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ABSTRACT

Motivation: Post-translational modifications (PTMs) are important

steps in the maturation of proteins. Several models exist to predict

specific PTMs, from manually detected patterns to machine learning

methods. On one hand, the manual detection of patterns does not

provide the most efficient classifiers and requires an important work-

load, and on the other hand, models built by machine learning meth-

ods are hard to interpret and do not increase biological knowledge.

Therefore, we developed a novel method based on patterns discovery

and decision trees to predict PTMs. The proposed algorithm builds a

decision tree, by coupling the C4.5 algorithm with genetic algorithms,

producing high-performance white box classifiers. Our method was

tested on the initiator methionine cleavage (IMC) and N�-terminal

acetylation (N-Ac), two of the most common PTMs.

Results: The resulting classifiers perform well when compared with

existing models. On a set of eukaryotic proteins, they display a cross-

validated Matthews correlation coefficient of 0.83 (IMC) and 0.65

(N-Ac). When used to predict potential substrates of N-terminal

acetyltransferaseB and N-terminal acetyltransferaseC, our classifiers

display better performance than the state of the art. Moreover, we

present an analysis of the model predicting IMC for Homo sapiens

proteins and demonstrate that we are able to extract experimentally

known facts without prior knowledge. Those results validate the fact

that our method produces white box models.

Availability and implementation: Predictors for IMC and N-Ac and all

datasets are freely available at http://terminus.unige.ch/.

Contact: jean-luc.falcone@unige.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Post-translational modifications (PTMs) are modifications

occurring during protein maturation or biosynthesis. These

modifications can consist of attachments of functional groups

(e.g. methylation), changes of the chemical nature (e.g. deamida-
tion), cleavage of one or more residues (e.g. initiator methionine

cleavage) or structural changes (e.g. disulfide bonds). The PTMs

broaden the diversity of functional groups of the 20 standard

amino acids, thus producing diverse forms of proteins that

cannot be derived only from its genes (Schwartz et al., 2009;

Walsh, 2006). Because the mature form of a protein cannot be

inferred only by genes, the knowledge of a protein’s PTMs helps

to understand the roles, the possible interactions or the activity
of a protein.
Numerous predictors for PTMs have been developed, based

on different machine learning models. For example, artificial

neural networks have been widely used to predict various
PTMs, like phosphorylation (Blom et al., 1999), N-terminal myr-

istoylation (Bologna et al., 2004) and C-mannosylation (Julenius,

2007). More recently, Random Forest method has been succes-
fully used to predict PTM sites, for ubiquitination (Radivojac

et al., 2010), �-carboxylation (Zhang et al., 2012) and glycosyla-
tion sites (Chuang et al., 2012). Although some of these pre-

dictors provide good prediction capabilities for the problem

they tackle, they often are black boxes. Their mathematical com-
plexity makes them hard to interpret in terms of biological mean-

ing (Berthold et al., 2010). Unfortunately, this restricts the
application of these models for biological problems, which, in

our opinion, require a model providing explanations for the

prediction.
The purpose of this article is to introduce a new method to

automatically build a PTM predictor, using only the information
contained in the proteins primary structure and which can be

interpreted by biologists. We focused on two PTMs: first the
N�-terminal acetylation (N�-Ac), a PTM involving the transfer

of an acetyl group to the N-terminal residue �-amino group. It is

one of the most common covalent irreversible modifications and
occurs in �50% of yeast proteins and �80% of human proteins

(Polevoda and Sherman, 2002, 2003). In eukaryotes, N�-Ac is

catalyzed by N-terminal acetyltransferases (Nats) (Gautschi
et al., 2003; Pestana and Pitot, 1975; Polevoda et al., 2008). Six

Nats have been identified (NatA–NatF), each acetylating specific
N-terminal substrates (Polevoda and Sherman, 2003; Polevoda

et al., 2009).
Because N�-Ac can occur on proteins having their initiator

methionine cleaved or not (Polevoda et al., 2009), it is also

required to know if the initiator methionine cleavage (IMC)
occurs to produce an accurate predictor for N�-Ac. Hence, the

second PTM studied is the IMC, which is catalyzed by methio-
nine aminopeptidases (MetAPs; Kendall and Bradshaw, 1992).

As pointed by Eisenhaber and Eisenhaber (2010), it is unlikely
to discover a unique pattern describing the requirement of all

enzymes because there is no biological sense to build an acetyl-

ation predictor based on an ‘average’ motif, as no enzyme rec-
ognizes this ‘average’ motif. Our main idea is to combine several

discriminant motifs optimized with genetic algorithms (GA).*To whom correspondence should be addressed.
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These motifs are combined using a binary decision tree (DT).

Our choice is mainly motivated by the need for white boxmodels,

that is, to say classifiers that are interpretable by biologists to

help identifying the required biological features.
The method described in this article is tested by evaluating its

capacity to predict the IMC and the N�-Ac of eukaryotic pro-

teins. The choice of predicting those PTMs has been made be-

cause several methods to predict N�-Ac have been published,

which allow us to test the efficiency of our method by compari-

son. The published methods range from black boxmachine learn-

ing methods (ML), e.g. support vector machines (Liu and Lin,

2004) and artificial neural networks (Lars et al., 2005), to manual

pattern detection (‘by eye’). For example, Martinez et al. (2008),

Cai and Lu (2008) and more recently Bienvenut et al. (2012)

predicted PTMs using manually extracted rules based only on

the information provided by the first two or three amino acids in

the sequence, which may be insufficient to predict correctly the

PTMs.

2 METHODS

Our method is based on combinations of biomolecular motif descriptors.

