A. Alekseev and E. Meinrenken (2012) "Dirac Structures and Dixmier–Douady Bundles," International Mathematics Research Notices, Vol. 2012, No. 4, pp. 904–956 Advance Access Publication April 15, 2011 doi:10.1093/imrn/rnr002

Dirac Structures and Dixmier-Douady Bundles

A. Alekseev¹ and E. Meinrenken²

Dedicated to Richard Melrose on the occasion of his 60th birthday.

¹Section of Mathematics, University of Geneva, 2-4 rue du Lièvre,
1211 Genève 24, Switzerland and ²Department of Mathematics,
University of Toronto, 40 St George Street, Toronto, Ontario, Canada
M4S2E4

Correspondence to be sent to: anton.alekseev@unige.ch

A Dirac structure on a vector bundle V is a maximal isotropic sub-bundle E of the direct sum $V \oplus V^*$. We show how to associate to any Dirac structure a Dixmier–Douady bundle \mathcal{A}_E , that is, a \mathbb{Z}_2 -graded bundle of C^* -algebras with typical fiber the compact operators on a Hilbert space. The construction has good functorial properties, relative to Morita morphisms of Dixmier–Douady bundles. As applications, we show that the Dixmier–Douady bundle $\mathcal{A}_G^{\mathrm{Spin}} \to G$ over a compact, connected Lie group (as constructed by Atiyah–Segal) is multiplicative, and we obtain a canonical "twisted Spin_c -structure" on spaces with group valued moment maps.

1 Introduction

A Dixmier-Douady bundle is a bundle of C^* -algebras $\mathcal{A} \to M$, with typical fiber $\mathbb{K}(\mathcal{H})$ the compact operators on a Hilbert space. A Morita morphism $\mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ of two such bundles is given by a proper map $\Phi \colon M_1 \to M_2$ of the underlying spaces, along with a bundle of bimodules $\Phi^*\mathcal{A}_2 \circlearrowleft \mathcal{E} \circlearrowleft \mathcal{A}_1$ locally modeled on $\mathbb{K}(\mathcal{H}_2) \circlearrowleft \mathbb{K}(\mathcal{H}_1, \mathcal{H}_2) \circlearrowleft \mathbb{K}(\mathcal{H}_1)$. A classical result of Dixmier and Douady [11] states that the Morita isomorphism classes of such bundles over M are classified by the degree three cohomology group $H^3(M,\mathbb{Z})$. Dixmier-Douady bundles $\mathcal{A} \to M$ may thus be regarded as higher analogues

Received November 04, 2009; Revised December 20, 2010; Accepted January 06, 2011

© The Author(s) 2011. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

of line bundles, with Morita isomorphisms replacing line bundle isomorphisms. An important example of a Dixmier-Douady bundle is the Clifford algebra bundle of a Euclidean vector bundle of even rank; a Morita isomorphism $\mathbb{C} l(V) \dashrightarrow \mathbb{C}$ amounts to a $Spin_c$ -structure on V.

In this paper, we will relate the Dixmier-Douady theory to Dirac geometry. A (linear) Dirac structure (\mathbb{V}, E) over M is a vector bundle $V \to M$ together with a subbundle

$$E \subset \mathbb{V} := V \oplus V^*$$
,

such that E is maximal isotropic relative to the natural symmetric bilinear form on \mathbb{V} . Our main result is the construction of a Dirac-Dixmier-Douady functor, associating to any Dirac structure (\mathbb{V}, E) a Dixmier–Douady bundle A_E , and to every "strong" morphism of Dirac structures $(\mathbb{V}, E) \dashrightarrow (\mathbb{V}', E')$ a Morita morphism $\mathcal{A}_E \dashrightarrow \mathcal{A}_{E'}$. For the Dirac structure given by $E = V^*$, we find that \mathcal{A}_{V^*} is canonically Morita trivial, while \mathcal{A}_V (for V of even rank) is canonically Morita isomorphic to the Clifford bundle $\mathbb{C}l(V)$.

The tangent bundle of a compact Lie group G carries an interesting Dirac structure $(\mathbb{T}G, E)$ known as the Cartan-Dirac structure [7, 31]. The associated Dixmier-Douady bundle $A_E =: A_G^{\text{spin}}$ over G is related to the spin representation of the loop group LG. This bundle (or equivalently the corresponding bundle of projective Hilbert spaces) was described by Atiyah-Segal [6, Section 5]. From Alekseev et al. [1], it is known that the Cartan-Dirac structures is multiplicative, in the sense that the group multiplication lifts to a Dirac morphism

$$(\mathbb{T}G, E) \times (\mathbb{T}G, E) \longrightarrow (\mathbb{T}G, E)$$

(associative in a suitable sense). Our theory therefore produces a Morita morphism

$$\operatorname{pr}_1^* \mathcal{A}_G^{\operatorname{Spin}} \otimes \operatorname{pr}_2^* \mathcal{A}_G^{\operatorname{Spin}} \dashrightarrow \mathcal{A}_G^{\operatorname{Spin}},$$

proving that the Atiyah–Segal bundle $\mathcal{A}_G^{\mathrm{Spin}}$ is multiplicative.

Another application is to the theory of q-Hamiltonian G-spaces, that is, spaces with G-valued moment maps $\Phi \colon M \to G$ [2]. Typical examples of such spaces are products of conjugacy classes in G. As observed by Bursztyn-Crainic [7], the structure of a q-Hamiltonian space on M defines a strong Dirac morphism $(\mathbb{T}M, TM) \dashrightarrow (\mathbb{T}G, E)$ to the Cartan-Dirac structure. Therefore, our theory gives a Morita morphism $A_{TM} \longrightarrow A_G^{Spin}$. On the other hand, as remarked above \mathcal{A}_{TM} is canonically Morita isomorphic to the

Clifford bundle $\mathbb{C}1(TM)$, provided dim M is even (this is automatic if G is connected). One may think of the resulting Morita morphism

$$\mathbb{C} l(TM) \longrightarrow \mathcal{A}_G^{Spin}$$

with underlying map Φ as a "twisted ${\rm Spin_c}$ -structure" on M (following the terminology of Wang [33] and Douglas [12]). It is the q-Hamiltonian analog of the canonical ${\rm Spin_c}$ -structure $\mathbb{C}\operatorname{l}(TM) \dashrightarrow \mathbb{C}$ of a symplectic manifold.

Given a Dixmier–Douady bundle $\mathcal{A} \to M$, one defines the twisted K-homology group $K_0(M,\mathcal{A})$, as the K-homology of the C^* -algebra of sections of \mathcal{A} (see [29]). If M is an even-dimensional manifold, $K_0(M,\mathbb{Cl}(TM))$ contains a distinguished Kasparov fundamental class [M]. A Spin_c structure, given as a Morita morphism $\mathbb{Cl}(TM) \dashrightarrow \mathbb{C}$, defines a push-forward to $K_0(\mathrm{pt}) = \mathbb{Z}$, and the image of [M] under this map is the index of the associated Spin_c -Dirac operator. In the paper [20] (see also [21] for the case $G = \mathrm{SU}(2)$), we define the quantization of q-Hamiltonian G-spaces as push-forwards in twisted equivariant K-homology. The canonical twisted Spin_c -structure defined here is a key ingredient in that construction.

The organization of this paper is as follows. In Section 2 we consider Dirac structures and morphisms on vector bundles, and some of their basic examples. We observe that any Dirac morphism defines a path of Dirac structures inside a larger bundle. We introduce the "tautological" Dirac structure over the orthogonal group and show that group multiplication lifts to a Dirac morphism. Section 3 contains a quick review of some Dixmier–Douady theory. In Section 4 we give a detailed construction of Dixmier–Douady bundles from families of skew-adjoint real Fredholm operators. In Section 5 we observe that any Dirac structure on a Euclidean vector bundle gives such a family, by defining a family of boundary conditions for the operator $\frac{\partial}{\partial t}$ on the interval [0, 1]. Furthermore, to any Dirac morphism we associate a Morita morphism of the Dixmier–Douady bundles. In Section 7, we describe the construction of twisted Spin_c structures for q-Hamiltonian G-spaces. In Section 8, we show that the associated Hamiltonian loop group space carries a distinguished "canonical line bundle", generalizing constructions from [13, 22].

2 Dirac Structures and Dirac Morphisms

We begin with a review of linear Dirac structures on vector spaces and on vector bundles [1, 8]. In this paper, we will not consider any notions of integrability.

2.1 Dirac structures

For any vector space V, the direct sum $\mathbb{V} = V \oplus V^*$ carries a nondegenerate symmetric bilinear form extending the pairing between V and V^* ,

$$\langle x_1, x_2 \rangle = \mu_1(v_2) + \mu_2(v_1), \quad x_i = (v_i, \mu_i).$$

A morphism $(\Theta, \omega): \mathbb{V} \dashrightarrow \mathbb{V}'$ is a linear map $\Theta: V \to V'$ together with a 2-form $\omega \in \wedge^2 V^*$. The composition of two morphisms (Θ, ω) : $\mathbb{V} \dashrightarrow \mathbb{V}'$ and (Θ', ω') : $\mathbb{V}' \dashrightarrow \mathbb{V}''$ is defined as follows:

$$(\Theta', \omega') \circ (\Theta, \omega) = (\Theta' \circ \Theta, \omega + \Theta^* \omega').$$

Any morphism (Θ, ω) : $\mathbb{V} \dashrightarrow \mathbb{V}'$ defines a relation between elements of \mathbb{V} , \mathbb{V}' as follows:

$$(v, \alpha) \sim_{(\Theta, \omega)} (v', \alpha') \Leftrightarrow v' = \Theta(v), \ \alpha = \iota_v \omega + \Theta^* \alpha'.$$

Given a subspace $E \subset \mathbb{V}$, we define its *forward image* to be the set of all $x' \in \mathbb{V}'$ such that $x \sim_{(Q(u))} x'$ for some $x \in E$. For instance, V^* has forward image equal to $(V')^*$. Similarly, the *backward image* of a subspace $E' \subset \mathbb{V}'$ is the set of all $x \in \mathbb{V}$ such that $x \sim_{(\Phi, \omega)} x'$ for some $x' \in E'$. The backward image of $\{0\} \subset \mathbb{V}'$ is denoted $\ker(\Theta, \omega)$, and the forward image of \mathbb{V} is denoted ran(Θ, ω).

A subspace E is called Lagrangian if it is maximal isotropic, that is, $E^{\perp} = E$. Examples are $V, V^* \subset \mathbb{V}$. The forward image of a Lagrangian subspace $E \subset \mathbb{U}$ under a Dirac morphism (Θ, ω) is again Lagrangian. On the set of Lagrangian subspaces with $E \cap$ $\ker(\Theta, \omega) = 0$, the forward image depends continuously on E. The choice of a Lagrangian subspace $E \subset \mathbb{V}$ defines a (linear) *Dirac structure*, denoted (\mathbb{V}, E) . We say that (Θ, ω) defines a *Dirac* morphism

$$(\Theta, \omega) \colon (\mathbb{V}, E) \dashrightarrow (\mathbb{V}', E') \tag{1}$$

if E' is the forward image of E, and a strong Dirac morphism if, furthermore, $E \cap \ker(\Theta, \omega) = 0$. The composition of strong Dirac morphisms is again a strong Dirac morphism.

