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0. Introduction

THIS note constitutes a generalization of the Zeeman comparison theorem
for spectral sequences [9]. Zeeman's theorem was based on hypotheses
valid for the homology spectral sequence of a fibration with simply-
connected base space; however, his hypotheses were stated purely alge-
braically and there was no assumption that the spectral sequence was
derived from a filtered chain complex—merely that it was a first quadrant
sequence and the differentials had the usual bidegrees. Thus Zeeman's
version was more general than Moore's earlier comparison theorem [5]; it
was also more general in that isomorphism assumptions were only made
up to certain dimensions (and so only deduced up to certain dimensions).

We generalize Zeeman's theorem in two directions. The most impor-
tant direction is that we cover the situation of a quasi-nilpotent fibration;
this is a fibration

F->E^>B (0.1)

in which all spaces are connected, and TTIB operates nilpotently on HtF,
i"3=0. We say that (0.1) is strongly quasi-nilpotent if it is quasi-nilpotent
and if, in addition, inB is nilpotent.

Among the quasi-nilpotent fibrations we find the nilpotent fibrations
[2]; these are fibrations (0.1) in which all spaces are connected and
7T]E operates nilpotently [3] on 7T(F, i5»l. If E, B are nilpotent spaces
and F is connected then F is nilpotent and (0.1) is a nilpotent fibration,
and also strongly quasi-nilpotent. A special case, then, of a nilpotent
fibration which is also strongly quasi-nilpotent is

X^>X^>K{TTXX, 1) (0.2)

where X is nilpotent and X is the universal cover of X. We obtain a very
general theorem of Whitehead type by applying our comparison
theorem to the homology spectral sequence of (0.2) (see Corollary 3.4);
we remark that this spectral sequence violates not only assumption (iii) of
[9] but also the refinement of (iii) mentioned on p. 58 of [9].

We should mention at this point that our results strengthen those of
Zeeman even when the base is simply-connected—that is, in the case
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Zeeman was considering. For whereas, in Theorem 2 of [9], it was
assumed that, in the map of fibrations

F • £ >B

' r I"
F • £ ' >B'

g induces isomorphisms g*: HtE -* HtE', i =s JV, and h induces isomorph-
isms /t*: HiB —* HtB', i^P, in order to deduce that / induces isomorph-
isms /*: H,F->HiF', i < Q = min(N,F- l ) with /*: HQF->HQF' sur-
jective, we obtain (Theorem 3.2) the same conclusion where we weaken
the hypotheses by only requiring g*: HNE —* HNE' and h#: HPB -*
HPB' to be surjective instead of isomorphic. This improvement is essen-
tial for the deduction of a Whitehead theorem. Similarly, in our versions
of Theorems 1 and 3 of [9]—that is, in Theorems 3.1 and 3.5—we make
hypotheses which only involve surjection in the top dimensions. These
improvements are rendered possible by strengthening the two fundamen-
tal lemmas of [9]—these improvements appear in § 2. We remark, with
regard to Lemma 2.1 (which improves Lemma 3 of [9], insofar as the
latter requires that a: K^*K' be an isomorphism of finitely-filtered
abelian grous), that only the improvement in Lemma 2A(b) is exploited
in this note. That in Lemma 2.1(a) would come into play if we worked in
cohomology rather than homology, as in [6].

The second direction in which we generalize Zeeman's theorem is that
we work modulo an acyclic Serre class C of nilpotent groups [4]. (Of
course, in the original context of Zeeman's theorem this would amount to
working modulo a Serre class of abelian groups in the classical sense [7].)
Thus our assumptions and conclusions are all to be understood modulo C.
We recall here the axioms on a Serre class C of nilpotent groups. Given a
non-empty family C of nilpotent groups, we say that C satisfies (S) if,
for any central extension of nilpotent groups N >-» G —» Q,

N,QeC<$GeC.