Each descriptor can then be used to compute a similarity score by align-

ing the descriptor with an amino acid sequence (Gonnet and Lisacek,

2002). These scores are then compared with cutoff values to discriminate

sequences into two groups (Bucher et al., 1996). These descriptors are

then combined in a DT, where they correspond to the test nodes. We call

such model a motifs tree.

Dataset. Because our method relies on supervised machine learning, we

need good-quality datasets to train the classifiers. All data used in this

study were extracted from the release 2012_07 of UniProtKB (11 July

2012). (i) N�-Ac dataset. To extract entries from UniProtKB, we build

two queries, one for the N�-acetylated proteins and one for proteins that

do not undergo N�-Ac. Our datasets were based only on experimental

evidence. We select entries in the database according to the following

criteria: each entry must have been reviewed by a UniProtKB curator;

its existence must be experimentally proven and a chromosomic gene

must be linked to the entry. An entry is labeled as N�-acetylated

(N-Ac) if the residue exposed to the Nat is annotated as N-acetyl. The

acetylation must also be experimentally proven. An entry is labeled as

non-N�-acetylated if the exposed N-termial residue is not annotated as

N-acetyl (regardless the confidence) and one reference must state that the

entry has been sequenced at protein level with a method able to detect

eventual acetylation. Proteins with N-terminal residues blocked by an

unidentified modification are discarded. Those criteria are detailed in

Supplementary Information A (see ‘2.1 Criteria used to build the

datasets’). Although it is known that N�-Ac is not always a total modi-

fication, this fact is currently not taken into account in the available

protein databases. Hence, we qualify a protein as acetylated if the

PTM was experimentally observed, regardless of the modification ratio.

The extraction process was repeated for several taxonomic groups.

Table 1 shows the sizes and the PTM ratio of the datasets extracted

from UniProtKB depending on the chosen taxon: Eukaryota, Metazoa

andHomo sapiens. We also stress that the taxon datasets are not mutually

exclusive: 79% of the Eukaryota dataset is composed by Metazoa se-

quences and 65% of the Metazoa dataset is composed by H.sapiens se-

quences. (ii) IMC dataset. There is no specific query to build an IMC

dataset. Our IMC datasets were extracted from the N�-Ac datasets by

checking the presence of the feature of type initiator methionine with the

value removed. The criteria used for the N�-Ac datasets imply experimen-

tal evidences for the IMC too. In the case of the IMC datasets, we have

kept 33 proteins that were filtered out of the N�-Ac dataset because the

method used to sequence the N-terminus was not able to determine

acetylation, while being able to determine the IMC status. The datasets’

composition is detailed in Table 1.

Model. There are several approaches to define the motif descriptors:

regular expression, consensus sequence with degenerated positions, con-

sensus sequence with mismatches, weight matrix, flexible pattern, profile

and so on (Bork and Gibson, 1996; Bucher et al., 1996). We will, in the

context of this study, define a motif as a sequence of elements called here

token. The five categories of tokens we used are presented along with

their similarity measure with an amino acid. The similarity of an amino

acid a with a token t is denoted by �(t,a), and ranges between 0 and 1.

� Any amino acid: this token matches with any amino acid and its

similarity measure is always 1. This token is represented with the

symbol ‘�’.

� Fixed amino acid: which are tokens imposing a match with a single

amino acid. The similarity measure is 1 if and only if the token is

aligned on the amino acid described by the token, otherwise it is 0.

� Inclusion: these tokens describe sets of amino acids. The similarity

measure is 1 if and only if the token is aligned on an amino acid

included in the set, otherwise it is 0. For instance [ACM] is a token

having a similarity measure of 1 with Ala, Cys and Met and 0 with

the other amino acids.

� Exclusion: these tokens are the complement of the previous one. The

token similarity measure is 1 if and only if the token is aligned on an

amino acid not included in the amino acids set described by the

token, otherwise it is 0. For instance :[EPT] has a similarity of 0

with Glu, Pro and Thr and 1 with the other amino acids.

� Physicochemical similarity: which are tokens describing how similar

is an amino acid to a reference amino acid according to a

physicochemical property (the AAindex1 database, Kawashima and

Kanehisa, 2000). Those tokens are represented by the reference

amino acid r, followed by the AAindex1 p (i.e. t¼ {r,p}). For ex-

ample, {S,KYTJ820101} is a token where the amino acids with

a similar hydropathy index (Kyte and Doolittle, 1982) than Ser have

a high similarity score. The similarity is computed as follows:

�ðfr, pg, aÞ ¼ 1� j �pðrÞ � �pðaÞj

where �pðxÞ is the value of the property for x, normalized between 0 and 1.

Although we restricted our choice only to these five types of tokens, to

keep the model as simple as possible, these tokens generate �2� 106

possibilities (as there exist 220 possible sets of amino acids). The previous

definition of tokens allows building a similarity matrix between the 20

amino acids and the tokens. Then to compute a similarity score between a

Table 1. Number of sequences and content of the different datasets ex-

tracted from UniProtKB for the two considered PTMs: the IMC and the

N�-Ac

Taxon Initiator Met cleavage N�-Terminal acetylation

Number of

sequences

Ratio Number of

sequences

Ratio

Eukaryota 2519 0.72 2486 0.64

Metazoa 2004 0.72 1971 0.71

H.sapiens 1322 0.69 1289 0.87

Note: The ‘Ratio’ column indicates the ratio of proteins undergoing the correspond-

ing PTMs.
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motif and a sequence, we use the Needleman–Wunsch algorithm with the

similarity matrix to obtain the score of the best possible global alignment

between a motif and an amino acids sequence.