Example 2.1.

(a) Every morphism (Θ, ω) : $\mathbb{V} \dashrightarrow \mathbb{V}'$ defines a strong Dirac morphism $(\mathbb{V}, V^*) \dashrightarrow$ $(\mathbb{V}', (V')^*).$

- (b) The zero Dirac morphism (0,0): $(\mathbb{V},E) \longrightarrow (0,0)$ is strong if and only if $E \cap V = 0$.
- (c) Given vector spaces V and V', any 2-form $\omega \in \wedge^2 V^*$ defines a Dirac morphism $(0,\omega)\colon (\mathbb{V},V) \dashrightarrow (\mathbb{V}',(V')^*)$. It is a *strong* Dirac morphism if and only if ω is nondegenerate. (This is true in particular if V'=0.)
- (d) If E = V, a Dirac morphism (Θ, ω) : $(\mathbb{V}, V) \longrightarrow (\mathbb{V}', E')$ is strong if and only if $\ker(\omega) \cap \ker(\Theta) = 0$.

2.2 Paths of Lagrangian subspaces

The following observation will be used later on. Suppose (1) is a strong Dirac morphism. Then there is a distinguished path connecting the subspaces

$$E_0 = E \oplus (V')^*, \quad E_1 = V^* \oplus E',$$
 (2)

of $\mathbb{V} \oplus \mathbb{V}'$, as follows. Define a family of morphisms $(j_t, \omega_t) \colon \mathbb{V} \dashrightarrow \mathbb{V} \oplus \mathbb{V}'$ interpolating between $(\mathrm{id} \oplus 0, 0)$ and $(0 \oplus \Theta, \omega)$:

$$j_t(v) = ((1 - t)v, t\Theta(v)), \quad \omega_t = t\omega.$$

Then

$$\ker(j_t,\omega_t) = egin{cases} 0, & t
eq 1, \ \ker(artheta,\omega), & t = 0. \end{cases}$$

Since (Θ, ω) is a strong Dirac morphism, it follows that E is transverse to $\ker(j_t, \omega_t)$ for all t. Hence, the forward images $E_t \subset \mathbb{V} \oplus \mathbb{V}'$ under (j_t, ω_t) are a continuous path of Lagrangian subspaces, taking on the values (2) for t = 0, 1. We will refer to E_t as the standard path defined by the Dirac morphism (1).

Given another strong Dirac morphism (Θ', ω') : $(\mathbb{V}', E') \dashrightarrow (\mathbb{V}'', E'')$, define a 2-parameter family of morphisms $(j_{tt'}, \omega_{tt'})$: $\mathbb{V} \dashrightarrow \mathbb{V} \oplus \mathbb{V}' \oplus \mathbb{V}''$ by

$$j_{tt'}(v) = ((1 - t - t')v, t\Theta(v), t'\Theta'(\Theta(v))), \quad \omega_{tt'} = t\omega + t'(\omega + \Theta^*\omega')$$

Then

$$\ker(j_{tt'},\omega_{tt'}) = egin{cases} 0, & t+t'
eq 1, \ & t+t' = 1, \ t
eq 0, \ & t+t' = 1, \ t
eq 0, \ & t+t' = 1, \ t
eq 0, \ & t+t' = 1, \ & t = 0, \ & t+t' = 1. \end{cases}$$

In all cases, $\ker(j_{tt'}, \omega_{tt'}) \cap E = 0$, hence we obtain a continuous 2-parameter family of Lagrangian subspaces $E_{tt'} \subset \mathbb{V} \oplus \mathbb{V}' \oplus \mathbb{V}''$ by taking the forward images of E. We have,

$$E_{00} = E \oplus (V')^* \oplus (V'')^*, \quad E_{10} = V^* \oplus E' \oplus (V'')^*, \quad E_{01} = V^* \oplus (V')^* \oplus E''.$$

Furthermore, the path E_{s0} (resp. E_{0s} , $E_{1-s,s}$) is the direct sum of $(V'')^*$ (resp. of $(V')^*$, V^*) with the standard path defined by (Θ, ω) (resp. by $(\Theta', \omega') \circ (\Theta, \omega)$, (Θ', ω')).

2.3 The parity of a Lagrangian subspace

Let Lag(\mathbb{V}) be the Lagrangian Grassmannian of \mathbb{V} , that is, the set of Lagrangian subspaces $E \subset \mathbb{V}$. It is a submanifold of the Grassmannian of subspaces of dimension dim V. Lag(V) has two connected components, which are distinguished by the mod 2 dimension of the intersection $E \cap V$. We will say that E has even or odd parity, depending on whether $\dim(E \cap V)$ is even or odd. The parity is preserved under strong Dirac morphisms.

Proposition 2.2. Let (Θ, ω) : $(\mathbb{V}, E) \longrightarrow (\mathbb{V}', E')$ be a strong Dirac morphism. Then the parity of E' coincides with that of E.

Proof. Clearly, E has the same parity as $E_0 = E \oplus (V')^*$, while E' has the same parity as $E_1 = V^* \oplus E'$. But the Lagrangian subspaces $E_0, E_1 \subset \mathbb{V} \oplus \mathbb{V}'$ have the same parity since they are in the same path component of Lag($\mathbb{V} \oplus \mathbb{V}'$).

2.4 Orthogonal transformations

Suppose V is a Euclidean vector space, with inner product B. Then the Lagrangian Grassmannian Lag(\mathbb{V}) is isomorphic to the orthogonal group of V, by the map associating to $A \in O(V)$ the Lagrangian subspace

$$E_A = \left\{ \left((I - A^{-1})v, (I + A^{-1}) \frac{v}{2} \right) \middle| v \in V \right\}.$$

Here B is used to identify $V^* \cong V$, and the factor of $\frac{1}{2}$ in the second component is introduced to make our conventions consistent with [1]. For instance,

$$E_{-I} = V$$
, $E_{I} = V^*$, $E_{A^{-1}} = (E_A)^{op}$,

where we denote $E^{\mathrm{op}} = \{(v, -\alpha) | (v, \alpha) \in E\}$. It is easy to see that the Lagrangian subspaces corresponding to A_1 and A_2 are transverse if and only if $A_1 - A_2$ is invertible; more generally one has $E_{A_1} \cap E_{A_2} \cong \ker(A_1 - A_2)$. As a special case, taking $A_1 = A$, $A_2 = -I$ it follows that the parity of a Lagrangian subspace $E = E_A$ is determined by $\det(A) = \pm 1$.

Remark 2.3. The definition of E_A may also be understood as follows. Let V^- denote V with the opposite bilinear form -B. Then $V \oplus V^-$ with a split bilinear form $B \oplus (-B)$ is isometric to $\mathbb{V} = V \oplus V^*$ by the map $(a,b) \mapsto (a-b, (a+b)/2)$. This defines an inclusion $\kappa \colon \mathrm{O}(V) \hookrightarrow \mathrm{O}(V \oplus V^-) \cong \mathrm{O}(\mathbb{V})$. The group $\mathrm{O}(\mathbb{V})$ acts on Lagrangian subspaces, and one has $E_A = \kappa(A) \cdot V^*$.

2.5 Dirac structures on vector bundles

The theory developed above extends to (continuous) vector bundles $V \to M$ in a straightforward way. Thus, Dirac structures (\mathbb{V},E) are now given in terms of Lagrangian subbundles $E \subset \mathbb{V} = V \oplus V^*$. Given a Euclidean metric on V, the Lagrangian sub-bundles are identified with sections $A \in \Gamma(\mathcal{O}(V))$. A Dirac morphism $(\Theta,\omega) \colon (\mathbb{V},E) \dashrightarrow (\mathbb{V}',E')$ is a vector bundle map $\Theta \colon V \to V'$ together with a 2-form $\omega \in \Gamma(\wedge^2 V^*)$, such that the fiberwise maps and 2-forms define Dirac morphisms $(\Theta_m,\omega_m) \colon (\mathbb{V}_m,E_m) \dashrightarrow (\mathbb{V}'_{\Phi(m)},E'_{\Phi(m)})$. Here Φ is the map on the base underlying the bundle map Θ .

Example 2.4. For any Dirac structure (\mathbb{V}, E) , let $U := \operatorname{ran}(E) \subset V$ be the projection of E along V^* . If U is a sub-bundle of V, then the inclusion $U \hookrightarrow V$ defines a strong Dirac morphism, $(\mathbb{U}, U) \dashrightarrow (\mathbb{V}, E)$. More generally, if $\Phi \colon N \to M$ is such that $U := \Phi^* \operatorname{ran}(E) \subset \Phi^* V$ is a sub-bundle, then Φ together with fiberwise inclusion defines a strong Dirac morphism $(\mathbb{U}, U) \dashrightarrow (\mathbb{V}, E)$. For instance, if (\mathbb{V}, E) is invariant under the action of a Lie group, one may take Φ to be the inclusion of an orbit.

2.6 The Dirac structure over the orthogonal group

Let X be a vector space, and put $\mathbb{X} = X \oplus X^*$. The trivial bundle $V_{\text{Lag}(\mathbb{X})} = \text{Lag}(\mathbb{X}) \times X$ carries a $tautological\ Dirac\ structure\ (\mathbb{V}_{\text{Lag}(\mathbb{X})},\ E_{\text{Lag}(\mathbb{X})})$, with fiber $(E_{\text{Lag}(\mathbb{X})})_m$ at $m \in \text{Lag}(\mathbb{X})$ the

Lagrangian subspace labeled by m. Given a Euclidean metric B on X, we may identify $\operatorname{Lag}(\mathbb{X})=\operatorname{O}(X)$; the tautological Dirac structure will be denoted by $(\mathbb{V}_{\operatorname{O}(X)},\ E_{\operatorname{O}(X)})$. It is equivariant for the conjugation action on $\operatorname{O}(X)$. We will now show that the tautological Dirac structure over $\operatorname{O}(X)$ is multiplicative, in the sense that group multiplication lifts to a strong Dirac morphism. Let $\Sigma\colon V_{\operatorname{O}(X)}\times V_{\operatorname{O}(X)}\to V_{\operatorname{O}(X)}$ be the bundle map, given by the group multiplication on $V_{\operatorname{O}(X)}$ viewed as a semi-direct product $\operatorname{O}(X)\ltimes X$. That is,

$$\Sigma((A_1, \xi_1), (A_2, \xi_2)) = (A_1 A_2, A_2^{-1} \xi_1 + \xi_2).$$
(3)

Let σ be the 2-form on $V_{O(X)} \times V_{O(X)}$, given at $(A_1, A_2) \in O(X) \times O(X)$ as follows:

$$\sigma_{(A_1,A_2)}((\xi_1,\xi_2),(\zeta_1,\zeta_2)) = \frac{1}{2}(B(\xi_1,A_2\zeta_2) - B(A_2\xi_2,\zeta_1)). \tag{4}$$

Similar to [1, Section 3.4] we have the following.

Proposition 2.5. The map Σ and 2-form σ define a strong Dirac morphism

$$(\Sigma, \sigma)$$
: $(\mathbb{V}_{O(X)}, E_{O(X)}) \times (\mathbb{V}_{O(X)}, E_{O(X)}) \longrightarrow (\mathbb{V}_{O(X)}, E_{O(X)})$.