We say that C satisfies (I) if

AeC^> A is finitely-generated,

where A is abelian; and that C satisfies (II) if

where the direct sum is taken over any indexing set. We say that C is
acyclic if
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Then C is an acyclic Serre class if it is acyclic, satisfies (S), and satisfies (I)
or (II). Our theorems apply to maps between any strongly quasi-
nilpotent fibrations (0.1) if C is an acyclic Serre class satisfying (IT); and
to maps between strongly quasi-nilpotent fibrations with all spaces having
finitely-generated homology in all dimensions if C is an acyclic Serre class
satisfying (f). It is not hard to show that if (0.1) is a strong quasi-nilpotent
fibration in which F and B have finitely-generated homology in all
dimensions, then E also has finitely-generated homology in all dimen-
sions. Since all the necessary theory of Serre classes of nilpotent groups
was established in [4], there is no difficulty in achieving the desired
generalization of the comparison theorem. We will need certain results on
homology with nilpotent local coefficients and these are obtained in § 1;
the argument, thanks to the results in [4], is no more complicated in the
mod C case than in the absolute case (C = {!}). Corollary 1.4(ji), in the
absolute case, was first noted by Dror.

In § 4 we use Corollary 3.4 to obtain a mod C version of the Blakers-
Massey triad theorem in the nilpotent category, and in an appendix we
discuss the modifications needed in our results if we only assume our
fibration (0.1) to be quasi-nilpotent, that is, we no longer assume TT^B
nilpotent.

We adopt a notation based on that of [9] but avoiding (we hope!) the
more idiosyncratic features of that notation. We regard the Serre class C
as fixed. Then if a: G-* G' is a homomorphism of nilpotent groups (in
particular, of abelian groups) we write iG, y.G, BG to indicate that a is
C-bijective, C-injective, C-surjective respectively; and we cross out the
symbol L, /A, e to deny the assertion it represents. This notation enorm-
ously shortens our formulations; it is also appropriate since many of our
assertions are proved by contradiction.

Unlike the statement of hypotheses in [9], which is purely algebraic, we
state our hypotheses in topological guise in §§ 1 and 3. However, it is
quite obvious that these hypotheses can be rendered purely algebraic by
anybody conscientious enough to undertake the task.

It is a pleasure to acknowledge the value of conversations with Guido
Mislin. In particular, he drew our attention to Quillen's paper [6], in
Lemma 3.8 of which he formulated 'the core of the Zeeman comparison
theorem'. Quillen worked in cohomology and his hypotheses were inap-
propriate to our concern in this paper; nevertheless his formulation
provided the clue as to how to generalize Zeeman's argument.

1. Nilpotent local coefficients

Let X, X' be connected spaces with nilpotent fundamental groups; let
C be an acyclic Serre class of nilpotent groups and suppose either that C
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satisfies (IT) or that C satisfies (I) and X, X' have finitely-generated
homology groups; let /: X—>X' be a map inducing a C-bijection
1T1/: TTIX—*TT1X'\ let A, A' be nilpotent TTIX-, TTiX'-modules, respec-
tively, and let </>: A -» A' be a module-map compatible with v^f. We
prove three propositions relating to this situation.

PROPOSITION 1.1. If iA; iHjX, i<n; and eHnX, then iff((X;A), i<n,
and eHn(X; A).

Recall that IA means that 0: A—* A' is C-bijective; similarly eHnX
means that Hnf: HnX -> HnX' is C-surjective.

Proo/. We argue by induction on c = max (nil^A, nil^A'), where -n =
TTIX, IT' = TTIX'. If c = 1, then the coefficients are trivial modules and the
conclusion easily follows from the universal coefficient theorem in homol-
ogy. For the inductive step, we write F' = T'7TA, r' ' = ri.A', and consider
the commutative diagram, with each vertical arrow C-bijective (Corollary
4.3 of [4]),

A/rc

A' « A'/F'c

and the induced map of homology sequences

••'• —H,+1(X;A/T) -»H,(X;r :) -> H,(X; A) -> H,(X; A/T) •

•*; A'/Tc) -> H,(X'; Tc) -* H^X1; A") -

If i < n, then O] is C-surjective, <&2, <&4 and O5 are C-bijective, all by the
inductive hypothesis, so <J>3 is C-bijective. If i = n, then <J>2, 4>4 are
C-surjective, <J>5 is C-bijective, all by the inductive hypothesis, so <£3 is
C-surjective.

