ON THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF SOME NONSELFADJOINT PROBLEMS

PETER HESS

1. Introduction and statement of the results

In [4] we studied the question of the location of the spectrum of the linear elliptic eigenvalue problem

(1)
$$\mathscr{L}u = \lambda mu \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega,$$

where $m \in L^{\infty}(\Omega)$ is a real-valued (possibly indefinite) weight function, $m \not\equiv 0$. We proved in particular that if the top-order coefficients of \mathscr{L} are real-valued and smooth, and if $m \geqslant 0$ in the bounded domain Ω , then (1) has a discrete spectrum and the eigenvalues condense along the positive axis: for arbitrary ε with $0 < \varepsilon < \pi/2$ all the eigenvalues λ , except possibly a finite number of them, lie in the sector $G_{\varepsilon} := \{\zeta \in \mathbb{C} : |\arg \zeta| < \varepsilon\}$. The generalized eigenfunctions are relatively complete, in a sense made precise there. Here we consider the question of the asymptotic distribution of the eigenvalues. For simplicity we assume \mathscr{L} to be of second order with real-valued coefficient functions; it is however straightforward to extend the results to higher-order problems and/or complex-valued lower order coefficients.

Let $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ be a bounded domain having smooth boundary $\partial \Omega$, and let \mathscr{L} :

$$\mathcal{L}u = -\sum_{j,k-1}^{N} a_{jk} \frac{\partial^{2} u}{\partial x_{j} \partial x_{k}} + \sum_{k-1}^{N} a_{k} \frac{\partial u}{\partial x_{k}} + a_{0} u$$

be a strongly uniformly elliptic differential expression with real-valued coefficient functions $a_{jk} = a_{kj} \in C^1(\overline{\Omega})$, a_k , $a_0 \in L^{\infty}(\Omega)$, $a_0 \ge 0$. Further, let $m \in L^{\infty}(\Omega)$ be a weight function with $m \ge 0$, $m \ne 0$. Setting $\Omega_+ := \{x \in \Omega : m(x) > 0\}$, we assume that meas $(\Omega_+ \setminus \inf \Omega_+) = 0$ (which holds, for example, if m is continuous). For $t \ge 0$ let n(t) denote the number of eigenvalues λ of problem (1) with $\operatorname{Re} \lambda \le t$.

THEOREM 1. $n(t) \sim ct^{\frac{1}{2}N}$ as $t \to +\infty$, where $c = \int_{\Omega} m(x)^{\frac{1}{2}N} \mu_{\mathscr{L}_0}(x) dx$ and

$$\mu_{\mathscr{L}_0}(x) := (2\pi)^{-N} \int_{\{\xi \in \mathbb{R}^N : \sum a_{i,k}(x) \xi_i \xi_k < 1\}} d\xi.$$

This result is well-known in the standard situation m = 1 (e.g. Agmon [1]). In the present generality it is obtained by considering \mathcal{L} as a lower order perturbation of the formally selfadjoint differential expression

$$\mathscr{L}_0 := -\sum_{j=k-1}^N \frac{\partial}{\partial x_j} \left(a_{jk} \frac{\partial}{\partial x_k} \right),$$

182 PETER HESS

applying the results of e.g. Pleijel [6] or Fleckinger and Lapidus [2] on the asymptotic distribution of the eigenvalues of the variational problem

$$\mathscr{L}_0 u = \lambda m u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$

and using an abstract perturbation result which should be of independent interest.

Let \mathscr{H} be an (infinite-dimensional) separable Hilbert space over \mathbb{C} , and for $0 let <math>C_p$ denote the two-sided ideal in $\mathscr{L}(\mathscr{H})$ consisting of the (compact) operators A for which the eigenvalues of $(A^*A)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity, form an l_p -sequence. We say that $\lambda \in \mathbb{C}$ is a characteristic value of A if there is an $x \ne 0$ such that $x = \lambda Ax$; of course $\lambda \ne 0$, and x is an eigenfunction of A corresponding to the eigenvalue λ^{-1} . We denote the range and null space of A by R(A) and N(A) respectively.