This morphism is associative in the sense that

$$(\Sigma, \sigma) \circ (\Sigma \times id, \sigma \times 0) = (\Sigma, \sigma) \circ (id \times \Sigma, 0 \times \sigma)$$

as morphisms $(\mathbb{V}, E) \times (\mathbb{V}, E) \times (\mathbb{V}, E) \longrightarrow (\mathbb{V}, E)$.

Outline of Proof. Given A_1 , $A_2 \in O(X)$ let $A = A_1 A_2$, and put

$$e(\xi) = \left((I - A^{-1})\xi, \ (I + A^{-1})\frac{\xi}{2} \right), \ \xi \in X.$$
 (5)

Define $e_i(\xi_i)$ similarly for A_1 and A_2 . One checks that

$$e_1(\xi_1) \times e_2(\xi_2) \sim_{(\Sigma,\sigma)} e(\xi)$$

if and only if $\xi_1 = \xi_2 = \xi$. The straightforward calculation is left to the reader. It follows that every element in $E_{O(X)}|_{A_1}$ is related to a unique element in $E_{O(X)}|_{A_1} \times E_{O(X)}|_{A_2}$.

2.7 Cayley transform and exponential map

The trivial bundle $V_{\wedge^2 X} = \wedge^2 X \times X$ carries a Dirac structure $(\mathbb{V}_{\wedge^2 X}, E_{\wedge^2 X})$, with fiber at $a \in \wedge^2 X$ the graph $\operatorname{Gr}_a = \{(\iota_\mu a, \mu) | \mu \in X^*\}$. It may be viewed as the restriction of the tautological Dirac structure under the inclusion $\wedge^2 X \hookrightarrow \operatorname{Lag}(\mathbb{X}), a \mapsto \operatorname{Gr}_a$. Use a Euclidean metric B on X to identify $\wedge^2 X = \mathfrak{o}(X)$, and write $(\mathbb{V}_{\mathfrak{o}(X)}, E_{\mathfrak{o}(X)})$. The orthogonal transformation corresponding to the Lagrangian subspace Gr_a is given by the Cayley transform $\frac{I+a/2}{I-a/2}$. Hence, the bundle map

$$\Theta: V_{\mathfrak{o}(X)} \to V_{\mathfrak{O}(X)}, \quad (a, \xi) \mapsto \left(\frac{I + a/2}{I - a/2}, \xi\right)$$

together with the zero 2-form define a strong Dirac morphism

$$(\Theta, 0)$$
: $(\mathbb{V}_{\mathfrak{o}(X)}, E_{\mathfrak{o}(X)}) \dashrightarrow (\mathbb{V}_{O(X)}, E_{O(X)})$,

with underlying map the Cayley transform. On the other hand, we may also try to lift the exponential map $\exp: \mathfrak{o}(X) \to O(X)$. Let

$$\Pi: V_{\mathfrak{o}(X)} \to V_{\mathfrak{O}(X)}, \quad (a, \xi) \mapsto \left(\exp(a), \frac{I - e^{-a}}{a} \xi \right),$$
(6)

the exponential map for the semi-direct product $o(X) \ltimes X \to O(X) \ltimes X$. Define a 2-form ϖ on $V_{o(X)}$ by

$$\varpi_a(\xi_1, \xi_2) = -B\left(\frac{a - \sinh(a)}{a^2}\xi_1, \xi_2\right).$$
(7)

The following is parallel to [1, Section 3.5].

Proposition 2.6. The map Π and the 2-form ϖ define a Dirac morphism

$$(\Pi, -\varpi)$$
: $(\mathbb{V}_{\mathfrak{o}(X)}, E_{\mathfrak{o}(X)}) \dashrightarrow (\mathbb{V}_{\mathcal{O}(X)}, E_{\mathcal{O}(X)})$.

It is a strong Dirac morphism over the open subset $\mathfrak{o}(V)_{\natural}$, where the exponential map has maximal rank.

Outline of Proof. Let $a \in \mathfrak{o}(X)$ and $A = \exp(a)$ be given. Let $e(\xi)$ be as in (5), and define $e_0(\xi) = (a\xi, \xi)$. One checks by straightforward calculation that

$$e_0(\xi) \sim_{(\Pi,-\varpi)} e(\xi)$$

proving that $(\Pi, -\varpi)$: $(\mathbb{V}_{\mathfrak{o}(X)}, E_{\mathfrak{o}(X)}) \dashrightarrow (\mathbb{V}_{O(X)}, E_{O(X)})$ is a Dirac morphism. Suppose now that the exponential map is regular at a. By the well-known formula for the differential of the exponential map, this is equivalent to invertibility of Π_a . An element of the form $(a\xi, \xi)$ lies in $\ker(\Theta, \omega)$ if and only if $\Pi_a(a\xi) = 0$ and $\xi = \iota_{a\xi} \varpi_a$. The first condition shows that $a\xi = 0$, and then the second condition gives $\xi = 0$. Hence $e_0(\xi) \sim_{(\Pi, -\varpi)} 0 \Rightarrow$ $\xi=0$. Conversely, if Π_a is not invertible, and $\xi\neq 0$ is an element in the kernel, then $(a\xi,\xi)\sim_{(\Pi,-\varpi)} 0.$

3 Dixmier-Douady Bundles and Morita Morphisms

We give a quick review of Dixmier-Douady bundles, geared towards applications in twisted K-theory. For more information, we refer to the articles [6, 11, 16-18, 29] and the monograph [27]. Dixmier-Douady bundles are also known as Azumaya bundles.

3.1 Dixmier-Douady bundles

A Dixmier-Douady bundle is a locally trivial bundle $A \to M$ of \mathbb{Z}_2 -graded C^* -algebras, with typical fiber $\mathbb{K}(\mathcal{H})$ the compact operators on a \mathbb{Z}_2 -graded (separable) complex Hilbert space, and with structure group $Aut(\mathbb{K}(\mathcal{H})) = PU(\mathcal{H})$, using the strong operator topology. The tensor product of two such bundles $A_1, A_2 \to M$ modeled on $\mathbb{K}(\mathcal{H}_1), \mathbb{K}(\mathcal{H}_2)$ is a Dixmier–Douady bundle $\mathcal{A}_1\otimes\mathcal{A}_2$ modeled on $\mathbb{K}(\mathcal{H}_1\otimes\mathcal{H}_2)$. For any Dixmier–Douady bundle $A \to M$ modeled on $\mathbb{K}(\mathcal{H})$, the bundle of opposite C^* -algebras $A^{\mathrm{op}} \to M$ is a Dixmier-Douady bundle modeled on $\mathbb{K}(\mathcal{H}^{op})$, where \mathcal{H}^{op} denotes the opposite (or conjugate) Hilbert space.

3.2 Morita isomorphisms

A Morita isomorphism $\mathcal{E}: \mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ between two Dixmier-Douady bundles over M is a \mathbb{Z}_2 -graded bundle $\mathcal{E} \to M$ of Banach spaces, with a fiberwise $\mathcal{A}_2 - \mathcal{A}_1$ bimodule structure

$$\mathcal{A}_2 \circlearrowleft \mathcal{E} \circlearrowleft \mathcal{A}_1$$

that is locally modeled on $\mathbb{K}(\mathcal{H}_2) \circlearrowleft \mathbb{K}(\mathcal{H}_1,\mathcal{H}_2) \circlearrowleft \mathbb{K}(\mathcal{H}_1)$. Here $\mathbb{K}(\mathcal{H}_1,\mathcal{H}_2)$ denotes the \mathbb{Z}_2 -graded Banach space of compact operators from \mathcal{H}_1 to \mathcal{H}_2 . In terms of the associated principal bundles, a Morita isomorphism is given by a lift of the structure group $PU(\mathcal{H}_2) \times PU(\mathcal{H}_1^{op})$ of $\mathcal{A}_2 \otimes \mathcal{A}_1^{op}$ to $PU(\mathcal{H}_2 \otimes \mathcal{H}_1^{op})$. The composition of two Morita isomorphisms $\mathcal{E} \colon \mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ and $\mathcal{E}' \colon \mathcal{A}_2 \dashrightarrow \mathcal{A}_3$ is given by $\mathcal{E}' \circ \mathcal{E} = \mathcal{E}' \otimes_{\mathcal{A}_2} \mathcal{E}$, the fiberwise completion of the algebraic tensor product over \mathcal{A}_2 . In local trivializations, it is given by the composition $\mathbb{K}(\mathcal{H}_2,\mathcal{H}_3) \times \mathbb{K}(\mathcal{H}_1,\mathcal{H}_2) \to \mathbb{K}(\mathcal{H}_1,\mathcal{H}_3)$.

Example 3.1.

- (a) A Morita isomorphism $\mathcal{E} \colon \mathbb{C} \dashrightarrow \mathcal{A}$ is called a *Morita trivialization* of \mathcal{A} , and amounts to a Hilbert space bundle \mathcal{E} with an isomorphism $\mathcal{A} = \mathbb{K}(\mathcal{E})$.
- (b) Any *-bundle isomorphism $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ may be viewed as a Morita isomorphism $\mathcal{A}_1 \dashrightarrow \mathcal{A}_2$, by taking $\mathcal{E} = \mathcal{A}_2$ with the $\mathcal{A}_2 \mathcal{A}_1$ -bimodule action $x_2 \cdot y \cdot x_1 = x_2 y \phi(x_1)$.
- (c) For any Morita isomorphism $\mathcal{E}\colon \mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ there is an *opposite* Morita isomorphism $\mathcal{E}^{\mathrm{op}}\colon \mathcal{A}_2 \dashrightarrow \mathcal{A}_1$, where $\mathcal{E}^{\mathrm{op}}$ is equal to \mathcal{E} as a real vector bundle, but with the opposite scalar multiplication. Denoting by $\chi\colon \mathcal{E}\to \mathcal{E}^{\mathrm{op}}$ the antilinear map given by the identity map of the underlying real bundle, the $\mathcal{A}_1 \mathcal{A}_2$ -bimodule action reads $x_1 \cdot \chi(e) \cdot x_2 = \chi(x_2^* \cdot e \cdot x_1^*)$. The Morita isomorphism $\mathcal{E}^{\mathrm{op}}$ is "inverse" to \mathcal{E} , in the sense that there are canonical bimodule isomorphisms

$$\mathcal{E}^{\text{op}} \circ \mathcal{E} \cong \mathcal{A}_1, \quad \mathcal{E} \circ \mathcal{E}^{\text{op}} \cong \mathcal{A}_2.$$

3.3 Dixmier-Douady theorem

The Dixmier-Douady theorem (in its \mathbb{Z}_2 -graded version) states that the Morita isomorphism classes of Dixmier-Douady bundles $\mathcal{A} \to M$ are classified by elements

$$\mathrm{DD}(\mathcal{A}) \in H^3(M,\mathbb{Z}) \times H^1(M,\mathbb{Z}_2),$$

called the *Dixmier-Douady class* of \mathcal{A} . Write $DD(\mathcal{A}) = (x, y)$. Letting $\hat{\mathcal{A}}$ be the Dixmier-Douady bundle obtained from \mathcal{A} by forgetting the \mathbb{Z}_2 -grading, the element x is the obstruction to the existence of a (ungraded) Morita trivialization $\hat{\mathcal{E}} : \mathbb{C} \dashrightarrow \hat{\mathcal{A}}$. The class y corresponds to the obstruction of introducing a compatible \mathbb{Z}_2 -grading on $\hat{\mathcal{E}}$. In more detail, given a loop $y: S^1 \to M$ representing a homology class $[y] \in H_1(M, \mathbb{Z})$, choose

a Morita trivialization $(\gamma, \hat{\mathcal{F}}): \mathbb{C} \longrightarrow \hat{\mathcal{A}}$. Then $y([\gamma]) = \pm 1$, depending on whether or not $\hat{\mathcal{F}}$ admits a compatible \mathbb{Z}_2 -grading.