PROPOSITION 1.2. 1/iH0(X; A), eH,(X; A), eH2X, then iA.

Proo/. We prove by induction on i that i(A/F'); the result will then
follow by taking i sufficiently large. Now H0{X; A) = A/F2 = Am so we
have i(A/F2). If i(A/F"), i>2 , consider the evident diagram

H,(X;A) -»H,(X;A/r ') ^Ho(X;F') -> H0(X; A) ^ H0(X; A/F')

H,(X'; A1) -» H,(X'; A'/F'') -> H0(X'; F " ) ^ H0(X'; A") -» H0(X'; A'/F")
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Now 4>i is C-surjective and <t>4 is C-bijective by hypothesis. Since ITT,X
we have iHiX (Theorem 3.4 of [4]) so that, given eH2X and the
inductive hypothesis i(A/F') we infer from Proposition 1.1 that <J>2 and <J>5

are C-bijective. It follows that 4>3 is C-bijective. But H0(X; r ') = r'7rl+1

so that i(r'/r i+1). We now conclude that i(A/ri+1) and the inductive step
is complete.

PROPOSITION 1.3. If eH0{X; A) then eA.

Proof. We first factor <f>2: A/r2-+ A'IT'2 as

Here we construct T2
VA' by regarding A' as a ir-module via Trxf. Since

ITTIX we have LH^X, SO that (i is a C-bijection by Proposition 1.1. Thus,
since <f>2 is C-surjective, so is a, and we must deduce that <f> is C-
surjective. This argument allows us, in proving Proposition 1.3, to assume
that 77 = 7J-' and that TTI/ is the identity.

We now exploit the commutative diagram, with ITT the augmentation
ideal of TT,

rk/rk+1

where the horizontal arrow is given by [£]® [a] >-» [fa], f e (/TT)11"1, a G A.
We note that ( / ^ " " ' / ( ^ ^ ( I i r ) * " 1 ® . . Z and that, if HXX is finitely-
generated, so is TTIX and hence so is (/TT)1'"1 as ir-module. Thus on either
hypothesis on the class C, we may infer that, <f>2 being C-surjective, so is
l®</>2 and hence also </>j!+i, fc^2. Thus by the 5-lemma we may prove,
by induction on (j-k), that tf: Tk/r' -* V'/T'1 is C-surjective, 2 « k < / .
Setting fc = 2 and taking /' sufficiently large we infer that <p2: r 2 - » F 2 is
C-surjective. Recourse to the diagram

T2 . • A AIT2

A'—- A'/r2

finally shows that <f> is C-surjective.
We close this section by giving the explicit forms of these three

propositions when X, X' are Eilenberg-MacLane spaces.

COROLLARY 1.4. // y: v^nr' is a C-bijection; A, A' nilpotent TT-,
•n'-modules, respectively; (f>: A^> A' a module map compatible with y,
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then

(i) if iA, then IH,(TT;A), i5=Q;
(ii) if iH0(ir; A), eHi(-7r;A), then LA;
(Hi) if eHoitr; A), ffon eA.

Proof. It is only necessary to observe (Theorem 3.4 of [4]) that if
y: TT—• 77' is C-bijective, so is Hty. H,TT -*• H(7r'', i ^O .

2. The Zeeman lemmas
In this section we improve the crucial Lemma 3 and 4 of [9] in order

to be able to prove a strengthened form of the comparison theorem. We
emphasize that, in this section, we are not concerned with strengthening
the comparison theorem in order to handle quasi-nilpotent fibrations, but
in order to be able to weaken the assumptions of Theorem 2 and 3 of [9],
even in the case of simply-connected bases. This weakening of the
assumptions is already necessary in order to be able to obtain the
Whitehead theorem as a consequence of the comparison theorem. We
will also work modulo an acyclic Serre class C instead of working
absolutely, but this presents no additional difficulty.

