from (3.3)).

Since for fixed z ∈ C

lim
n→∞

(n + z)

(n)nz
= 1,

we get, for fixed s (and k),

lim
n→∞ E

((
1 − γ (n)

k

)s) =
(

1 + d + d

1 + d

)s

,

which implies that

lim
n→∞

(
1 − γ (n)

k

) = 1 + d + d

1 + d
in probability,

which is equivalent to (5.8). The statement (5.9) is a direct consequence of (5.8) and (2.9).
�

Remark 3. The convergences in probability in the above lemma actually hold in L p, for

all p > 0 because all variables are bounded by 1.

Proof of Lemma 5.3. If d is real, the Verblunsky coefficients are all equal. In fact, mea-

sures satisfying this property are known to have an absolute continuous part supported

by an arc of the unit circle and a possible additional Dirac mass ([33], p. 87). More pre-

cisely, let α ∈ D and let ν be the measure on T such that αk(ν) = α for every k ≥ 0. If θ (α)
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and ξ (α) are defined by

θ (α) = 2 arcsin |α|, eiξ (α) = 1 + α

1 + α
,

then

dν(ζ ) = w(θ )
dθ

2π
(ζ = eiθ ) ,

where

w(θ ) =

⎧⎪⎨⎪⎩
√

sin2(θ/2) − sin2(θ (α)/2)

|1 + α| sin((θ + ξ (α))/2)
, if θ ∈ (θ (α), 2π − θ (α),

0, otherwise,

(5.10)

as soon as ∣∣∣∣α + 1

2

∣∣∣∣ ≤ 1

2
(5.11)

(otherwise, there is an additional Dirac mass). The orthogonal polynomials with respect

to this measure are known as the “Geronimus polynomials.”

When α = αd, we set θ (α) = θd, ξ (α) = ξd and ν = νd, w = wd. We see that

αd + 1

2
= 1 − d

2(1 + d)
,

so that condition (5.11) is fulfilled if and only if Red ≥ 0, which we assumed.

Moreover, it is known (see [34], p. 960) that if (αk)k≥0 is the sequence of Verblunsky

coefficients of a measure μ, then the coefficients (e−i(k+1)ξdαk)k≥0 are associated with μ

rotated by ξd. Consequently,

dμd(ζ ) = dνd(ζe−iξd ) ,

which is precisely (5.7). �

5.1.2 The ESD

In matrix models, the convergence of the ESD is often tackled directly via the convergence

of moments or the convergence of the Cauchy transform. Here, we follow a different way:

we use Theorem 5.1 and prove that the two sequences (μ(n)
sp )n and (μ(n)

esd)n are “contiguous.”

Theorem 5.4. Assume Red ≥ 0. As n → ∞,

lim
n

μ(n)
esd = μd (in probability),

where μd is given in (5.7).
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Proof. From Theorem 5.1, we know, with the notation from the beginning of Section 5.1,

that

lim
n→∞ dL

(
μ(n)
sp , μd

) = 0 in probability.

By the triangle inequality

dL
(
μ(n)
esd, μd

) ≤ dL
(
μ(n)
sp , μd

) + dL
(
μ(n)
sp , μ(n)

esd

)
,

so it is enough to prove that dL (μ(n)
sp , μ(n)

esd) converges to 0 in probability. Thanks to (5.3), it

is enough to prove that

lim
n→∞ sup

t

∣∣Fμ(n)
sp

(t ) − Fμ(n)
esd

(t )
∣∣ = 0 in probability. (5.12)

In fact,

sup
t

∣∣Fμ(n)
sp

(t ) − Fμ(n)
esd

(t )
∣∣ = max

k

∣∣∣∣S(n)
k − k

n

∣∣∣∣ , (5.13)

where S(n)
k = ∑k

j=1 π (n)
j . Using the union bound and the Markov inequality, we may write

P

(
max

k

∣∣∣∣S(n)
k − k

n

∣∣∣∣ > ε

)
≤

n∑
k=1

P

(∣∣∣∣S(n)
k − k

n

∣∣∣∣ > ε

)
≤ ε−4

n∑
k=1

E

((
S(n)

k − k

n

)4
)

, (5.14)

and then use explicit distributions. Indeed, we showed in Theorem 3.3 that the vector

(π (n)
1 , . . . , π (n)

n ) follows the Dirn(β ′) distribution. It entails that for k = 1, . . . , n − 1, the

variable S(n)
k is Beta(β ′k, β ′(n − k)) distributed.