These motifs are then combined in a DT manner. The need of combin-

ing motifs arises because a single motif, as described above, was not able

to produce an accurate prediction for the N�-Ac prediction. A DT uses

motifs as nodes and class labels as leaves. A sequence ‘moves’ down in the

tree the following way: (i) When a sequence reaches a node, it is aligned

with the node’s motif to get a similarity score. This score is then com-

pared with the node threshold (cutoff values) to select the next branch to

take. (ii) When a sequence reaches a leaf, it is classified as undergoing a

specific PTM or not, depending on the leaf label. This representation is

highly readable: each path in the tree from the root to a given leaf can be

represented as a logical clause in conjunctive normal form.

Building the motifs tree. The algorithm used to build a motifs tree is

similar to C4.5 (Quinlan, 1992). This algorithm recursively adds test

nodes that split the training set. In our case, the tests conducted by the

nodes are based on a motif and its alignment with a sequence. To choose

a motif at each node, the C4.5 algorithm selects the best motif among all

possible motifs, that is to say the one yielding two subsets with the best

class separation. The problem is that with the symbols used to describe

our motifs, there exist �106�n possible motifs of length n. For example,

searching the best motif of length 5 means searching the best motif among

1030 motifs.

Because an exhaustive search for the best possible motif is not feasible,

we cannot use the C4.5 algorithm. Therefore, we relied on GA (Goldberg,

1989) to explore the motif space (i.e. the set of all possible token se-

quences). The idea is that we may not need the best possible motif to

build the motifs tree, but a good approximation of the best motif is

probably enough.

Approximating the best motif. Genetic algorithms generate a solution

to an optimization problem by mimicking Darwinian evolution (repro-

duction, inheritance, mutation and selection) to explore the space of ad-

missible solutions. The idea is to reproduce a survival-of-the-fittest model,

where several solutions of the problem are generated, then modified by

bio-inspired methods and the best ones are selected for the next round of

evolution. In the GA terminology, an admissible solution of the problem

is called an individual, its representation in the GA is called a genome and

its elements, genes. The individuals of the evolution process form the

population. To understand how we used the GA to approximate the

best motif, we need to define what is an individual, what is the initial

population, how the fitness function is computed and which genetic op-

erators are used.

In our setup, an individual is a token sequence of variable length. The

initial population is randomly created by generating n individuals with m

tokens, randomly drawn from the category of token described in the

model section, with m equal to the length of the sequences in the dataset

(six amino acids in this study). The fitness function used is based on the

normalized information gain ratio (Russell and Norvig, 2010) and the

Matthews correlation coefficient (MCC) (Matthews, 1975). The best

threshold is selected among all different scores evaluated in the set. To

do so, we consider each score as a potential candidate for the threshold,

so each of them is used sequentially as a cutoff value. As the cutoff value

allows splitting the training data, the information gain ratio can be com-

puted and the score maximizing this gain is chosen to be the threshold.

Then we compute the MCC based on the split induced by the threshold.

We used the following GA operators: (i) The k-tournament selection

operator. (ii) The one point crossover, where the same break point is

used in both parents to produce two new offspring of the same length

(Banzhaf et al., 1998). The break point is randomly chosen at each ap-

plication of the operator. (iii) The one point mutation, which changes the

value of one gene in the individual. Our mutation operator can add a

random new token, delete a random token or substitute a token in the

motif at a random position by a random new token. (iv) We define a

plague operator, which is used to simplify an individual (i.e. a motif).

This operator removes the tokens that do not improve the quality of the

solution, and simplifies inclusion and exclusion tokens. Therefore, this

operator improves the readability of a motif without altering its discrim-

inant power. This step is important because we try to build an interpret-

able model. All operators used along with model parameters are detailed

in Supplementary Information A (‘1 Genetic algorithm’).

The retained parameters are Tournament size: 5; Population size: 250;

Max generations: 150; Mutation probability: 0.75; Number of plague

‘‘remove’’: 20; Number of plague ‘‘clean’’: 100; Number of amino acids:

6; Gap penalty: �0.0625; Pruning factor (�): 0.5 and Bucket size: 6. They

were chosen by scanning a wide range of values (data not shown). We

observed that the method performance is independent of the chosen

values for most of the parameters. For example, reducing the maximum

generations does not change the quality of prediction but produces deeper

trees. The only parameter that affects the quality of prediction is the size

of the fragment used for the alignment (the ‘Number of amino acids’

parameter in Supplementary Information A and Table A1). This param-

eter specifies the number of amino acids taken into account for the align-

ment. During tests, we noticed that fragments that are too long, e.g. 15

amino acids, produce classifiers with poor generalization capacities (see

Section 3.1). Therefore we used the minimum size that disambiguates the

proteins undergoing and not undergoing N�-Ac.

Software to build a motif tree. All software used to build our model,

namely a motif tree, has been developed by the authors.

3 RESULTS

In this section, we first assess the learning capability of our

method by evaluating the quality of the predictions obtained

with the datasets extracted from UniProtKB. We then compare

our predictors with the state of the art used to predict IMC and

N�-Ac.

3.1 Generalization and stability

Two potential problems arise from the algorithm we used to

build our classifier. The first (common to all machine learning

algorithms) is a lack of generalization, which is the ability of the

algorithm to correctly classify proteins that are not present in the

training set. The second problem is the stability of our model,

that is to say the consistency of the results despite the stochastic

nature the GA. We have no guarantee that every GA evolution

will converge to a good solution.
Cross-validation (CV) is a widely used process to evaluate

generalization of a classifier, allowing us to estimate the average

generalization error of a ML method (Hastie et al., 2001). To

evaluate the stability, we simply applied 10 independent stratified

10-fold CVs on our datasets, combining the CV results to obtain

the average and the standard deviation. So, if the CV results have

a high average classification score with low standard deviations,

the method is stable and produces classifiers with good general-

ization capability. Because we are only taking into account the

first six amino acids, redundancies and ambiguities appear in the

dataset. Therefore, we have removed those duplicates from the

training set of each fold. This ensures that the test set contains

only sequences never seen during the learning phase. More de-

tails are provided in Supplementary Information A (‘2.3

Redundancy and ambiguities resolution’). The CV results are

presented in Table 2.
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We can see that the learning and generalization capabilities of