Let a: A —> A' be a homomorphism of abelian groups. Provided that it
is evident that we are referring to a, we will, as in Section 1, write IA,
IxA, eA to mean that a is C-bijective, C-injective, C-surjective. By
crossing out the symbol t, fi, e we will deny the truth of the assertion
conveyed by the symbol.

Now let a: K —* K' be a homomorphism of finitely-filtered abelian
groups. Let us write Fk for the kth term of either filtration. Then the
following lemma improves Lemma 3 of [9].

LEMMA 2.1. (a) If fiK and ilFJFk-i, then tFJF^x for some j < k.
(b) If eK and /FJF^u then {FJF^ for some k>j.

Proof. We will be content to prove (b). We may assume, without loss of
generality, that FNK = K, FNK' = K'. Let k be the largest integer such
that 4F\JFy-\. Then k 5*/. Also it is easy to see by downward induction on
/ and the 5-lemma that eF,, k=e/=sN. Thus eFk, whence eFJFk^i. It
follows that k^j, so that k>j, and that fiFJFk^.

To explain the second lemma, we need notation. Let us consider the
first quadrant spectral sequence E1^ r>2, with deg a" = (-r, r- 1) and let
us set (see [9])

(p,q>= 0
P'*=P

(2.1)
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Then if we consider Ep,n-p, 2 ^ p « n — 1, we see that it is filtered by the
subgroups, expressed by the customary abuse of language as

0 s i m d 2 £ i m d 3 £ ••• c im d""pcim d"+1"p

S ker dp c • • • c ker d3c ker d 2 c E2 „_,„

and the associated graded group is given by

+ [n +1 , n +1, p] + [n, p,«] + [«, p, 0]+ • • • +[n, p, p - 2 ] . (2.2)

If p = 0, 1 or n there is a simpler expression for the associated graded
object; namely, if p = 0, 1, then we stop (2.2) at [n, p, °°] and, if p = n, we
start (2.2) at [n, p, °°]. (We could simply adopt the convention that
[n, p, s] = 0 if p = s + 1 or if p = 0, 1 and then (2.2) holds for 0 =s p =£ n.)

We write i'(p, q) to mean that iEpv if p'<q, q'=Sq and eE2^ if q'=sq;
and prove, improving Lemma 4 of [9],

LEMMA 2.2. If i'(p, n - 1 - s) then i[n, p, s].

Proo/. Suppose /[n, p, s]. Since eEp,n-p, it follows from Lemma 2.1(b)
and (2.2) that pi[n, p, Si] for some s<Si=sp-2. Since lE2,,,,-!-,, it follows
from Lemma 2.1(a) that i[n,pu st] for some S\ + 2^p\<p. Thus, iterat-
ing this argument, we find sequences

S < Si < S2 < . . . , p > Pi > p2 > • • •

with rf[n,pu Sj]. But this is absurd since we require S( + 2«p(.
The hypothesis f£[n, p, s] leads similarly to a contradiction.

3. The comparison theorem for maps of fibre spaces

We consider a map of fibrations, with all spaces connected,

F • F

! I
• E' (3.1)

B • B '

where it is assumed that TTXB, TTIB' are nilpotent and operate nilpotently
on HF, HF respectively. We take an arbitrary acyclic Serre class C and
we assume either that C satisfies (II) or that C satisfies (I) and the
homology groups of F, F', B, B' are finitely-generated. We prove first

THEOREM 3.1. If iHqF, q<Q, BHQF, and tHpB, p<P, eHPB, P > 2 ,
then iHnE, n < N = min (P, Q), eHNE.



440 PETER HILTON AND JOSEPH ROITBERG

Proof. The hypotheses immediately imply (Theorem 3.4 of [4]) that
ITTIB. It follows from Proposition 1.1 that lEJL, for p + q < N and eE%, for
p + q = N. It is then plain that we may pass through the spectral sequence
to obtain

iE"n for p + q<N, eE^ for p + q = N

from which the theorem follows immediately.
We next prove

THEOREM 3.2. // iHnE, n<N, eHNE; and iHpB, p<P, eHPB, P > 2 ,
then i,HqF, q<Q = m\n{N,P- 1), EHQF.