- (a) The opposite Dixmier–Douady bundle \mathcal{A}^{op} has class $DD(\mathcal{A}^{op}) = -DD(\mathcal{A})$.
- (b) If $DD(A_i) = (x_i, y_i)$, i = 1, 2, are the classes corresponding to two Dixmier-Douady bundles A_1 , A_2 over M, then [6, Proposition 2.3]

$$DD(A_1 \otimes A_2) = (x_1 + x_2 + \tilde{\beta}(y_1 \cup y_2), y_1 + y_2),$$

where $y_1 \cup y_2 \in H^2(M, \mathbb{Z}_2)$ is the cup product, and $\tilde{\beta} \colon H^2(M, \mathbb{Z}_2) \to H^3(M, \mathbb{Z})$ is the Bockstein homomorphism.

Remark 3.2. Let $A \to M$ be a Dixmier-Douady bundle. Choose an open cover $\{U_i, i \in I\}$ of M such that the restriction $A|_{U_i}$ is Morita trivial, and pick a Morita trivialization $\mathcal{E}_i \colon \mathbb{C} \to \mathcal{A}|_{U_i}$. On overlaps $U_{ij} = U_i \cap U_j$, the Morita trivializations are related by \mathbb{Z}_2 -graded line bundles $L_{ij} = \text{Hom}_{\mathcal{A}}(\mathcal{E}_i, \mathcal{E}_j)$ (cf. 3.4 below). By construction, these come with trivializations θ_{ijk} : $L_{ij} \otimes L_{jk} \otimes L_{ki} \cong \mathbb{C}$ on triple overlaps, satisfying a coherence condition on quadruple overlaps. One thus obtains a (\mathbb{Z}_2 -graded) "gerbe" in the description of Hitchin [15, Section 1.2]. П

3.4 2-isomorphisms

Let A_1 and A_2 be given Dixmier-Douady bundles over M.

Definition 3.3. A 2-isomorphism between two Morita isomorphisms

$$\mathcal{E}, \mathcal{E}' \colon \mathcal{A}_1 \dashrightarrow \mathcal{A}_2$$

is a continuous bundle isomorphism $\mathcal{E} \to \mathcal{E}'$, intertwining the norms, the \mathbb{Z}_2 -gradings and the $A_2 - A_1$ -bimodule structures.

Equivalently, a 2-isomorphism may be viewed as a trivialization of the \mathbb{Z}_2 -graded Hermitian line bundle

$$L = \operatorname{Hom}_{A_2 - A_1}(\mathcal{E}, \mathcal{E}') \tag{8}$$

given by the fiberwise bimodule homomorphisms. Any two Morita bimodules are related by (8) as $\mathcal{E}' = \mathcal{E} \otimes L$. It follows that the set of 2-isomorphism classes of Morita isomorphisms $\mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ is either empty, or is a principal homogeneous space (torsor) for the group $H^2(M, \mathbb{Z}) \times H^0(M, \mathbb{Z}_2)$ of \mathbb{Z}_2 -graded line bundles.

Example 3.4. Suppose the Morita isomorphisms \mathcal{E} and \mathcal{E}' are connected by a continuous path \mathcal{E}_s of Morita isomorphisms, with $\mathcal{E}_0 = \mathcal{E}$, $\mathcal{E}_1 = \mathcal{E}'$. Then they are 2-isomorphic, in fact, $L_s = \operatorname{Hom}_{\mathcal{A}_2 - \mathcal{A}_1}(\mathcal{E}, \mathcal{E}_s)$ is a path connecting (8) to the trivial line bundle.

Example 3.5. Suppose \mathcal{A}_s , $s \in [0, 1]$ is a continuous family of Dixmier–Douady-bundles over M, that is, their union defines a Dixmier–Douady bundle $\mathcal{A} \to [0, 1] \times M$. Then there exists a continuous family of isomorphisms $\phi_s \colon \mathcal{A}_0 \to \mathcal{A}_s$, that is, an isomorphism $\operatorname{pr}_2^* \mathcal{A}_0 \cong \mathcal{A}$ of bundles over $[0, 1] \times M$. (The existence of such an isomorphism is clear in terms of the associated principal $\operatorname{PU}(\mathcal{H})$ -bundles.) By composing with ϕ_0^{-1} if necessary, we may assume $\phi_0 = \operatorname{id}$. Any other such family of isomorphisms $\phi_s' \colon \mathcal{A}_0 \to \mathcal{A}_s$, $\phi_0' = \operatorname{id}$ is related to ϕ_s by a family L_s of line bundles, with L_0 the trivial line bundle. We conclude that the homotopy of Dixmier–Douady bundles \mathcal{A}_s gives a distinguished 2-isomorphism class of isomorphisms $\mathcal{A}_0 \to \mathcal{A}_1$.

3.5 Clifford algebra bundles

Suppose that $V \to M$ is a Euclidean vector bundle of rank n. A Spin_c structure on V is given by an orientation on V together with a lift of the structure group of V from SO(n) to Spin_c(n), where $n = \operatorname{rk}(V)$. According to Connes [10] and Plymen [24], this is equivalent to Definition 3.6 in terms of Dixmier–Douady bundles.

Recall that if n is even, then the associated bundle of complex Clifford algebras $\mathbb{C}\,\mathrm{l}(V)$ is a Dixmier–Douady bundle, modeled on $\mathbb{C}\,\mathrm{l}(\mathbb{R}^n)=\mathrm{End}(\wedge\mathbb{C}^{n/2})$. In this case, a Spinc structure may be defined to be a Morita trivialization $\mathcal{S}\colon\mathbb{C}\dashrightarrow\mathbb{C}\,\mathrm{l}(V)$, with \mathcal{S} being the associated spinor bundle. To include the case of odd rank, it is convenient to introduce

$$\tilde{V} = V \oplus \mathbb{R}^n$$
, $\widetilde{\mathbb{C}} l(V) := \mathbb{C} l(\tilde{V})$.

Definition 3.6. A $Spin_c$ *structure* on a Euclidean vector bundle V is a Morita trivialization

$$\widetilde{\mathcal{S}} \colon \mathbb{C} \dashrightarrow \widetilde{\mathbb{C}} l(V).$$

The bundle $ilde{\mathcal{S}}$ is called the corresponding *spinor bundle*. An isomorphism of two $\mathsf{Spin}_{\mathsf{c}}$ structures is a 2-isomorphism of the defining Morita trivializations.

If *n* is even, one recovers S by composing with the Morita isomorphism $\widetilde{\mathbb{Cl}}(V) \longrightarrow$ $\mathbb{C}l(V)$. The Dixmier-Douady class (x, y) of $\widetilde{\mathbb{C}l}(V)$ is the obstruction to the existence of a Spin_c structure: In fact, *x* is the third integral Stiefel–Whitney class $\tilde{\beta}(w_2(V)) \in H^3(M, \mathbb{Z})$, while y is the first Stiefel-Whitney class $w_1(V) \in H^1(M, \mathbb{Z}_2)$, that is, the obstruction to orientability of V.

Any two Spin_c-structures on V differ by a \mathbb{Z}_2 -graded Hermitian line bundle, and an isomorphism of Spinc structures amounts to a trivialization of this line bundle. Observe that there is a Morita trivialization

$$\wedge \widetilde{V}^{\mathbb{C}} \colon \mathbb{C} \dashrightarrow \widetilde{\mathbb{C}} \, \mathrm{l}(V \oplus V) = \widetilde{\mathbb{C}} \, \mathrm{l}(V) \otimes \widetilde{\mathbb{C}} \, \mathrm{l}(V)$$

defined by the complex structure on $\tilde{V}\oplus \tilde{V}\cong \tilde{V}\otimes \mathbb{R}^2$. Hence, given a $\mathrm{Spin}_{\mathrm{c}}$ structure, we can define the Hermitian line bundle

$$K_{\tilde{S}} = \operatorname{Hom}_{\widetilde{\mathbb{C}}1(V \oplus V)}(\tilde{S} \otimes \tilde{S}, \wedge \tilde{V}^{\mathbb{C}}). \tag{9}$$

(If n is even, one may omit the \sim 's.) This is the *canonical line bundle* of the Spin_c structure. If the $Spin_c$ structure on V is defined by a complex structure J, then the canonical bundle coincides with $\det(V_{-}) = \wedge^{n/2} V_{-}$, where $V_{-} \subset V^{\mathbb{C}}$ is the -i eigenspace of J.

3.6 Morita morphisms

It is convenient to extend the notion of Morita isomorphisms of Dixmier-Douady bundles, allowing nontrivial maps on the base. A Morita morphism

$$(\Phi, \mathcal{E}) \colon \mathcal{A}_1 \dashrightarrow \mathcal{A}_2 \tag{10}$$

of bundles $A_i \to M_i$, i=1,2 is a continuous map $\Phi: M_1 \to M_2$ together with a Morita isomorphism $\mathcal{E}: \mathcal{A}_1 \dashrightarrow \Phi^* \mathcal{A}_2$. A given map Φ lifts to such a Morita morphism if and only if $DD(A_1) = \Phi^* DD(A_2)$. Composition of Morita morphisms is defined as $(\Phi', \mathcal{E}') \circ (\Phi, \mathcal{E}) =$ $(\Phi' \circ \Phi, \Phi^* \mathcal{E}' \circ \mathcal{E})$. If $\mathcal{E} : \mathbb{C} \dashrightarrow \mathcal{A}$ is a Morita trivialization, we can think of $\mathcal{E}^{op} : \mathcal{A} \dashrightarrow \mathbb{C}$ as a Morita morphism covering the map $M \rightarrow \text{pt.}$ As mentioned in Section 1, a Morita morphism (10) such that Φ is *proper* induces a push-forward map in twisted K-homology.

3.7 Equivariance

The Dixmier–Douady theory generalizes to the G-equivariant setting, where G is a compact Lie group. G-equivariant Dixmier–Douady bundles over a G-space M are classified by $H^3_G(M,\mathbb{Z}) \times H^1_G(M,\mathbb{Z}_2)$. If M is a point, a G-equivariant Dixmier–Douady bundle $\mathcal{A} \to \operatorname{pt}$ is of the form $\mathcal{A} = \mathbb{K}(\mathcal{H})$, where \mathcal{H} is a \mathbb{Z}_2 -graded Hilbert space with an action of a central extension \hat{G} of G by U(1). (It is a well-known fact that $H^3_G(\operatorname{pt},\mathbb{Z}) = H^3(BG,\mathbb{Z})$ classifies such central extensions.) The definition of $\operatorname{Spin}_{\mathbb{C}}$ structures in terms of Morita morphisms extends to the G-equivariant in the obvious way.