Recall that the Mellin transform of a beta variable Beta(a, b) with positive

parameters a and b is

E(Beta(a, b)s) = (a + s)(a + b)

(a)(a + b + s)
,

for s > −a. As a consequence, EBeta(a, b) = a/(a + b) and a straightforward calculation

gives

E((Beta(a, b) − EBeta(a, b)))4) = 3ab(2a2 + 2b2 − 2ab + a2b + ab2)

(a + b)4(a + b + 1)(a + b + 2)(a + b + 3)
= O

(
ab

(a + b)4

)
.

When a = β ′k and b = β ′(n − k), this shows that the kth term in the sum of (5.14) is

O
(

k(n−k)
n4

)
, so that

P

(
max

k

∣∣∣∣S(n)
k − k

n

∣∣∣∣ > ε

)
= O

(
n∑

k=1

k(n − k)

n4

)
= O

(
1

n

)
.

Thanks to (5.13), this yields (5.12) and completes the proof. �
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5.2 Large deviations for the ESD

It turns out that the convergence in Theorem 5.4 is exponentially fast, and to make this

statement more precise we need to recall the definition of some notions of large devi-

ations, for which the reference is the book of Dembo and Zeitouni [9]. We say that a

sequence (Pn) of probability measures on a measurable Hausdorff space (X , B(X )) satis-

fies the LDP at scale un (with un → ∞), if there exists a lower semicontinous function

I : X → [0, ∞] such that

lim sup
1

un
log Pn(F ) ≤ − inf{I (x); x ∈ F }, (5.15)

lim inf
1

un
log Pn(G) ≥ − inf{I (x); x ∈ G} , (5.16)

for every closed set F ⊂ X and every open set G ⊂ X . The rate function I is called good

if its level sets are compact. More generally, a sequence of X -valued random variables is

said to satisfy the LDP if their distributions satisfy the LDP. From now on, we work with

X = M1(T), whose compacity makes our task simpler. In fact, according to [9] Theorem

4.1.11, in this case the LDP is equivalent to the following property: for every μ ∈ M1(T)

−I (μ) = lim
ε↓0

lim sup
n

1

un
log Pn(B(μ, ε)), (5.17)

= lim
ε↓0

lim inf
n

1

un
log Pn(B(μ, ε)), (5.18)

where B(μ, ε) is the open ball of radius ε, centered at μ

B(μ, ε) = {ν : dL (μ, ν) < ε}.

It is easy to see that the latter is equivalent to the pair of inequalities

lim
ε↓0

lim sup
n

1

un
log Pn(B(μ, ε)) ≤ −I (μ), (5.19)

lim
ε↓0

lim sup
n

1

un
log Pn(B(μ, ε)) ≥ −I (μ). (5.20)

For the sake of completeness, let us explain shortly why (5.19) and (5.20) lead

to (5.15) and (5.16), respectively. On the one hand, every closed (hence compact) set in

M1(T) may be recovered by a finite number of balls and applying (5.19) for all these balls

leads to (5.15). On the other hand, every open set contains open balls and it remains to

optimize with respect to the centers of the balls.

Our large deviation result follows the way initiated by the pioneer paper of Ben

Arous and Guionnet [4] and continued by Hiai and Petz (see [15, 17]).
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We work with the set M1(T) of probability measures on the unit circle. For

μ ∈ M1(T), the Voiculescu entropy is

�(μ) =
∫ ∫

log |ζ − ζ ′|dμ(ζ )dμ(ζ ′) . (5.21)

With a different sign it is the logarithmic energy of μ (see Chapter 5.3 in [16]). We also

define the potential

Qd(ζ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2(Red) log

(
2 sin θ

2

) − (Imd)(θ − π ), if ζ = eiθ , θ ∈ (0, 2π ),

∞, if ζ = 1 and Red > 0,

−|Imd|π , if ζ = 1 and Red = 0. (5.22)

It should be noted that Qd is a lower semicontinuous function. The main result of this

section is an extension of the theorem of Hiai and Petz (Theorem 5.4.10 in [16]), which

corresponds to the case d = 0 + a continuous potential.