We prove this as a consequence of the following more technical
proposition.

PROPOSITION 3.3. IfiHnE, n<N, eHNE; and iHpB, p<P, eHPB, Ps=2;
and if iHqF, q<M, then

ifM<Q,iE2
0M and eE\M

ifM=Q,eE2
0M,

where Q = min (N, P - 1).

Deduction of Theorem 3.2 from Proposition 3.3.
Given the hypotheses of Theorem 3.2, then it follows that ITT\B and

that the hypotheses of Proposition 3.3 are certainly valid if M = l . If
O > 1 we infer from Proposition 3.3 that 1E01 and e£n. But eH2B by
hypothesis so that, by Proposition 1.2, iHtF. Similarly if 0 = 1 we infer
from Proposition 3.3 that e£oi and hence, by Proposition 1.3, that eH^F.
If Q > 1 we may then take M = 2. If Q > 2 we infer, as above, that iH2F
and if 0 = 2 we infer that eH2F. We continue in this way, finally
obtaining iHqF, q<Q, and EHQF-

Proof of Proposition 3.3. From Proposition 1.1 we infer that L'(P, M-
1). We first suppose M=s Q and prove eElM. For, if /E%M, then, by (2.2),
either (i) t([M, 0, °°] or (») / [ M + l , p , 0] for some 2=sp==£M+l.

(i) If £[M, 0, °°] it follows from Lemma 2A(b), since eHME, that
f£[M, pi,°°] for some 0<pi<M. But pi^Af, since [M, Af, °°] is a sub-
group of HMB and iHMB. Thus 0 < p i < M . Since iEp1>M_Pl, it follows
from Lemma 2.1(a) tha t / [M+1, p2, p,] for some p1 + 2 « p 2 « M + l . But
i'(P2> M-p i ) , contradicting Lemma 2.2.

(ii) If J[M+l,p,0] for some 2=Sp=£M+l, then, since e£p,M+1_p, it
follows from Lemma 2.1(fe) that j£[M + 1, p, s] for some l=£ss£p-2. But
i'(p,M-s), contradicting Lemma 2.2.

We next prove that, if M< Q, then /IEOM- For, if f£ElM then, by (2.2),
either (iii) /rf[M,0,oo] or (iu) ^ [ M + l , p , 0] for some 2=£p=sM+l.
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(iii) Since [M, 0, °°] is a subgroup of HME and iHME, it follows that
fi[M, 0,«].

(iv) If /£[M+l,p, 0] for some 2*£p=£jVf+l, then, since i£^M+1_p, it
follows from Lemma 2.1(a) that /T_M+l,p,°°] or £[M + 2,pup] for
some p + 2«pi=£M+2. The second possibility contradicts t ' ( p i , M + l -
p). Thus / [ M + l , p , °°] whence, since eHM+iE, it follows from Lemma
2.1(b) that f£[M + 1, pu °°] for some p =£ pi =s M+1 . This possibility, how-
ever, is excluded exactly as in the argument (/).

Finally we prove that, if M< Q, then eE2
1M. For, if t(E2

iM then, by (2.2),
either (v) d[M+\, 1,°°] or (vi) / [M + 2,p, 1], for some 3=sp=sM + 2.

(v) If / [M+ 1,1, °o], it follows from Lemma 2.1(b), since eHM+xE, that
^[M+l,p,oo] for some l < p s s M + l . We now argue as in (i).

(vi) If J[M+2, p, 1] for some 3«p=sM+2 then, since e£p-M+2-p, it
follows from Lemma 2.1(6) that f£[M+2, p, s] for some K s = £ p - 2 . But
i'(p, M + l - s ) , contradicting Lemma 2.2.

COROLLARY 3.4. Let f: X -*• X' be a map of nilpotent spaces and let C
be an acyclic Serre class. Assume either that C satisfies (II) or that C
satisfies (/) and X, X' are of finite type. Then, if n^2, the following
statements are equivalent,

(i) iHtX, i < n, and eHnX;
(ii) LiTtX, i < n, and eirnX;

(iii) LTTIX, iHiX, i<n and eHnX.