THEOREM 2. Let A := H(I+S), where $H \in \mathcal{L}(\mathcal{H})$ is compact, selfadjoint, nonnegative (that is, $(Hx, x) \ge 0 \ \forall x \in \mathcal{H}$) and belongs to the class C_p for some $p < \infty$, while $S \in \mathcal{L}(\mathcal{H})$ is compact and such that (I+S) is invertible.

Let \mathcal{H} be orthogonally decomposed as $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $\mathcal{H}_1 = \overline{R(H)}$ and $\mathcal{H}_2 = \mathcal{N}(\mathcal{H})$, and suppose that

(*)
$$\mathcal{H}_1 \cap (I+S)^{-1} \mathcal{H}_2 = \{0\}.$$

If there exists a nondecreasing function ϕ on \mathbb{R}^+ with $\phi(t) \to +\infty$ as $t \to +\infty$, satisfying

(2)
$$\frac{\phi(s)}{\phi(t)} \le \left(\frac{s}{t}\right)^{\gamma}$$
 for all sufficiently large $t < s$ and some constant γ with $0 < \gamma < p$,

and such that $\lim_{t\to+\infty} n(t, H)/\phi(t) = 1$, then

$$\lim_{t \to +\infty} n(t, A)/n(t, H) = 1.$$

Here n(t, A) and n(t, H) denote the distribution functions of the characteristic values of A and H, respectively (or since by [4, Theorem 1] almost all characteristic values of A lie in the sector G_{ε} , n(t, A) is the number of characteristic values λ of A with $\text{Re } \lambda \leq t$). Theorem 2 extends an assertion of Keldyš [5] (compare [3, Theorem 11.1]) to the case where H may have nontrivial nullspace, and relies on the results of [4]. Condition (2) is trivially satisfied for $\phi(t) = ct^{\gamma}$ (c > 0).

- REMARKS. 1. It is not clear whether Theorems 1 and 2 can also be obtained by a limiting procedure, looking first at definite problems, since in the nonselfadjoint case there are no monotonicity arguments available (compare with [2, proof of Theorem 3.1]).
- 2. The results on the variational eigenvalue problem (1_0) in [2, 6], as well as the perturbation result in [4], hold for weight functions $m \in L^{\infty}(\Omega)$ which may change sign. We have, however, not been able to prove that the spectrum of (1) and (1_0) still have the same asymptotic distribution in the case when m is indefinite rather than semidefinite.
- 3. There are various recent results on perturbations of (abstract) selfadjoint operators preserving the asymptotic properties of the spectrum (for example, Ramm [7]). These results do not apply here since the perturbed mappings are not normal.

2. Proofs

Once Theorem 2 is proved, the assertion of Theorem 1 follows immediately along the lines of Hess [4, proof of Theorem 2], using the results of [2, 6]. We therefore do not reproduce it.

The proof of Theorem 2 parallels that of [3, Theorem 11.1]; we give only the details of those steps which differ. We start with the following auxiliary result which is a variant of the Lemma in [4]:

LEMMA 1. Let $H \in \mathcal{L}(\mathcal{H})$ be compact, selfadjoint and nonnegative, and let $T \in \mathcal{L}(\mathcal{H})$ be compact. Decompose $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $\mathcal{H}_1 = \overline{R(H)}$, $\mathcal{H}_2 = N(H)$. For $0 < \varepsilon < \pi$ let $F_\varepsilon := \{\zeta \in \mathbb{C} : \varepsilon \leq \arg \zeta \leq 2\pi - \varepsilon \}$. Then

$$\lim_{\substack{\lambda \in F_{\mathcal{E}} \\ |\lambda| \to \infty}} \| T(I - \lambda H)^{-1} |_{\mathscr{H}_1} \| = 0.$$

To $S \in \mathcal{L}(\mathcal{H})$ as given in Theorem 2, we associate the (compact) operator T such that $I - T = (I + S)^{-1}$. Fix ε with $0 < \varepsilon < \pi$. For $\lambda \in F_{\varepsilon}$ the factorization

$$I - \lambda A = (I - T(I - \lambda H)^{-1})(I - \lambda H)(I + S)$$

holds. The following assertions are proved in [4]:

- (i) $I \lambda A$ is injective for $\lambda \in F_{\varepsilon, R} := \{ \zeta \in F_{\varepsilon} : |\zeta| \ge R \}$, provided R is sufficiently large;
- (ii) $(I-T(I-\lambda H)^{-1})^{-1}$ is bounded on $F_{e,R}$;
- (iii) \mathcal{H}_1 is invariant under H and A and equals the closed linear hull of all the generalized eigenvectors of A belonging to characteristic values λ ($\neq \infty$).