our method are good for both IMC and N�-Ac, as it is shown by

the classification scores. However, we must pay attention to the

accuracy values. Because our training set classes are imbalanced,

a trivial classifier could easily reach a high accuracy. For in-

stance, 87% of human proteins are acetylated in our dataset,

and a bad classifier that predicts all proteins as acetylated will

obtain an accuracy score of 0.87. To evaluate our results, we then

compare the obtained accuracy score against a so-called baseline

(the ‘Ratio’ columns in Table 1), which is the proportion of the

majority class in the training set. All classifiers obtained here

display a significant improvement over the baselines of our train-

ing sets. For example, with the Eukaryota dataset, the accuracy

rises from 0.72 (baseline) to 0.93 in the case of IMC. In the case

of N�-Ac, it rises from 0.64 (baseline) to 0.84. The results also

show that the method is stable because the standard deviation is

51% of the classification scores, meaning that every run will

produce a good classifier.

3.2 Comparison with TermiNator3

Now that we know that our method is reliable, we compare our

method with the state of the art: TermiNator3 (Martinez et al.,

2008). We choose not to compare our model against NetAcet,

another well-known N�-Ac predictor, because it has only been

trained on NatA substrates from Saccharomyces cerevisiae. For

this comparison, we trained our classifiers with the full datasets

(instead of running a CV experiment) described above, one for

each taxon: Eukaryota, Metazoa and H.sapiens and for each

PTM: N�-Ac and IMC. Six predictors were produced, whose

performances were compared with TermiNator3. Those trainings

are justified by the fact that, now that we are convinced that our

model generalizes well and is stable, we wanted to use all the

available information to build the most accurate predictors.

Moreover, the patterns used by TermiNator3 seem to have

been built based on their full dataset. The comparison is pre-

sented in Table 3 and we obtained cross-validated results close to

TermiNator3 with our method (Table 2). When trained on the

full dataset, results are on par with TermiNator3 for the predic-

tion of IMC. However, our classifiers perform better than

TermiNator3 for N�-Ac prediction.

3.2.1 Potential NatB and NatC As it was introduced above,
several enzymes catalyze the N�-Ac; however, the information

regarding the Nats catalyzing the PTM is rarely available. But by

looking at the known specific substrates, authors have proposed

substrates to identify the Nat catalyzing the acetylation depend-

ing on the first two amino acids. For the NatB, the following

substrates are proposed: MD-, ME-, MN-; for the NatC, the

following substrates are proposed: MF-, MI-, ML-, MW-

(Polevoda et al., 2009).
Unfortunately, the number of experimentally identified sub-

strates of those specific Nats is scarce. To estimate the capability

of our classifiers regarding NatB and NatC substrates, we built

two new datasets: one for potential NatB and one for potential

NatC. From the Eukaryota dataset, all proteins matching the

theoretical requirements for NatB or C are considered as poten-

tial substrates and extracted into those new datasets. The pro-

teins are extracted with their original class (i.e. N�-acetylated or

not N�-acetylated) because not all proteins matching the sub-

strates are acetylated.

We applied a 10-fold CV on the whole Eukaryota dataset.

Then, we measured the performance of the model only on the

potential NatB and NatC. The results in Table 4 display that the

patterns used in TermiNator3 are too stringent. The results show

that if a sequence starts like the NatB-proposed substrate, it is

always classified as N�-acetylated (the sensitivity is 1.0 and the

specificity is 0.0). For the sequences starting like the NatC-

proposed substrates, it is the opposite (the sensitivity of 0.0

and the specificity of 1.0), indicating that all these sequences

are classified as not N�-acetylated. Therefore, in both cases the

MCC obtained is 0.0, meaning that in this case TermiNator3

performs no better than random prediction. The pattern used

by TermiNator3 (Martinez et al., 2008) takes only into account,

at most, the first three amino acids, but the information provided

by these three amino acids is probably insufficient to decide

whether a protein undergoes N�-Ac. Our model takes into ac-

count the first six amino acids and produces a cross-validated

MCC40.0; therefore, it performs better than random. So, our

model has been able to find specificities between proteins

undergoing N�-Ac, as it is showed by the increase of specificity

in the case of the NatB substrates (þ0.39) and the increase of

sensitivity in the case of the NatC substrates (þ0.55).
Finally, we tested our predictor on the five experimentally

identified substrates of NatB and C in H.sapiens (Starheim

et al., 2008, 2009). As shown in Table 5, all substrates were cor-

rectly predicted by the motifs tree. This shows that our model is

able to discover subtle features specific to those proteins, even

when they are accounting only for520% of the whole dataset.

3.3 Analysis of the initiator Met cleavage motifs tree

The main goal of this article is to present a new automatic ap-

proach to predict PTMs based only on the protein primary struc-

ture, called motifs tree, and we have presented the performances

of our classifiers to predict N�-Ac and IMC. In this section, we

will show how we can use our model to infer knowledge about

the underlying biological process (e.g. enzyme–substrate specifi-

city). Owing to the lack of space, we will illustrate this feature by

analyzing the smallest motifs tree, predicting IMC in H.sapiens.