Proof. The equivalence of (ii) and (iii) is classical. To establish the
equivalence of (i) and (iii) we first observe that iH\X, eH2X together
imply ITTIX. We now consider the nilpotent fibrations

• X' (3.2)

We next note that if X, X' are of finite type then the homology groups of
all spaces in (3.2) are finitely generated. Thus we may, on the hypothesis
(i) or (iii), apply Theorems 3.1, 3.2 with P = °°. Then the implication
(Hi) =̂  (j) follows from Theorem 3.1 and the implication (i) => (iii) follows
from Theorem 3.2.

Remark. The equivalence of (i) and (ii), in the absolute case C = {1}, is
known to Dror and has also been disovered independently by Toomer
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To complete the comparison theorem we revert to (3.1) and prove

THEOREM 3.5. // iHnE, n<N, eHNE; and tH^F, q<Q, EHQF; and
nrxB, then iHpB, p<P=min (N, Q + l), eHPB.

Proof. We assume that iHpB, p<M, eHMB and show that iHMB,
EHM+\B, provided that M<P. This will prove the theorem since cer-
tainly we may begin with Af=l. From our assumption we infer that
i'<M, Q -1) . We first prove that LIHMB. If t£E2

M0, then either (i)
t£[M, M, o°] or (ii) f£[M, M, p] for some 0 =£ p =£ M - 2.

(i) If f£[M, M, °°] then, since iHME, /{M, pi, °°] for some 0^pi<M.
But p\ / 0 since [M, 0, °°] is a quotient of HMF and eHMF. Thus 0< pi <
M. Now iEpliM-Pl so pC[M, pi, s] for some 0=£s«pi-2 . But this con-
tradicts i(pi, M - 1 - s ) .

(ii) If Ĉ[M, Af, p] then, since /E^M-j.p, it follows that /[M, p2, p] for
some p + 2sSp2<M. But this contradicts i(p2, M - l - p ) .

We next prove that eHM+lB. If /EM+I,O, then either (Hi) J[M + 1, M +
l,oo] or (iv) / [ M + l , M + l , p ] for some 0=sp=sM-l.

(iii) Since eHM+\E it follows that e[M+l, m + l,°°].
(iv) If 4 M + l , M + l ,p] then, since t£^,M-P if P>0 and EEOM (for

EQM is a quotient of HMF and sHMF), it follows that ^[M, p, <»] or
pC[M, p, s] for some 0 « s « p - 2 . The second possibility is excluded since
t(p, M—l-s). The first possibility implies, since iHME, that d[M, pi,°°]
for some 0 « p i < p and is excluded exactly as in (i).

4. A Blakers-Massey triad theorem in nilpotent C-theory
In the authors' earlier paper [4], use was made of the implication

(ii) =£> (i) in Corollary 3.4 to study torsion phenomena in nilpotent spaces.
However, in classical homotopy theory, it is often the converse implica-
tion (i) >̂ (ii) which plays a crucial role. In this section, we use this more
delicate half of our extended Whitehead theorem to similarly extend the
Blakers-Massey triad theorem.

A convenient source for the mod C Btakers-Massey triad theorem in
the classical setting is ([1]; Paper 7) and v/e shall be content to show how
to modify the proof contained therein so as to obtain the following more
general statement:

THEOREM 4.4. Suppose that (X;A,B) is a CW-triad, that each of the
spaces X, A, B, C = AHB is (connected) nilpotent and that the inclusion
C g X induces a surjection of fundamental groups. Suppose further that
7rr(X, A)eS, r<q, <j>3 and TTT(X, B)eS, r<p, p3=3, where S is an
acyclic Serre class; either S satisfies (II) or S satisfies (I) and X, A, B, C
are of finite type. Then the triad homotopy groups irr(X; A, B)e S, r<
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p + q~ 1 and the generalized Whitehead product TTP(A, C)® irq(B, C)-»
irp+q-i(X; A, B) is a S-bijection.

Proof. We shall, as indicated in the preamble, restrict ourselves to
commenting on the various places in the proof given in [1] where
modification is necessary.