Theorem 5.5. Let d ∈ C with Red ≥ 0. For n ∈ N and (ζ1, . . . , ζn) ∈ T
n let

h(ζ1, . . . , ζn) :=
n∏

k=1

(1 − ζk)dβ ′n(1 − ζk)dβ ′n
∏
j<k

|ζ j − ζk|2β ′

and let P
(n)
d be the distribution on T

n having the density

1

Zd(n)
h(ζ1, . . . , ζn) , (5.23)

where Zd(n) is the normalization constant.

(1) We have

lim
n→∞

1

n2β ′ logZd(n) = B(d), (5.24)

where

B(d) =
∫ 1

0
x log

x(x + Red)

|x + d|2 dx.

(2) The sequence of distributions of

μ(n)
esd = δζ1 + · · · + δζn

n

under P
(n)
d satisfies the LDP in M1(T) at scale β ′n2 with (good) rate function

Id(μ) = −�(μ) +
∫

T

Qd(ζ )dμ(ζ ) + B(d) . (5.25)

(3) The rate function vanishes only at μ = μd.
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Proof. (1) An exact expression of Z(n) is obtained using the following lemma, whose

proof is postponed to the end of this subsection.

Lemma 5.6. If we define

Zs,t (n) =
∫

[0,2π )n

n∏
k=1

(1 − eiθk )s(1 − e−iθk )t
∏
j<k

|eiθ j − eiθk |βdθ1 · · · dθn,

then we have

Zs,t (n) = (β ′n + 1)

((β ′ + 1))n

n−1∏
0

(β ′ j + 1)(β ′ j + 1 + s + t )

(β ′ j + 1 + s)(β ′ j + 1 + t )
. (5.26)

We have Zd(n) = Zdβ ′n,dβ ′n(n) and then,

logZd(n) = log (β ′n + 1) − n log (β ′ + 1) +
n−1∑
j=0

log (β ′ j + 1)

+
n−1∑
j=0

[log (β ′ j + 1 + 2Redβ ′n) − 2Re log (β ′ j + 1 + dβ ′n)] .

From the Binet formula (Abramowitz and Stegun [1] or Erdélyi et al. [11], p. 21), we have

for Rex > 0

log (x) =
(

x − 1

2

)
log x − x + 1

2
log(2π ) +

∫ ∞

0
f (s)e−sx ds, (5.27)

where the function f is defined by

f (s) =
[

1

2
− 1

s
+ 1

es − 1

]
1

s
= 2

∞∑
k=1

1

s2 + 4π2k2
,

and satisfies for every s ≥ 0

0 < f (s) ≤ f (0) = 1/12, 0 <

(
sf (s) + 1

2

)
< 1.

Using (5.27), a straightforward study of Riemann sums gives

1

β ′n2
logZd(n) →

∫ 1

0
x log

x(x + Red)

|x + d|2 dx = B(d) . (5.28)

(2) The proof is based on the explicit form of the joint eigenvalue density. We

follow the lines of [4, 15, 17], and [16]. We skip the index esd for notational convenience.

Our goal is the proof of the two inequalities (see (5.19) and (5.20)), which hold for every
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μ ∈ M1(T):

lim
ε→0

lim sup
n

1

β ′n2
log P

(n)
d (μ(n) ∈ B(μ, ε)) ≤ −Id(μ), (5.29)

lim
ε→0

lim inf
n

1

β ′n2
log P

(n)
d (μ(n) ∈ B(μ, ε)) ≥ −Id(μ) (5.30)

We rest on the LDP known in the case of d = 0, and use the general method which consists

in estimating the Radon–Nikodym derivative ruling the change of probability. The key

formula is

P
(n)
d (μ(n) ∈ B(μ, ε)) = Z0(n)

Zd(n)
E

(n)
0

[
1μ(n)∈B(μ,ε)e

−n2β ′ ∫ Qddμ(n)]
. (5.31)

The upper bound (5.29). Let us first assume Re d > 0, so that Qd(ζ ) → ∞ as ζ → 1. For

R > 0 we consider the cutoff QR = min(Qd, R). Since QR is continuous, the mapping

ν ∈ M1(T) �→ ∫
QRdν is continuous, so

inf
B(μ,ε)

∫
QRdν ≥

∫
QRdμ − r1(ε, R) (5.32)

with limε r1(ε, R) = 0. Since Qd ≥ QR, we get

1

β ′n2
log E

(n)
0

[
1μ(n)∈B(μ,ε)e

−n2β ′ ∫ Qddμ(n)] ≤ 1

β ′n2
log P

(n)
0 (μ(n) ∈ B(μ, ε)) −

∫
QRdμ + r1(ε, R).