However, the same approach can be applied to all motifs trees

Table 2. Results assessing the quality of the IMC prediction and N�-Ac

prediction

PTM Taxon Accuracy Sensitivity Specificity MCC

IMC Eukaryota 0.93 0.95 0.89 0.83 (0.0001)

Metazoa 0.94 0.96 0.91 0.86 (0.0002)

H.sapiens 0.95 0.96 0.93 0.89 (0.0001)

N-Ac. Eukaryota 0.84 0.89 0.76 0.65 (0.0001)

Metazoa 0.85 0.90 0.73 0.64 (0.0002)

H.sapiens 0.93 0.96 0.59 0.56 (0.0006)

Note: Score values are the mean on 10 independent stratified CVs, each made with

10-folds. The MCC standard deviation is given in parentheses.
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(article in preparation). For details about the other motifs trees
produced for this article, see Supplementary Information B
(‘1 Motifs trees’).

The analyzed tree is the product of a training on the full
H.sapiens dataset. We point out that the motifs found during dif-

ferent runs of training are close and combined in similar trees. As
it seems that all learning phases converge to a particular point in

the solution space, we can focus our analysis on one motifs tree.
As this model is based on combination of motifs, it can be

interesting to analyze the discovered motifs to propose assump-

tions about the substrates of the enzymes catalyzing the chemical
process of a given PTM. Hence, we studied how sequences are

split at each node and we tried to extract the features that

separate the two sets of sequences induced by the split. Let us

note that there are two genes encoding for MetAPs in human,

MetAP1 and MetAP2 (Bradshaw et al., 1998), but the informa-

tion about which enzyme catalyzes the cleavage is not known

and is not taken into consideration in the model. Also, even if

it does not add information, the initiator Met is kept in the

sequences.

First of all, we see that the motifs tree (Fig. 1) is composed of

three tests (motifs), all of them leading to at least one leaf (i.e. a

predicted class):

� The sequences that do not contain the signal described by

the first motif are classified as not undergoing the IMC;

Table 5. Predictions of acetylated proteins with known Nats using the Terminus H.sapiens classifier

UniProt ID Taxon Sequence Nat Terminus TermiNator3

Q04206 H.sapiens MDELFPL B Ac-M(1) Ac-M(1)

Q9NVJ2a H.sapiens MLALISR C Ac-M(1) M(1)

P42345 H.sapiens MLGTGPA C Ac-M(1) M(1)

P31943a H.sapiens MLGTEGG C Ac-M(1) M(1)

P52597a H.sapiens MLGPEGG C Ac-M(1) M(1)

Note: The ‘Sequence’ column displays only the first seven amino acids of the protein exposed to the Nat. The ‘Nat’ column indicates which Nat

catalyzes the N�-Ac. The ‘Terminus’ and the ‘TermiNator3’ columns indicate, respectively, the prediction of the services. aSequences used to build the

classifiers.

Table 3. Prediction scores for Terminus (our online predictor) and TermiNator3

Taxon Service Initiator Met cleavage N�-Terminal acetylation

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

Eukaryota Terminus 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.97

TermiNator3 0.96 0.99 0.89 0.91 0.87 0.92 0.77 0.71

Metazoa Terminus 0.99 0.99 0.99 0.98 0.99 1.0 0.96 0.96

TermiNator3 0.97 1.00 0.90 0.92 0.88 0.92 0.80 0.72

H.sapiens Terminus 0.99 0.99 0.99 0.97 0.99 0.99 0.96 0.96

TermiNator3 0.97 0.99 0.92 0.93 0.90 0.91 0.82 0.63

Table 4. Cross-validated scores obtained by Eukaryota classifiers versus TermiNator3

Service Potential substrate Number of sequences N-Acet. Accuracy Sensitivity Specificity MCC

Motifs tree NatB 384 0.91 0.89 0.93 0.39 0.31

TermiNator3 0.90 1.00 0.00 0.00

Motifs tree NatC 100 0.38 0.66 0.55 0.73 0.28

TermiNator3 0.64 0.00 1.00 0.00

Note: The Potential substrate means that only sequences matching to the potential NatB or potential NatC substrates are considered. The ‘N-Acet.’ column indicates the ratio

of sequences undergoing N�-Ac in each dataset.
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� The sequences containing both the first two motif signals are

classified as undergoing the IMC;

� The sequences reaching the last node are classified as not

undergoing the IMC if the signal of the third motif is de-

tected in the sequence.

To understand what features are exploited by the motifs tree

to discriminate the sequences, we will focus on the first node. The

first motif is described by the following token sequence:

.{S,CHAM830104}{S,CHAM830104}.

{F,GARJ730101}..

Our analysis is split into two steps: (i) scores analysis and iden-

tification of discriminant tokens in the motif; and (ii) positions of

interest in the amino acid sequences.

We begin by identifying the discriminant tokens (step 1). To

do so, we compute the average motif score profile. The profile is

computed for a set of sequences aligned on a motif. For a given

alignment, each token contributes to the alignment score either

by its similarity with the aligned amino acid or by being gapped.

If all contributions of each token on each sequence are summed

and normalized, we obtain an average motif score profile.

Formally, let m ¼ ðt1, t2, . . . , tkÞ, a k token motif, and S ¼ fsjg,

a set of amino acids sequences, sj ¼ ðaj1, aj2, . . . , ajnÞ. The profile

ofm on all sequences in S is a vector c ¼ ðc1, c2, . . . , ckÞ, whose ci
are given by

ci ¼
1

jSj

XjSj

j¼1

�ðti, xjiÞ ð1Þ

where xj is the aligned sequence, i.e. sj with the alignment gaps.