4 Families of skew-adjoint real Fredholm operators

In this section, we will explain how a continuous family of skew-adjoint Fredholm operators on a bundle of real Hilbert spaces defines a Dixmier-Douady bundle. The construction is inspired by ideas in Atiyah-Segal [6], Carey-Mickelsson-Murray [9, 23], and Freed-Hopkins-Teleman [14, Section 3].

4.1 Infinite-dimensional Clifford algebras

We briefly review the spin representation for infinite-dimensional Clifford algebras. Excellent sources for this material are the book [25] by Plymen and Robinson and the article [5] by Araki.

Let $\mathcal V$ be an infinite-dimensional real Hilbert space, and $\mathcal V^{\mathbb C}$ its complexification. The Hermitian inner product on $\mathcal V^{\mathbb C}$ will be denoted $\langle\cdot,\cdot\rangle$, and the complex conjugation map by $v\mapsto v^*$. Just as in the finite-dimensional case, one defines the Clifford algebra $\mathbb C\, \mathrm l(\mathcal V)$ as the $\mathbb Z_2$ -graded unital complex algebra with odd generators $v\in\mathcal V$ and relations, $vv=\langle v,v\rangle$. The Clifford algebra carries a unique anti-linear anti-involution $x\mapsto x^*$ extending the complex conjugation on $\mathcal V^{\mathbb C}$, and a unique norm $||\cdot||$ satisfying the $\mathcal C^*$ -condition $||x^*x||=||x||^2$. Thus, $\mathbb C\, \mathrm l(\mathcal V)$ is a $\mathbb Z_2$ -graded pre- $\mathcal C^*$ -algebra.

A (unitary) module over $\mathbb{C} l(\mathcal{V})$ is a complex \mathbb{Z}_2 -graded Hilbert space \mathcal{E} together with a *-homomorphism $\varrho \colon \mathbb{C} l(\mathcal{V}) \to \mathcal{L}(\mathcal{E})$ preserving \mathbb{Z}_2 -gradings. Here, $\mathcal{L}(\mathcal{E})$ is the *-algebra of bounded linear operators, and the condition on the grading means that $\varrho(v)$ acts as an odd operator for each $v \in \mathcal{V}^{\mathbb{C}}$.

We will view $\mathcal{L}(\mathcal{V})$ (the bounded \mathbb{R} -linear operators on \mathcal{V}) as an \mathbb{R} -linear subspace of $\mathcal{L}(\mathcal{V}^{\mathbb{C}})$. Operators in $\mathcal{L}(\mathcal{V})$ will be called *real*. A real skew-adjoint operator $J \in \mathcal{L}(\mathcal{V})$ is called an *orthogonal complex structure* on \mathcal{V} if it satisfies $J^2 = -I$. Note $J^* = -J = J^{-1}$, so that $J \in O(\mathcal{V})$.

The orthogonal complex structure defines a decomposition $\mathcal{V}^{\mathbb{C}} = \mathcal{V}_+ \oplus \mathcal{V}_-$ into maximal isotropic subspaces $\mathcal{V}_{\pm} = \ker(J \mp i) \subset \mathcal{V}^{\mathbb{C}}$. Note $v \in \mathcal{V}_{+} \Leftrightarrow v^{*} \in \mathcal{V}_{-}$. Define a Clifford action of $\mathbb{C} l(\mathcal{V})$ on $\wedge \mathcal{V}_+$ by the formula

$$\rho(v) = \sqrt{2}(\epsilon(v_+) + \iota(v_-)),$$

writing $v = v_+ + v_-$ with $v_{\pm} \in \mathcal{V}_{\pm}$. Here $\epsilon(v_+)$ denotes exterior multiplication by v_+ , while the contraction $\iota(v_-)$ is defined as the unique derivation such that $\iota(v_-)w = \langle v_-^*, w \rangle$ for $w \in \mathcal{V}^{\mathbb{C}} \subset \wedge \mathcal{V}^{\mathbb{C}}$. Passing to the Hilbert space completion one obtains a unitary \mathbb{Z}_2 -graded Clifford module

$$S_J = \overline{\wedge V_+},$$

called the *spinor module* or *Fock representation* defined by *J*.

The equivalence problem for Fock representations was solved by Shale and Stinespring [32]. See also [25, Theorem 3.5.2]. Let $\mathcal{L}_{HS}(\mathcal{V})$ be the space of real Hilbert–Schmidt operators on \mathcal{V} .

Theorem 4.1 (Shale–Stinespring). The $\mathbb{C}l(\mathcal{V})$ -modules \mathcal{S}_1 and \mathcal{S}_2 defined by orthogonal complex structures J_1 and J_2 are unitarily isomorphic (up to possible reversal of the \mathbb{Z}_2 -grading) if and only if $J_1 - J_2 \in \mathcal{L}_{HS}(\mathcal{V})$. In this case, the unitary operator implementing the isomorphism is unique up to a scalar $z \in \mathrm{U}(1)$. The implementer has even or odd parity, according to the parity of $\frac{1}{2}$ dim ker $(J_1 + J_2) \in \mathbb{Z}$.

Definition 4.2. [14, 30, p. 193] Two orthogonal complex structures J_1 and J_2 on a real Hilbert space \mathcal{V} are called equivalent (written $J_1 \sim J_2$) if their difference is Hilbert-Schmidt. An equivalence class of complex structures on \mathcal{V} (resp. on $\mathcal{V} \oplus \mathbb{R}$) is called an even (resp. odd) polarization of \mathcal{V} .

By Theorem 4.1, the \mathbb{Z}_2 -graded C^* -algebra $\mathbb{K}(\mathcal{S}_J)$ depends only on the equivalence class of J, in the sense that there exists a canonical identification $\mathbb{K}(S_{J_1}) \equiv \mathbb{K}(S_{J_2})$ whenever $J_1 \sim J_2$. That is, any polarization of V determines a Dixmier–Douady algebra.

4.2 Skew-adjoint Fredholm operators

Suppose D is a real skew-adjoint (possibly unbounded) Fredholm operator on V, with dense domain $dom(D) \subset \mathcal{V}$. In particular, D has a finite-dimensional kernel, and 0 is an isolated point of the spectrum. Let J_D denote the real skew-adjoint operator,

$$J_D = i \operatorname{sign}\left(\frac{1}{i}D\right)$$

(using functional calculus for the self-adjoint operator $\frac{1}{i}D$). Thus J_D is an orthogonal complex structure on $\ker(D)^{\perp}$, and vanishes on $\ker(D)$. If $\ker(D) = 0$, then we may also write $J_D = \frac{D}{|D|}$. The same definition of J_D also applies to complex skew-adjoint Fredholm operators. We have the following.

Proposition 4.3. Let D be a (real or complex) skew-adjoint Fredholm operator, and Q a skew-adjoint Hilbert–Schmidt operator. Then $J_{D+Q} - J_D$ is Hilbert–Schmidt.

The following simple proof was shown to us by Gian-Michele Graf.

Proof. Choose $\epsilon > 0$ so that the spectrum of D, D + Q intersects the set $|z| < 2\epsilon$ only in $\{0\}$. Replacing D with $D + i\epsilon$ if necessary, and noting that $J_{D+i\epsilon} - J_D$ has a finite rank, we may thus assume that 0 is not in the spectrum of D or of D + Q. One then has the following presentation of J_D as a Riemannian integral of the resolvent $R_z(D) = (D-z)^{-1}$,

$$J_D = -\frac{1}{\pi} \int_{-\infty}^{\infty} R_t(D) \, \mathrm{d}t,$$

convergent in the strong topology. Using a similar expression for J_{D+Q} and the second resolvent identity $R_t(D+Q)-R_t(D)=-R_t(D+Q)\ Q\ R_t(D)$,

we obtain

$$J_{D+Q} - J_D = \frac{1}{\pi} \int_{-\infty}^{\infty} R_t(D+Q) \ Q \ R_t(D) \ \mathrm{d}t.$$

Let a > 0 be such that the spectrum of D, D + Q does not meet the disk $|z| \le a$. Then $||R_t(D)||, ||R_t(D+Q)|| \le (t^2 + a^2)^{-1/2}$ for all $t \in \mathbb{R}$. Hence

$$||R_t(D+Q)||_{HS} \le \frac{1}{t^2+a^2}||Q||_{HS},$$

using $||AB||_{HS} \le ||A|| \, ||B||_{HS}$. Since $\int (t^2 + a^2)^{-1} \, dt = \pi/a$, we obtain the estimate

$$||J_{D+Q} - J_D||_{HS} \le \frac{1}{a}||Q||_{HS}.$$
 (11)

A real skew-adjoint Fredholm operator D on \mathcal{V} will be called of *even* (resp. odd) type if ker(D) has even (resp. odd) dimension. As in [14, Section 3.1], we associate to any D of even type the even polarization defined by the orthogonal complex structures $J \in O(\mathcal{V})$ such that $J - J_D$ is Hilbert–Schmidt. For D of odd type, we similarly obtain an odd polarization by viewing J_D as an operator on $\mathcal{V} \oplus \mathbb{R}$ (equal to 0 on \mathbb{R}).

Two skew-adjoint real Fredholm operators D_1 and D_2 on \mathcal{V} will be called equivalent (written $D_1 \sim D_2$) if they define the same polarization of \mathcal{V} , and hence the same Dixmier-Douady algebra \mathcal{A} . Equivalently, D_i have the same parity and $J_{D_1}-J_{D_2}$ is Hilbert-Schmidt. In particular, $D \sim D + Q$ whenever Q is a skew-adjoint Hilbert-Schmidt operator. In the even case, we can always choose Q so that D+Q is invertible, while in the odd case we can choose such a Q after passing to $\mathcal{V} \oplus \mathbb{R}$.

Remark 4.4. The estimate (11) show that for fixed D (such that D and D+Q have trivial kernels), the difference $J_{D+Q} - J_D \in \mathcal{L}_{HS}(\mathcal{X})$ depends continuously on Q in the Hilbert-Schmidt norm. On the other hand, it also depends continuously on D relative to the norm resolvent topology [28, p. 284]. This follows from the integral representation of $J_{D+Q} - J_D$, together with resolvent identities such as

$$R_t(D') - R_t(D) = R_t(D')R_1(D')^{-1}(R_1(D') - R_1(D))R_1(D)^{-1}R_t(D)$$

giving estimates $||R_t(D') - R_t(D)|| \le (t^2 + a^2)^{-1} ||R_1(D') - R_1(D)||$ for a > 0 such that the spectrum of D and D' does not meet the disk of radius a.