For $\lambda \in F_{c,R}$ let $A(\lambda) := \lambda^{-1}((I - \lambda A)^{-1} - I) = A(I - \lambda A)^{-1}$ denote the Fredholm resolvent. As in [3, p. 279] we have

$$A(\lambda) - H(\lambda) = A(\lambda) T(I - \lambda H)^{-1}$$

and thus

$$A(\lambda) = H(\lambda) (I + C(\lambda)),$$

where

$$C(\lambda) = (I - T(I - \lambda H)^{-1})^{-1} - I.$$

Lemma 2.
$$\|C(\lambda)\|_{\mathcal{H}_1} \| \to 0 \text{ as } \lambda \in F_{\varepsilon}, |\lambda| \to \infty.$$

Proof. Contrary to the assertion, we assume there exist sequences $(x_n) \subset \mathcal{H}_1$ with $||x_n|| = 1$, $(\lambda_n) \subset F_{\varepsilon}$ with $||\lambda_n|| \to \infty$, and $(f_n) \subset \mathcal{H}$ with $0 < c \le ||f_n||$, such that $C(\lambda_n) x_n = f_n$. Since, by (ii), $(I - T(I - \lambda_n H)^{-1})^{-1}$ is bounded on $F_{\varepsilon, R}$, we infer that $c \le ||f_n|| \le C$ for some C. Now

$$x_n = (I - T(I - \lambda_n H)^{-1})(x_n + f_n)$$

and, decomposing $v \in \mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ as $v = v^1 + v^2$,

(3)
$$0 = f_n - T(I - \lambda_n H)^{-1} f_n^2 - T(I - \lambda_n H)^{-1} (x_n + f_n^1).$$

The last term in (3) tends to 0 by Lemma 1. Since $T(I-\lambda_n H)^{-1}f_n^2=Tf_n^2$, we thus have

$$f_n^1 + (I - T) f_n^2 \to 0 \quad (n \to \infty).$$

184 PETER HESS

As T is compact, we conclude that (for a subsequence) $f_n^1 \to f^1$, $f_n^2 \to f^2$, with $f = f^1 + f^2 \neq 0$ and $f^1 + (I - T)f^2 = 0$. This contradicts hypothesis (*).

Now we note that the trace sp $(A(\lambda)^p) = \text{sp}(A(\lambda)^p|_{\mathcal{H}_1})$. Thus all the remaining steps of the proof of [3, Theorem 11.1, pp. 278–283] carry through unchanged. This proves Theorem 2.

References

- S. AGMON, Lectures on elliptic boundary value problems, Van Nostrand Math. Studies 2 (Van Nostrand, 1965).
- 2. J. FLECKINGER and M. L. LAPIDUS, 'Eigenvalues of elliptic boundary value problems with an indefinite weight function', preprint.
- 3. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, AMS Translations of Math. Monographs 18 (Amer. Math. Soc., Providence, R.I., 1969).
- P. Hess, 'On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions', Math. Ann. 270 (1985) 467-475.
- M. V. Keldys, 'On the characteristic values and characteristic functions of certain classes of nonselfadjoint equations' (Russian), Dokl. Akad. Nauk SSSR 77 (1951) 11-14.
- Å. Pleijel, 'Sur la distribution des valeurs propres de problèmes régis par l'equation Δu + λk(x, y) u = 0', Arkiv för Mat. Astr. och Fysik 29 B (1942) 1-8.
- 7. A. G. RAMM 'Perturbations preserving asymptotic of spectrum', J. Math. Anal. Appl. 76 (1980) 10-17.

Mathematisches Institut Universität Zurich Switzerland