In Step 1, ([1]; p. 109), the triad (X; A, B) is replaced by a triad
(X^A^B,) ; here X t = (X, basepoint)acul-O) is the (contractible) path
space, A1 = (X,A)(t0-1]-0), B, = (X, B)a°'110) and C, = (X, C)"0 '1 1 0^ A,n
Bx. Clearly, the relative and triad homotopy groups of {XX\A\,B^ are
the 'same' as those of (X; A, B), and (Xt; Au Bj) is a CW-triad by the
result of Milnor. It is only necessary to check that each of the spaces X,,
At, Bu Ci is (connected) nilpotent. For At, for example, we have the
fibration (up to homotopy)

A ^ A->X,

where A -» X is the inclusion. By assumption, TT^C) —** TTI(X), hence
also 7Ti(A)—> TTI(X), so that Aj is connected. It then follows from the
fact that A is nilpotent, using [2] (or [3]) that A, is also nilpotent.

In Step 2, ([1]; pp. 109, 110), the triad {XuAuBt) is replaced by a
triad (X2; A2, B2); here X2 = X1xXi, A2 = AlxBu B2 = diagonal in X2

and C2 = A 2 n B 2 is homeomorphic to Cf Again, the relative and triad
homotopy groups of (X2; A2, B2) are the 'same' as those of (Xjj A b BJ,
but to make (X2; A2, B2) a CW-triad it may be necessary to retopologize.
Plainly, the spaces X2, A2, B2, C2 are nilpotent since Xi, A,, Bu Ct are
nilpotent.

Finally, in Step 3, ([1]; p. I l l , 112), we use Corollary 3.4 to infer from
the assertion Hr(A2, C2)eS, r<p + q-2, that also i7r(A2, C2)eS, r<
p + q — 2. In fact, the hypotheses p2=3, q > 3 , needed elsewhere in the
proof, imply a fortiori that p + q-2>2, thus insuring fulfillment of the
dimensionality criterion in Corollary 3.4. (The hypotheses p ^ 3 , q^3 are
needed only to establish the last clause of the theorem, involving the
generalized Whitehead product. The 'vanishing' assertion nr(X; A, B)e
S, r<p + q-l, only requires p + q5=5.) Furthermore, it is evident that
one deduces the finite type of X2, A2, B2, C2 from that of X, A, B, C so
that Corollary 3.4 ((i) =>(»)) may indeed be applied.

The rest of the argument in [1] is unchanged.

5. Appendix

So far as the theorems of § 3 are concerned, we only needed the
assumption that the ba,ses of our fibrations have nilpotent fundamental
groups, in order to be able to apply nilpotent C-theory [4]. If we are
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prepared to assume that, in the map of fibrations (3.1), the induced map
TTIB -* TTIB' is an isomorphism, then we may dispense with the condition
that TTIB, TTXB' be nilpotent. In particular, in the absolute case (C = {1})
we will have no need of this hypothesis.

The precise modifications needed in our statements in Sections 1 and 3
are as follows; note that we now only need talk of a Serre class of abelian
groups.

Propositions 1.1, 1.2, 1.3. We no longer assume TJ^X, TTIX' nilpotent,
but now assume TTI/ to be an isomorphism: the propositions then read
exactly as stated, except that we must assume -nxX finitely-generated if C
satisfies (I).

Corollary 1.4. We modify the hypothesis by assuming that y is an
isomorphism with v, IT' arbitrary groups; we must further assume that v
and HITT are finitely-generated if C satisfies (I). The conclusion of the
corollary now follows.

Theorems 3.1, 3.2, 3.5. We no longer assume w^B, Tt\B' nilpotent, but
assume TTIB -* TTIB' to be an isomorphism; the theorems then read
exactly as stated. Note, however, that, with regard to Theorems 3.1, 3.2,
there is a substantial price to be paid for dropping the requirement that
77iB, TT\B' be nilpotent. For, under that hypothesis, we could actually
infer, from the rest of the data of the theorems, that mB —> ir^B' was a
C-bijection.
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