4.3 Polarizations of bundles of real Hilbert spaces

Let $\mathcal{V} \to M$ be a bundle of real Hilbert spaces, with typical fiber \mathcal{X} and with structure group $O(\mathcal{X})$ (using the norm topology). A polarization on \mathcal{V} is a family of polarizations on \mathcal{V}_m , depending continuously on m. To make this precise, fix an orthogonal complex structure $J_0 \in O(\mathcal{X})$, and let $\mathcal{L}_{res}(\mathcal{X})$ be the Banach space of bounded linear operators S such that $[S, J_0]$ is Hilbert-Schmidt, with norm $||S|| + ||[S, J_0]||_{HS}$. Define the restricted orthogo $nal\ group\ O_{res}(\mathcal{X}) = O(\mathcal{X}) \cap \mathcal{L}_{res}(\mathcal{X})$, with the subspace topology. It is a Banach Lie group, with Lie algebra $\mathfrak{o}_{res}(\mathcal{X}) = \mathfrak{o}(\mathcal{X}) \cap \mathcal{L}_{res}(\mathcal{X})$. The unitary group $U(\mathcal{X}) = U(\mathcal{X}, J_0)$ relative to J_0 , equipped with the norm topology is a Banach subgroup of $O_{res}(\mathcal{X})$. For more details on the restricted orthogonal group, we refer to Araki [5] or Pressley-Segal[26].

Definition 4.5. An even *polarization* of the real Hilbert space bundle $\mathcal{V} \to M$ is a reduction of the structure group $O(\mathcal{X})$ to the restricted orthogonal group $O_{res}(\mathcal{X})$. An odd polarization of \mathcal{V} is an even polarization of $\mathcal{V} \oplus \mathbb{R}$.

Thus, a polarization is described by a system of local trivializations of $\mathcal V$ the transition functions of which are continuous maps into $O_{res}(\mathcal X)$. Any global complex structure on $\mathcal V$ defines a polarization, but not all polarizations arise in this way.

Proposition 4.6. Suppose $\mathcal{V} \to M$ comes equipped with a polarization. For $m \in M$, let \mathcal{A}_m be the Dixmier-Douady algebra defined by the polarization on \mathcal{V}_m . Then $\mathcal{A} = \bigcup_{m \in M} \mathcal{A}_m$ is a Dixmier-Douady bundle.

Proof. We consider the case of an even polarization (for the odd case, replace $\mathcal V$ with $\mathcal V\oplus\mathbb R$). By assumption, the bundle $\mathcal V$ has a system of local trivializations with transition functions in $O_{res}(\mathcal X)$. Let $\mathcal S_0$ be the spinor module over $\mathbb C\, l(\mathcal X)$ defined by $\mathcal J_0$, and $PU(\mathcal S_0)$ the projective unitary group with the strong operator topology. A version of the Shale–Stinespring theorem [25, Theorem 3.3.5] says that an orthogonal transformation is implemented as a unitary transformation of $\mathcal S_0$ if and only if it lies in $O_{res}(\mathcal X)$, and in this case the implementer is unique up to scalar. According to Araki [5, Theorem 6.10(7)], the resulting group homomorphism $O_{res}(\mathcal X) \to PU(\mathcal S_0)$ is continuous. That is, $\mathcal A$ admits the structure group $PU(\mathcal S_0)$ with the strong topology.

In terms of the principal $O_{res}(\mathcal{X})$ -bundle $\mathcal{P} \to M$ defined by the polarization of \mathcal{V} , the Dixmier–Douady bundle is an associated bundle

$$\mathcal{A} = \mathcal{P} \times_{O_{ros}(\mathcal{X})} \mathbb{K}(\mathcal{S}_0).$$

4.4 Families of skew-adjoint Fredholm operators

Suppose now that $D = \{D_m\}$ is a family of (possibly unbounded) real skew-adjoint Fredholm operators on \mathcal{V}_m , depending continuously on $m \in M$ in the norm resolvent sense [28, p. 284]. That is, the bounded operators $(D_m - I)^{-1} \in \mathcal{L}(\mathcal{V}_m)$ define a continuous section of the bundle $\mathcal{L}(\mathcal{V})$ with the norm topology. The map $m \mapsto \dim \ker(D_m)$ is locally constant mod 2. The family D will be called of even (resp. odd) type if all $\dim \ker(D_m)$ are even (resp. odd). Each D_m defines an even (resp. odd) polarization of \mathcal{V}_m , given by the complex structures on \mathcal{V}_m or $\mathcal{V}_m \oplus \mathbb{R}$ the difference with J_{D_m} of which is Hilbert–Schmidt.

Proposition 4.7. Let $D = \{D_m\}$ be a family of (possibly unbounded) real skew-adjoint Fredholm operators on \mathcal{V}_m , depending continuously on $m \in M$ in the norm resolvent sense. Then the corresponding family of polarizations on \mathcal{V}_m depends continuously on m in the sense of Definition 4.5. That is, D determines a polarization of \mathcal{V} .

Proof. We assume that the family D is of even type. (The odd case is dealt with by adding a copy of \mathbb{R} .) We will show the existence of a system of local trivializations

$$\phi_{\alpha} : \mathcal{V}|_{U_{\alpha}} = U_{\alpha} \times \mathcal{X}$$

and skew-adjoint Hilbert–Schmidt perturbations $Q_{\alpha} \in \Gamma(\mathcal{L}_{\mathrm{HS}}(\mathcal{V}|_{U_{\alpha}}))$ of $D|_{U_{\alpha}}$, continuous in the Hilbert–Schmidt norm (The sub-bundle $\mathcal{L}_{\mathrm{HS}}(\mathcal{V}) \subset \mathcal{L}(\mathcal{V})$ carries a topology, where a sections is continuous at $m \in M$ if its expression in a local trivialization of \mathcal{V} near m is continuous. (This is independent of the choice of trivialization.), so that

- (i) $\ker(D_m + Q_{\alpha}|_m) = 0$ for all $m \in U_{\alpha}$, and
- (ii) $\phi_{\alpha} \circ J_{D+Q_{\alpha}} \circ \phi_{\alpha}^{-1} = J_0.$

The transition functions $\chi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} \colon U_{\alpha} \cap U_{\beta} \to \mathrm{O}(\mathcal{X})$ will then take values in $\mathrm{O}_{\mathrm{res}}(\mathcal{X})$: Indeed, by Proposition 4.3 the difference $J_{D+Q_{\beta}} - J_{D+Q_{\alpha}}$ is Hilbert–Schmidt, and (using (11) and Remark 4.4) it is a continuous section of $\mathcal{L}_{\mathrm{HS}}(\mathcal{V})$ over $U_{\alpha} \cap U_{\beta}$. Conjugating by ϕ_{α} , and using (ii) it follows that

$$\chi_{\alpha\beta}^{-1} \circ J_0 \circ \chi_{\alpha\beta} - J_0 : U_{\alpha} \cap U_{\beta} \to \mathcal{L}(\mathcal{X})$$
 (12)

takes values in Hilbert–Schmidt operators, and is continuous in the Hilbert–Schmidt norm. Hence the $\chi_{\alpha\beta}$ are continuous functions into $O_{res}(\mathcal{X})$.

It remains to construct the desired system of local trivializations. It suffices to construct such a trivialization near any given $m_0 \in M$. Pick a continuous family of skew-adjoint Hilbert–Schmidt operators Q so that $\ker(D_{m_0}+Q_{m_0})=0$. (We may even take Q of finite rank.) Hence $J_{D_{m_0}+Q_{m_0}}$ is a complex structure. Choose an isomorphism $\phi_{m_0}\colon \mathcal{V}_{m_0}\to \mathcal{X}$ intertwining $J_{D_{m_0}+Q_{m_0}}$ with J_0 , and extend to a local trivialization $\phi\colon \mathcal{V}|_U\to U\times \mathcal{X}$ over a neighborhood U of m_0 . We may assume that $\ker(D_m+Q_m)=0$ for $m\in U$, defining complex structures $J_m=\phi_m\circ J_{D_m+Q_m}\circ\phi_m^{-1}$. By construction $J_{m_0}=J_0$, and hence $||J_m-J_0||<2$ after U is replaced by a smaller neighborhood if necessary.

By [25, Theorem 3.2.4], Condition (ii) guarantees that

$$g_m = (I - J_m J_0) |I - J_m J_0|^{-1}$$

gives a well-defined continuous map $g: U \to O(\mathcal{X})$ with $J_m = g_m J_0 g_m^{-1}$. Hence, replacing ϕ with $g \circ \phi$ we obtain a local trivialization satisfying (i) and (ii).

To summarize, a continuous family $D = \{D_m\}$ of skew-adjoint real Fredholm operators on $\mathcal V$ determines a polarization of $\mathcal V$. The fibers $\mathcal P_m$ of the associated principal $O_{\mathrm{res}}(\mathcal X)$ -bundle $\mathcal P \to M$ defining the polarization are given as the set of isomorphisms of real Hilbert spaces $\phi_m \colon \mathcal V_m \to \mathcal X$ such that $J_0 - \phi_m J_{D_m} \phi_m^{-1}$ is Hilbert–Schmidt. In turn, the polarization determines a Dixmier–Douady bundle $\mathcal A \to M$.

We list some elementary properties of this construction:

- (a) Suppose $\mathcal V$ has a finite rank. Then $\mathcal A=\mathbb C \, \mathrm l(\mathcal V)$ if the rank is even, and $\mathcal A=\mathbb C \, \mathrm l(\mathcal V\oplus\mathbb R)$ if the rank is odd. In both cases, $\mathcal A$ is canonically Morita isomorphic to $\widetilde{\mathbb C} \, \mathrm l(\mathcal V)$.
- (b) If ker(D) = 0 everywhere, the complex structure $J = D|D|^{-1}$ gives a global a spinor module S, defining a Morita trivialization

$$S: \mathbb{C} \longrightarrow A$$
.

- (c) If $\mathcal{V}=\mathcal{V}'\oplus\mathcal{V}''$ and $D=D'\oplus D''$, the corresponding Dixmier–Douady algebras satisfy $\mathcal{A}\cong\mathcal{A}'\otimes\mathcal{A}''$, provided the kernels of D' or D'' are even-dimensional. If both D' and D'' have odd-dimensional kernels, we obtain $\mathcal{A}\otimes\mathbb{C}\operatorname{l}(\mathbb{R}^2)\cong\mathcal{A}'\otimes\mathcal{A}''$. In any case, \mathcal{A} is canonically Morita isomorphic to $\mathcal{A}'\otimes\mathcal{A}''$.
- (d) Combining the three items above, it follows that if $V' = \ker(D)$ is a subbundle of V, then there is a canonical Morita isomorphism

$$\widetilde{\mathbb{C}\,l}(\mathcal{V}') \dashrightarrow \mathcal{A}.$$

(e) Given a *G*-equivariant family of skew-adjoint Fredholm operators (with *G* a compact Lie group) one obtains a *G*-Dixmier–Douady bundle.

Suppose D_1 and D_2 are two families of skew-adjoint Fredholm operators as in Proposition 4.7. We will call these families equivalent and write $D_1 \sim D_2$ if they define the same polarization of \mathcal{V} , and therefore the same Dixmier-Douady bundle $\mathcal{A} \to M$. We stress

that different polarizations can induce isomorphic Dixmier-Douady bundles, however, the isomorphism is usually not canonical.

5 From Dirac structures to Dixmier-Douady bundles

We will now use the constructions from the last section to associate to every Dirac structure (V, E) over M a Dixmier-Douady bundle $A_E \to M$, and to every strong Dirac morphism (Θ, ω) : $(\mathbb{V}, E) \dashrightarrow (\mathbb{V}', E')$ a Morita morphism. The construction is functorial "up to 2-isomorphisms".