So xji is the i-th symbols in the sequence j, which is aligned with

m. It can be either an amino acid or a gap (� with a gap always

equals the gap penalty, i.e. �0.0625). So, to identify discriminant

tokens in the motif, we compute the profiles for the sequences

following the left (cl) and the right (cr) branch and plot the fol-

lowing difference: cr � cl. A positive difference points to a token

increasing the score of the sequences following the right branch;

a negative difference points to a token increasing the score of the

sequences following the left branch. So, as we want to identify

the features contributing to the signal strength, we are interested

in the positive differences. In the case of the first motif, the pro-

file difference emphasizes the discriminant power of the tokens at

position 2 and 3 in the motif (Fig. 2a). The two tokens are the

same, namely the token {S,CHAM830104}. This property is

interesting because it gives the maximum similarity (i.e. 1.0)

with the Ser and the following amino acids: A, C, G, P, T and

obviously S. The property gives a similarity of 0.5 with the Ser

for the amino acids D, E, F, I, K, M, N, Q, R, W, Y and V and

has no similarity with L (i.e. 0.0). So, it clearly promotes the

presence of A, C, T G, P, S and T. Regarding the amino acids

producing a similarity of 0.5, it is interesting to note that the

threshold is 5.4375, which is the maximum alignment score pos-

sible with the motif minus 0.5. So, the use of this property in the

first motif seems to play the role of a selector for the amino acids

having a similarity score of 1.
Now that we have identified two tokens having an impact on the

alignment score, we must identify where, in the protein sequence,

the specificity induced by the token is discriminant (step 2).

To do so, we rely on a plot showing how many times a token i is

aligned with the residue at position j of the sequences following the

right branch. This histogram shows that the two tokens of interest

are mainly aligned on the second amino acid (the one immediately

after the initiator Met) and, in less extent, on the third amino acid

(Fig. 2b).

This rough analysis allows us to conclude that this node splits

the protein set based on the presence of an Ala, Cys, Gly, Pro

and Ser immediately after the initiator Met. Moreover, as this

node leads to a leaf for the sequences in which the signal is not

detected, we can observe that the proteins not having those

amino acids at the second position do not undergo the IMC.

Therefore, the following rule can be proposed: if a sequence

starts with M:[ACGPSTV], the Met is not cleaved. This has

Fig. 1. The motifs tree for the prediction of IMC for H. sapien proteins

extracted from UniProtKB. Each node of the tree is represented by the

motif used for its test. Leaves are represented using a sequence logo made

with all the sequences ending in that leaf, and the label under a leaf

specifies the class corresponding to the prediction made at the leaf and

its accuracy. The initiator Met is always present in all sequences, but is

not displayed in the logo because it does not provide any information.

Moreover, each sequence logo is rescaled according to its highest value

(the maximum being 4.32 bits). The branches are labeled with the align-

ment score condition required on the test to follow the path indicated by

the branch. The sequence logo on top illustrates the composition of the

H. sapien proteins extracted from UniProtKB
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been experimentally observed (Burstein and Schechter, 1978;

Meinnel et al., 2005) and is corroborated by our model.

Moreover, this rule is compatible with the pattern in Martinez

et al. (2008). If we take into account only the information re-

garding the IMC in the cited publication, we can build the fol-

lowing rule: a match with M:[ACGPST] for the first two amino

acids imply no IMC.
The same approach can be used to extract information from

the other motifs. We will summarize the main lines here. The

motifs, the motif score profiles and histograms of the aligned

positions, allowing us to extract these results are provided in

Supplementary Information B (‘1.1 Motifs tree for init. Met.

cleavage prediction in H.sapiens’). First, it is important to re-

member that we are going through a decision tree, and the align-

ments are applied on sequences that have been selected by the

preceding motifs. The profile difference of the second motif

(Supplementary Information B, 1.1.2) indicates that the token

at position 10 has a major contribution in producing discrimin-

ant alignment score between proteins. This token is

[AFIKNQSW] and the histogram of aligned positions shows

that it is almost always aligned with the second amino acid in

the sequence. But we already know that the sequences reaching

this node should carry [ACGPSTV] as the second residue. So, we

can denoise this token by only considering the intersection be-

tween [AFIKNQSW] and [ACGPST], leading to a simplified

form of the token: [AS]. The motif seems to detect the presence

of an Ala and a Ser in the second position. Another token con-

tributes well to the profile difference, the token 13, which is a

fixed amino acid token for the Ser. This token is mainly aligned

on the second and third amino acid in the sequences. As a rele-

vant match implies that the sequence undergoes the IMC, this

leads us to propose that sequences starting with M[AS] are

cleaved. But the MA sequences are highly represented in the set

of sequences having a relevant match with the motif (68% of the

set) and may hide the contribution of other tokens. So, we

removed those sequences from the protein set and produced a

new profile difference. These new profiles emphasize the contri-

bution of the second token in the motif, which is a fixed amino

acid token for the Pro and is always aligned on the second amino

acid in the sequence. So, considering the preceding motif and the

information provided by the tokens at position 10 and 13, we can

conclude that proteins starting with M[APS] undergo IMC.
Therefore, proteins reaching the last motif should be mainly

composed of sequences starting with M[CGTV]. Again the profile

difference (Supplementary Information B, 1.1.3) indicates that

the token 9, [EK], has the greatest difference in the profiles.

The histogram shows that it is always aligned on the fifth residue.

This is an interesting feature because it shows that the MetAPs

activity is not only influenced by the amino acid on the second

and third position in the sequence but also by amino acids far-

ther in the sequence. In this case, it is also interesting to note that

these two amino acids are charged. We conclude that a protein

starting by M[CGVT] does not undergo IMC if a Glu or Lys is

present in the sequence at position 5.

We have extracted simplified rules for each motif. These rules

can be combined to produce the sequence requirement for the

IMC to occur or not:

� A match with M[ACGPS] implies that IMC occurs;

� A match with M[TV]..:[EK] implies that IMC occurs;

� Otherwise the protein does not undergo IMC.