(5.33)

Thanks to the LDP known for d = 0, we can take limsup in n and then limit in ε and

obtain

lim
ε

lim sup
n

1

β ′n2
log E

(n)
0

[
1μ(n)∈B(μ,ε)e

−n2β ′ ∫ Qddμ(n)] ≤ �(μ) −
∫

QRdμ ,

and thanks to (5.31) and (5.24)

lim
ε

lim sup
n

1

β ′n2
log P

(n)
d (μ(n) ∈ B(μ, ε)) ≤ �(μ) −

∫
QRdμ − B(d) .

By the monotone convergence theorem limR→∞
∫

QRdμ = ∫
Qddμ, which proves (5.29).

If Red = 0, then Qd is lower semicontinuous and bounded, so that the mapping

ν �→ ∫
Qddν is lower semicontinuous and (5.32) still holds with Qd instead of QR and

some r(ε) instead of r1(ε, R). The rest of the argument is the same as above.

The lower bound (5.30). If Id(μ) = ∞, the bound is trivial, so that we can assume

that μ has no atom. To overcome the problem of the singularity at 1, we use a classical
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approximation of μ by a probability vanishing in a neighborhood of 1, i.e.

dμM(ζ ) = 1|1−ζ |≥M−1

μ(|1 − ζ | ≥ M−1)
dμ(ζ ) .

The benefit is that the mapping ν �→ ∫
Qd dν is continuous in a neighborhood of μM.

Choosing M large enough, we ensure that dL (μM, μ) ≤ ε/2 and then, thanks to the triangle

inequality,

B(μ, ε) ⊃ B(μM, ε/2),

which leads to

P
(n)
d (μ(n) ∈ B(μ, ε)) ≥ P

(n)
d (μ(n) ∈ B(μM, ε/2)) .

We come back to (5.31) with μM and ε/2. For ν ∈ B(μM, ε/2), we have
∫

Qddν ≤ ∫
QddμM +

r2(ε, M)) where limε r2(ε, M) = 0. We get

1

β ′n2
log E

(n)
0

[
1μ(n)∈B(μ,ε)e

−n2β ′ ∫ Qd dμ(n)] ≥ 1

β ′n2
P

(n)
0 (μ(n) ∈ B(μM, ε/2)) −

∫
Qd dμM − r2(ε, M).

Again, we take liminf in n and lim in ε and use successively the LDP for d = 0, (5.31) and

(5.24) to obtain

lim
ε

lim sup
n

1

β ′n2
log P

(n)
d (μ(n) ∈ B(μ, ε)) ≥ �(μM) −

∫
Qd dμM − B(d) .

Now, since I (μ) < ∞ and since Qd and � are bounded below, the monotone convergence

theorem yields

lim
M→∞

�(μM) = �(μ), lim
M→∞

∫
Qd dμM =

∫
Qd dμ .

This ends the proof of (5.30).

(3) The uniqueness of the minimizer is a direct consequence of the strict convexity

of I which comes from the strict concavity of �.

We do not give a self-contained proof of the identity of the minimizer, but rather

use a probabilistic argument. On the one hand, in Theorem 5.4 we proved that μ(n)
esd

converges weakly in probability to μd and, on the other hand, the LDP combined with

the uniqueness of the minimizer imply that μ(n)
esd converges weakly in probability to this

minimizer. This completes the proof. �

Proof of Lemma 5.6. We have

Zs,t (n)

Z0,0(n)
= E(det(Id − U )sdet(Id − Ū )t ),
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where the mean is taken under the CJ(n)
0,β distribution. Under this distribution, det(Id − U )

has the same law as the product of independent variables 1 − ᾱk, where αk is νβ(n−k−1)+1

distributed. We get

E(det(Id − U )sdet(Id − Ū )t ) =
n−1∏
j=0

E(1 − ᾱ j)
s(1 − α j))

t .

From (3.3) we get

Zs,t (n)

Z0,0(n)
=

n−1∏
0

(β ′ j + 1)(β ′ j + 1 + s + t )

(β ′ j + 1 + s)(β ′ j + 1 + t )
.

Besides, Lemma 4.4 in [23] gives

Z0,0(n) = (β ′n + 1)

((β ′ + 1))n
. �
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