The Dixmier-Douady algebra associated to a Dirac structure

Let (\mathbb{V}, E) be a Dirac structure over M. Pick a Euclidean metric on V, and let $V \to M$ be the bundle of real Hilbert spaces with fibers

$$V_m = L^2([0, 1], V_m).$$

Let $A \in \Gamma(O(V))$ be the orthogonal section corresponding to E, as in Section 2.4. Define a family $D_E = \{(D_E)_m, \ m \in M\}$ of operators on \mathcal{V} , where $(D_E)_m = \frac{\partial}{\partial t}$ with domain

$$dom((D_E)_m) = \{ f \in \mathcal{V}_m | \dot{f} \in \mathcal{V}_m, \ f(1) = -A_m \ f(0) \}.$$
 (13)

The condition that the distributional derivative \dot{f} lies in $L^2 \subset L^1$ implies that f is absolutely continuous; hence the boundary condition $f(1) = -A_m f(0)$ makes sense. The unbounded operators $(D_E)_m$ are closed and skew-adjoint (see, e.g. [28, Chapter VIII]). By Proposition A.4 in the Appendix, the family D_E is continuous in the norm resolvent sense, hence it defines a Dixmier–Douady bundle A_E by Proposition 4.7.

The kernel of the operator $(D_E)_m$ is the intersection of $V_m \subset \mathcal{V}_m$ (embedded as constant functions) with the domain (13). That is,

$$\ker((D_E)_m) = \ker(A_m + I) = V_m \cap E_m.$$

Proposition 5.1. Suppose $E \cap V$ is a sub-bundle of V. Then there is a canonical Morita isomorphism

$$\widetilde{\mathbb{C}}$$
l $(E \cap V) \longrightarrow \mathcal{A}_E$.

In particular, there are canonical Morita isomorphisms

$$\mathbb{C} \dashrightarrow \mathcal{A}_{V^*}, \quad \widetilde{\mathbb{C}} l(V) \dashrightarrow \mathcal{A}_{V}.$$

Proof. Since $\ker(D_E) \cong E \cap V$ is then a sub-bundle of \mathcal{V} , the assertion follows from item (d) in Section 4.4.

Remark 5.2. The definition of A_E depends on the choice of a Euclidean metric on V. However, since the space of Euclidean metrics is contractible, the bundles corresponding to two choices are related by a canonical 2-isomorphism class of isomorphisms. See Example 3.5.

Remark 5.3. The Dixmier–Douady class $DD(A_E) = (x, y)$ is an invariant of the Dirac structure (\mathbb{V}, E) . It may be constructed more directly as follows: Choose V' such that $V \oplus V' \cong X \times \mathbb{R}^N$ is trivial. Then $E \oplus (V')^*$ corresponds to a section of the orthogonal bundle, or equivalently to a map $f \colon X \to O(N)$. The class $DD(A_E)$ is the pull-back under f of the class over O(N) the restriction to each component of which is a generator of $H^3(\cdot, \mathbb{Z})$, respectively, $H^1(\cdot, \mathbb{Z}_2)$. (See Proposition 6.2.) However, not all classes in $H^3(X, \mathbb{Z}) \times H^1(X, \mathbb{Z}_2)$ are realized as such pull-backs.

The following proposition shows that the polarization defined by D_E depends very much on the choice of E, while it is not affected by perturbations of D_E by skew-adjoint multiplication operators M_μ . Let $L^\infty([0,1],\mathfrak{o}(V))$ denote the Banach bundle with fibers $L^\infty([0,1],\mathfrak{o}(V_m))$. Its continuous sections μ are given in local trivialization of V by continuous maps to $L^\infty([0,1],\mathfrak{o}(X))$. Fiberwise multiplication by μ defines a continuous homomorphism

$$L^{\infty}([0,1],\mathfrak{o}(V)) \to \mathcal{L}(\mathcal{V}), \quad \mu \mapsto M_{\mu}.$$

Proposition 5.4.

- (a) Let E and E' be two Lagrangian sub-bundles of V. Then $D_E \sim D_{E'}$ if and only if E = E'.
- (b) Let $\mu \in \Gamma(L^{\infty}([0, 1], \mathfrak{o}(V)))$, defining a continuous family of skew-adjoint multiplication operators $M_{\mu} \in \Gamma(\mathcal{L}(\mathcal{V}))$. For any Lagrangian sub-bundle $E \subset \mathbb{V}$ one has

$$D_E + M_{\mu} \sim D_E.$$

The proof is given in the Appendix, see Propositions A.2 and A.3.

5.2 Paths of Lagrangian sub-bundles

Suppose E_s , $s \in [0, 1]$ is a path of Lagrangian sub-bundles of V, and $A_s \in \Gamma(O(V))$ the resulting path of orthogonal transformations. In Example 3.5, we remarked that there is a path of isomorphisms $\phi_s \colon \mathcal{A}_{E_0} \to \mathcal{A}_{E_s}$ with $\phi_0 = \mathrm{id}$, and the 2-isomorphism class of the resulting isomorphism $\phi_1 \colon \mathcal{A}_{E_0} \to \mathcal{A}_{E_1}$ does not depend on the choice of ϕ_s . It is also clear from the discussion in Example 3.5 that the isomorphism defined by a concatenation of two paths is 2-isomorphic to the composition of the isomorphisms defined by the two paths.

If the family E_s is differentiable, there is a distinguished choice of the isomorphism $A_{E_0} \to A_{E_1}$, as follows.

Proposition 5.5. Suppose that $\mu_s := -\frac{\partial A_s}{\partial s} A_s^{-1}$ defines a continuous section of $L^{\infty}([0,1],\mathfrak{o}(V))$. Let $M_{\gamma} \in \Gamma(O(V))$ be the orthogonal transformation given fiberwise by pointwise multiplication by $\gamma_t = A_t A_0^{-1}$. Then

$$M_{\gamma} \circ D_{E_0} \circ M_{\gamma}^{-1} = D_{E_1} + M_{\mu} \sim D_{E_1}.$$

Thus, M_{γ} induces an isomorphism $\mathcal{A}_{E_0} \to \mathcal{A}_{E_1}$.

Proof. We have

$$f(1) = -A_0 f(0) \Leftrightarrow (M_{\nu} f)(1) = -A_1 (M_{\nu} f)(0),$$

which shows $M_{\gamma}(\text{dom}(D_{E_0})) = \text{dom}(D_{E_1})$, and

$$A_t A_0^{-1} \frac{\partial}{\partial t} (A_0 A_t^{-1} f) = \frac{\partial f}{\partial t} + \mu_t f.$$

Example 5.6.

- (a) Suppose E corresponds to $A = \exp(a)$ with $a \in \Gamma(\mathfrak{o}(V))$. Then $A_s = \exp(sa)$ defines a path from $A_0 = I$ and $A_1 = A$. Hence, we obtain an isomorphism $\mathcal{A}_{V^*} \to \mathcal{A}_E$. (The 2-isomorphism class of this isomorphism may depend on the choice of a.)
- (b) Any 2-form $\omega \in \Gamma(\wedge^2 V^*)$ defines an orthogonal transformation of \mathbb{V} , given by $(v,\alpha)\mapsto (v,\alpha-\iota_v\omega)$. Let E^ω be the image of the Lagrangian sub-bundle $E\subset \mathbb{V}$

under this transformation. The corresponding orthogonal transformations A and A^{ω} are related by

$$A^{\omega} = (A - \omega(A - I))(I - \omega(A - I))^{-1},$$

where we identified the 2-form ω with the corresponding skew-adjoint map $\omega \in \Gamma(\mathfrak{o}(V))$. Replacing ω with $s\omega$, one obtains a path E_s from $E_0 = E$ to $E_1 =$ E^{ω} , defining an isomorphism $\mathcal{A}_E o \mathcal{A}_{E^{\omega}}$.

5.3 The Dirac-Dixmier-Douady functor

Having assigned a Dixmier-Douady bundle to every Dirac structure on a Euclidean vector bundle V,

$$(\mathbb{V}, E) \rightsquigarrow \mathcal{A}_E \tag{14}$$

we will now associate a Morita morphism to every strong Dirac morphism:

$$((\Theta, \omega): (\mathbb{V}, E) \longrightarrow (\mathbb{V}', E')) \rightsquigarrow ((\Phi, \mathcal{E}): \mathcal{A}_E \longrightarrow \mathcal{A}_{E'}). \tag{15}$$

Here, $\Phi: M \to M'$ is underlying the map on the base. Theorem 5.7 states that (15) is compatible with compositions "up to 2-isomorphism". Thus, if we take the morphisms for the category of Dixmier-Douady bundles to be the 2-isomorphism classes of Morita morphisms, and if we include the Euclidean metric on V as part of a Dirac structure, the construction (14) and (15) defines a functor. We will call this the Dirac-Dixmier-Douady functor.

The Morita isomorphism $\mathcal{E}: \mathcal{A}_E \dashrightarrow \Phi^* \mathcal{A}_{E'} = \mathcal{A}_{\Phi^* E'}$ in (15) is defined as a composition

$$\mathcal{A}_{F} \longrightarrow \mathcal{A}_{F \oplus \Phi^{*}(V')^{*}} \cong \mathcal{A}_{V^{*} \oplus \Phi^{*}F'} \longrightarrow \mathcal{A}_{\Phi^{*}F'}, \tag{16}$$

where the middle map is induced by the path E_s from $E_0=E\oplus \varPhi^*(V')^*$ to $E_1=V^*\oplus$ Φ^*E' , constructed as in Section 2.2. By composing with the Morita isomorphisms $\mathcal{A}_E \dashrightarrow$ $\mathcal{A}_{E \oplus \Phi^*(V')^*}$ and $\mathcal{A}_{V^* \oplus \Phi^*E'} \dashrightarrow \mathcal{A}_{E'}$ this gives the desired Morita morphism $\mathcal{A}_E \dashrightarrow \mathcal{A}_{E'}$.

Theorem 5.7. (i) The composition of the Morita morphisms $A_E \longrightarrow A_{E'}$ and $A_{E'} \longrightarrow$ $\mathcal{A}_{E''}$ defined by two strong Dirac morphisms (Θ,ω) and (Θ',ω') is 2-isomorphic to the Morita morphism $A_E \longrightarrow A_{E''}$ defined by $(\Theta', \omega') \circ (\Theta, \omega)$. (ii) The Morita morphism

929

 $\mathcal{A}_E \dashrightarrow \mathcal{A}_E$ defined by the Dirac morphism $(\mathrm{id}_V, 0) \colon (\mathbb{V}, E) \dashrightarrow (\mathbb{V}, E)$ is 2-isomorphic to the identity.