To conclude this short analysis, we wonder whether the sim-

plified rules perform as well as the motifs tree. The rules produce

a MCC of 0.93, whereas the full motifs tree produces a MCC of

0.97. This is a good result; we have been able to use the model to

infer good rules that allowed us to find the sequence requirement

for IMC in H.sapiens. We also showed that the motifs tree is

sensitive to subtle features that are hardly detectable by human,

as the motifs tree produces better classification scores than the

inferred rules. Our model, and the tools proposed to analyze it,

(a)

(b)

Fig. 2. (a) The motif score profile [Equation (1)] difference between the

sequences achieving an alignment score less than or equal to the threshold

and the sequences achieving an alignment score greater than the thresh-

old. On this plot, we can see that the tokens at position 2 and 3 in the

motif have an important contribution in the alignment scores of se-

quences achieving a score higher than the threshold. (b) The normalized

histogram of aligned position illustrates on which positions in the amino

acids sequence a token is aligned. The sequences considered to build this

histogram are the one following the right branch after the first motif. The

colors of the stack indicate the position in the amino acids sequences. A

stack lower than 1.0 reflects that the token is aligned with sequence gaps.

For example, a stack with a height of 0.4 means the token is aligned with

an amino acid for 40% of the alignments and is gapped for the remaining

60%
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lead us to draw conclusion on humanMetAPs substrates that are

similar to the experimental results published in literature

(Burstein and Schechter, 1978; Frottin et al., 2006; Martinez

et al., 2008; Meinnel et al., 2005; Xiao et al., 2010). Therefore,

we can claim that our model is a white box.

3.4 N-terminus prediction service

We developed a free and open online service to allow researchers

to use our motifs trees for predicting IMC and N�-Ac on their

sequences of interest. The service is accessible both through a

web interface and through a simple REST API (supported in

almost every programming language) and can be used to

access the predictors programmatically. The service is available

at the following address: http://terminus.unige.ch/.

4 DISCUSSION

We presented a new method to predict PTMs called motifs tree.

The method was tested for the IMC and N�-Ac by building a

classifier for proteins in different taxa. The resulting models are

accurate on our datasets and perform as well as the previously

published state-of-the-art results, namely TermiNator3.

Moreover, our results are cross-validated, showing that our

model can build classifiers with good generalization capabilities.

We did not compare our model with NetAcet because it has been

trained only on a small dataset restricted to NatA substrates

from S.cerevisiae.
Also, we have shown that our N�-Ac classifier can take into

account subtle information allowing it to improve the classifica-

tion of potential NatB and NatC substrates, which is a feature

that is lacking in TermiNator3 and NetAcet.

As with all machine learning approaches, the quality of the

predictor depends on the quality of the dataset. In biology, nega-

tive sets are difficult to build because they rely on the non-ob-

servation of a phenomenon, which is not directly annotated in

databases. To confirm that our predictor was not biased because

of noise in the dataset, we have used a hold-out test set. This set is

only composed of experimentally confirmed non-acetylated eu-

karyotic proteins (Bienvenut et al., 2012). All proteins in the

hold-out test set were not seen during training. The Eukaryota

motifs tree produce a specificity of 0.85 on this hold-out test set,

which is above the cross-validated specificity (þ0.09). This good

result illustrates that our algorithm induces correct rules to pre-

dict non-acetlyation, probably because our methodology can

cope with noise in the dataset, or because our dataset is clean

enough to produce accurate predictors. We add that the ability

to learn with noise is a desirable feature for a ML method. For

more details, see Supplementary Information A (‘3.3 Validation

for N-terminal acetylation classifiers’).
Also, our method produces a white boxmodel that shows how

features are used to classify sequences. In a preliminary analysis,

we have illustrated that our model can provide helpful informa-

tion about the composition of sequences that promote or inhibit

a PTM. This is also a valuable advantage versus the predictors

presented in Lars et al. (2005) and Liu and Lin (2004), which is

hard or impossible to interpret. We are convinced that a model

used for classification in biology should be readable by experts.

Models used in machine learning are able to capture

characteristics that are hard to see in the data. Those character-

istics or features may be exploited to understand the studied

biological process.

The purpose of this first analysis was only to validate the white

box quality of our model, by retrieving experimentally known

biological facts from our motifs trees. However, in the future we

may be able to use the motifs tree as a tool to propose new

biological hypothesis that could be tested experimentally.

ACKNOWLEDGEMENT

The authors would like to thank Alexandros Kalousis from the

Computer Science department (University of Geneva) for the

discussion that helped us to improve our methodology.

Funding: The SIB activities are supported by the State Secretariat

for Education, Research and Innovation (SERI).

Conflict of interest: none declared.

REFERENCES

Banzhaf,W. et al. (1998) Genetic Programming: An Introduction: on the Automatic

Evolution of Computer Programs and its Applications. Morgan Kaufmann

Publishers Inc., San Francisco, CA.

Berthold,M.R. et al. (2010) Guide to Intelligent Data Analysis: How to Intelligently

Make Sense of Real Data, 1st edn. Springer Publishing Company, Incorporated,

London.

Bienvenut,W.V. et al. (2012) Comparative large scale characterization of plant

versus mammal proteins reveals similar and idiosyncratic N-�-acetylation fea-

tures. Mol. Cell. Proteomics, 11, M111.015131.

Blom,N. et al. (1999) Sequence and structure-based prediction of eukaryotic protein

phosphorylation sites. J. Mol. Biol., 294, 1351–1362.

Bologna,G. et al. (2004) N-terminal myristoylation predictions by ensembles of

neural networks. Proteomics, 4, 1626–1632.

Bork,P. and Gibson,T.J. (1996) Applying motif and profile searches. Methods

Enzymol., 266, 162–184.

Bradshaw,R.A. et al. (1998) N-terminal processing: the methionine

aminopeptidase and N-�-acetyl transferase families. Trends Biochem. Sci., 23,

263–267.

Bucher,P. et al. (1996) A flexible motif search technique based on generalized pro-

files. Comput. Chem., 20, 3–23.

Burstein,Y. and Schechter,I. (1978) Primary structures of N-terminal extra peptide

segments linked to the variable and constant regions of immunoglobulin light

chain precursors: implications on the organization and controlled expression of

immunoglobulin genes. Biochemistry, 17, 2392–2400.

Cai,Y.-D. and Lu,L. (2008) Predicting N-terminal acetylation based on feature se-

lection method. Biochem. Biophys. Res. Commun., 372, 862–865.

Chuang,G.-Y. et al. (2012) Computational prediction of N-linked glycosylation

incorporating structural properties and patterns. Bioinformatics, 28, 2249–2255.

Eisenhaber,B. and Eisenhaber,F. (2010) Prediction of posttranslational modifica-

tion of proteins from their amino acid sequence. In: Carugo,O. and

Eisenhaber,F. (eds.) Data Mining Techniques for the Life Sciences. Methods in

Molecular Biology. Vol. 609, Humana Press, New York, NY, pp. 365–384.

Frottin,F. et al. (2006) The proteomics of N-terminal methionine cleavage. Mol.

Cell. Proteomics, 5, 2336–2349.

Gautschi,M. et al. (2003) The yeast n-�-acetyltransferase nata is quantitatively an-

chored to the ribosome and interacts with nascent polypeptides.Mol. Cell. Biol.,

23, 7403–7414.

Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization and Machine

Learning. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

Gonnet,P. and Lisacek,F. (2002) Probabilistic alignment of motifs with sequences.

Bioinformatics, 18, 1091–1101.

Hastie,T. et al. (2001) The Elements of Statistical Learning. Springer Series in

Statistics, 2nd edn. Springer New York Inc., New York, NY.

Julenius,K. (2007) Netcglyc 1.0: prediction of mammalian c-mannosylation sites.

Glycobiology, 17, 868–876.

Motifs tree for PTMs prediction

1981

very 
or 
s
http://terminus.unige.ch/
only 
,
a
due to
n
and 
 machine learning method
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu165/-/DC1
``
''
s
s
; 
Lars etal. (2005)
are 
 Indeed models
very 


Kawashima,S. and Kanehisa,M. (2000) AAindex: amino acid index database.

Nucleic Acids Res., 28, 374.

Kendall,R.L. and Bradshaw,R.A. (1992) Isolation and characterization of the me-

thionine aminopeptidase from porcine liver responsible for the co-translational

processing of proteins. J. Biol. Chem., 267, 20667–20673.

Kyte,J. and Doolittle,R.F. (1982) A simple method for displaying the hydropathic

character of a protein. J. Mol. Biol., 157, 105–132.

Lars,K. et al. (2005) NetAcet: prediction of N-terminal acetylation sites.

Bioinformatics, 21, 1269–1270.

Liu,Y. and Lin,Y. (2004) A novel method for N-terminal acetylation prediction.

Genomics Proteomics Bioinform., 2, 253–255.

Martinez,A. et al. (2008) Extent of N-terminal modifications in cytosolic proteins

from eukaryotes. Proteomics, 8, 2809–2831.

Matthews,B.W. (1975) Comparison of the predicted and observed

secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta, 405,

442–451.

Meinnel,T. et al. (2005) Processed N-termini of mature proteins in higher eukary-

otes and their major contribution to dynamic proteomics. Biochimie, 87,

701–712.

Pestana,A. and Pitot,H.C. (1975) Acetylation of nascent polypeptide chains on rat

liver polyribosomes in vivo and in vitro. Biochemistry, 14, 1404–1412.

Polevoda,B. and Sherman,F. (2002) The diversity of acetylated proteins. Genome

Biol., 3, reviews0006.

Polevoda,B. and Sherman,F. (2003) N-terminal acetyltransferases and sequence re-

quirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol., 325,

595–622.

Polevoda,B. et al. (2008) Yeast n-�-terminal acetyltransferases are associated with

ribosomes. J. Cell. Biochem., 103, 492–508.

Polevoda,B. et al. (2009) A synopsis of eukaryotic n-�-terminal

acetyltransferases: nomenclature, subunits and substrates. BMC Proc., 3

(Suppl. 6), S2.

Quinlan,J.R. (1992) C4.5: Programs for Machine Learning (Morgan Kaufmann

Series in Machine Learning). 1st edn. Morgan Kaufmann, San Mateo, CA.

Radivojac,P. et al. (2010) Identification, analysis, and prediction of protein ubiqui-

tination sites. Proteins, 78, 365–380.

Russell,S.J. and Norvig,P. (2010) Artificial Intelligence—A Modern Approach. 3rd

edn. Pearson Education, Upper Saddle River, NJ.

Schwartz,D. et al. (2009) Predicting protein post-translational modifications using

meta-analysis of proteome scale data sets. Mol. Cell. Proteomics, 8, 365–379.

Starheim,K.K. et al. (2008) Identification of the human N-�-acetyltransferase com-

plex b (hNatB): a complex important for cell-cycle progression. Biochem. J., 415,

325–331.

Starheim,K.K. et al. (2009) Knockdown of human N-�-terminal acetyltransferase

complex C leads to p53-dependent apoptosis and aberrant human Arl8b local-

ization. Mol. Cell. Biol., 29, 3569–3581.

Walsh,C. (2006) Posttranslational Modification of Proteins: Expanding Nature’s

Inventory. Roberts and Company Publishers, Englewood, CO.

Xiao,Q. et al. (2010) Protein N-terminal processing: substrate specificity of

Escherichia coli and human methionine aminopeptidases. Biochemistry, 49,

5588–5599.

Zhang,N. et al. (2012) Computational prediction and analysis of protein �-carb-

oxylation sites based on a random forest method. Mol. Biosyst., 8, 2946–2955.

C.Charpilloz et al.

1982