Proof. (i) By pulling everything back to M, we may assume that M=M'=M'' and that Θ and Θ' induce the identity map on the base. As in Section 2.2, consider the three Lagrangian sub-bundles

$$E_{00} = E \oplus (V')^* \oplus W^*, \quad E_{10} = V^* \oplus E' \oplus W^*, \quad E_{01} = V^* \oplus (V')^* \oplus E''$$

of $\mathbb{V} \oplus \mathbb{V}' \oplus \mathbb{V}''$. We have canonical Morita isomorphisms

$$\mathcal{A}_E \dashrightarrow \mathcal{A}_{E_{00}}, \quad \mathcal{A}_{E'} \dashrightarrow \mathcal{A}_{E_{10}}, \quad \mathcal{A}_{E''} \dashrightarrow \mathcal{A}_{E_{01}}.$$

The morphism (16) may be equivalently described as a composition

$$\mathcal{A}_E \dashrightarrow \mathcal{A}_{E_{00}} \cong \mathcal{A}_{E_{10}} \dashrightarrow \mathcal{A}_{E'}$$

since the path from E_{00} to E_{10} (constructed as in Section 2.2) is just the direct sum of W^* with the standard path from $E \oplus (V')^*$ to $V^* \oplus E'$. Similarly, one describes the morphism $\mathcal{A}_{E'} \dashrightarrow \mathcal{A}_{E''}$ as

$$\mathcal{A}_{E'} \dashrightarrow \mathcal{A}_{E_{10}} \cong \mathcal{A}_{E_{01}} \dashrightarrow \mathcal{A}_{E''}.$$

The composition of the Morita morphisms $\mathcal{A}_E \dashrightarrow \mathcal{A}_{E'} \dashrightarrow \mathcal{A}_{E''}$ defined by (Θ, ω) , (Θ', ω') is hence given by

$$\mathcal{A}_E \dashrightarrow \mathcal{A}_{E_{10}} \cong \mathcal{A}_{E_{01}} \cong \mathcal{A}_{E_{01}} \dashrightarrow \mathcal{A}_{E''}.$$

The composition $\mathcal{A}_{E_{10}} \cong \mathcal{A}_{E_{01}} \cong \mathcal{A}_{E_{01}}$ is 2-isomorphic to the isomorphism defined by the concatenation of standard paths from E_{00} to E_{10} to E_{01} . As observed in Section 2.2 this concatenation is homotopic to the standard path from E_{00} to E_{01} , which defines the morphism $\mathcal{A}_{E} \longrightarrow \mathcal{A}_{E''}$ corresponding to $(\Theta', \omega') \circ (\Theta, \omega)$.

(ii) We will show that the Morita morphism $\mathcal{A}_E \dashrightarrow \mathcal{A}_{E_0} \cong \mathcal{A}_{E_1} \dashrightarrow \mathcal{A}_E$ defined by $(\mathrm{id}_V,0)$ is homotopic to the identity. Here, $E_0 = E \oplus V^*$, $E_1 = V^* \oplus E$, and the isomorphism $\mathcal{A}_{E_0} \cong \mathcal{A}_{E_1}$ is defined by the standard path E_t connecting E_0 and E_1 . By definition,

 E_t is the forward image of E under the morphism $(j_t,0)\colon \mathbb{V} \dashrightarrow \mathbb{V} \oplus \mathbb{V}$ where

$$j_t \colon V \to V \oplus V, \quad y \mapsto ((1-t)y, ty).$$

It is convenient to replace j_t by the isometry,

$$\tilde{j}_t = (t^2 + (1-t)^2)^{-1/2} j_t.$$

This is homotopic to j_t (e.g., by linear interpolation), hence the resulting path \tilde{E}_t defines the same 2-isomorphism class of isomorphisms $A_{E_0} \to A_{E_1}$.

The splitting of $V \oplus V$ into $V_t := \operatorname{ran}(\tilde{j}_t)$ and V_t^{\perp} defines a corresponding orthogonal splitting of $\mathbb{V} \oplus \mathbb{V}$. The subspace \tilde{E}_t is the direct sum of the intersections

$$\tilde{E}_t \cap \mathbb{V}_t^{\perp} = \operatorname{ann}(V_t) = (V_t^{\perp})^*, \quad \tilde{E}_t \cap \mathbb{V}_t =: \tilde{E}_t'.$$

This defines a Morita isomorphism

$$\mathcal{A}_{\tilde{E}_{t}} \dashrightarrow \mathcal{A}_{\tilde{E}'_{t}}.$$

On the other hand, the isometric isomorphism $V \to V_t$ given by \tilde{j}_t extends to an isomorphism $\mathbb{V} \to \mathbb{V}_t$, taking E to \tilde{E}'_t . Hence $\mathcal{A}_{\tilde{E}'_t} \cong \mathcal{A}_E$ canonically. In summary, we obtain a family of Morita isomorphisms

$$\mathcal{A}_E \dashrightarrow \mathcal{A}_{E_0} \cong \mathcal{A}_{\tilde{E}_t} \dashrightarrow \mathcal{A}_{\tilde{E}_t'} \cong \mathcal{A}_E.$$

For t=1 this is the Morita isomorphism defined by $(\mathrm{id}_V,0)$, while for t=0 it is the identity map $\mathcal{A}_E\to\mathcal{A}_E$.

5.4 Symplectic vector bundles

Suppose that $V \to M$ is a vector bundle, equipped with a fiberwise symplectic form $\omega \in \Gamma(\wedge^2 V^*)$. Given a Euclidean metric B on V, the 2-form ω is identified with a skewadjoint operator R_{ω} , defining a complex structure $J_{\omega} = R_{\omega}/|R_{\omega}|$ and a resulting spinor module $S_{\omega} \colon \mathbb{C} \dashrightarrow \mathbb{C} l(V)$. (We may work with $\mathbb{C} l(V)$ rather than $\widetilde{\mathbb{C}} l(V)$, since V has an even rank.)

Proposition 5.8. The Morita isomorphism

$$S^{\mathrm{op}}_{\omega} \colon \mathbb{C} \operatorname{l}(V) \dashrightarrow \mathbb{C}$$

defined by the Spin_{c} -structure S_{ω} is 2-isomorphic to the Morita isomorphism $\mathbb{C}\operatorname{l}(V)$ \longrightarrow \mathcal{A}_V , followed by the Morita isomorphism $\mathcal{A}_V \dashrightarrow \mathbb{C}$ defined by the strong Dirac morphism $(0, \omega)$: $(\mathbb{V}, V) \longrightarrow (0, 0)$ (cf. Example 2.1(c)).

Proof. Consider the standard path for the Dirac morphism $(0, \omega)$: $(\mathbb{V}, E) \longrightarrow (0, 0)$,

$$E_t = \{((1-t)v, \alpha) | t \iota_v \omega + (1-t)\alpha = 0\} \subset \mathbb{V},$$

defining $A_V = A_{E_0} \cong A_{E_1} = A_{V^*} \dashrightarrow \mathbb{C}$. The path of orthogonal transformations defined by E_t is

$$A_t = rac{tR_\omega - rac{1}{2}(1-t)^2}{tR_\omega + rac{1}{2}(1-t)^2}.$$

We will replace A_t with a more convenient path A_t ,

$$\tilde{A}_t = -\exp(t\pi J_\omega).$$

We claim that this is homotopic to A_t with the same endpoints. Clearly, $A_0 = -I = -\tilde{A}_0$ and $A_1 = I = \tilde{A}_1$. By considering the action on any eigenspace of R_{ω} , one checks that the spectrum of both $J_{\omega}A_t$ and $J_{\omega}\tilde{A}_t$ is contained in the half space $\text{Re}(z) \geq 0$, for all $t \in [0, 1]$. Hence

$$J_{\omega}A_t + I, \quad J_{\omega}\tilde{A}_t + I \tag{17}$$

are invertible for all $t \in [0, 1]$. The Cayley transform $C \mapsto (C - I)/(C + I)$ gives a diffeomorphism from the set of all $C \in O(V)$ such that C + I is invertible onto the vector space $\mathfrak{o}(V)$. By using the linear interpolation of the Cayley transforms one obtains a homotopy between $J_{\omega}A_{t}$ and $J_{\omega}\tilde{A}_{t}$, and hence of A_{t} and \tilde{A}_{t} .

By Proposition 5.5, the path \tilde{A}_t defines an orthogonal transformation $M_{\nu} \in O(\mathcal{V})$, taking the complex structure J_0 for $E_0 = V^*$ to a complex structure $J_1 = M_{\gamma} \circ J_0 \circ M_{\gamma}^{-1}$ in the equivalence class defined by D_{E_1} . Consider the orthogonal decomposition $\mathcal{V}=\mathcal{V}'\oplus\mathcal{V}''$ with $\mathcal{V}' = \ker(D_V) \cong V$. Let J'' be the complex structure on \mathcal{V}'' defined by D_V , and put $J'=J_{\omega}$. Since

$$M_{\gamma} \circ D_{V^*} \circ M_{\gamma}^{-1} = D_V + \pi J_{\omega},$$

we see that $J_1 = J' \oplus J''$, hence $\mathcal{S}_1 = \mathcal{S}' \otimes \mathcal{S}'' = \mathcal{S}_\omega \otimes \mathcal{S}''$. The Morita isomorphism $\mathbb{C} l(V) \dashrightarrow \mathcal{A}_V$ is given by the bimodule $\mathcal{E} = \mathcal{S}'' \otimes \mathbb{C} l(V)$. Since $\mathbb{C} l(V) = \mathcal{S}_\omega \otimes \mathcal{S}_\omega^{\mathrm{op}}$, it follows that $\mathcal{E} = \mathcal{S}'' \otimes \mathbb{C} l(V) = \mathcal{S}_1 \otimes \mathcal{S}_\omega^{\mathrm{op}}$, and

$$S_1^{\mathrm{op}} \otimes_{\mathcal{A}_V} \mathcal{E} = S_{\omega}^{\mathrm{op}}.$$

6 The Dixmier-Douady Bundle Over the Orthogonal Group

6.1 The bundle $A_{O(X)}$

As a special case of our construction, let us consider the tautological Dirac structure $(\mathbb{V}_{O(X)}, E_{O(X)})$ for a Euclidean vector space X. Let $\mathcal{A}_{O(X)}$ be the corresponding Dixmier–Douady bundle; its restriction to SO(X) will be denoted $\mathcal{A}_{SO(X)}$. The Dirac morphism $(\mathbb{V}_{O(X)}, E_{O(X)}) \times (\mathbb{V}_{O(X)}, E_{O(X)}) \xrightarrow{--} (\mathbb{V}_{O(X)}, E_{O(X)})$ gives rise to a Morita morphism

$$\operatorname{pr}_{1}^{*} \mathcal{A}_{\operatorname{O}(X)} \otimes \operatorname{pr}_{2}^{*} \mathcal{A}_{\operatorname{O}(X)} \dashrightarrow \mathcal{A}_{\operatorname{O}(X)},$$

which is associative up to 2-isomorphisms.

Proposition 6.1.

- (a) There is a canonical Morita morphism $\mathbb{C} \dashrightarrow \mathcal{A}_{\mathcal{O}(X)}$ with underlying map the inclusion of the group unit, $\{I\} \hookrightarrow \mathcal{O}(X)$.
- (b) For any orthogonal decomposition $X = X' \oplus X''$, there is a canonical Morita morphism

$$pr_1^* \mathcal{A}_{O(X')} \otimes pr_2^* \mathcal{A}_{O(X'')} \dashrightarrow \mathcal{A}_{O(X)}$$

with underlying map the inclusion $O(X') \times O(X'') \hookrightarrow O(X)$.

Proof. The proposition follows since the restriction of $E_{O(X)}$ to I is X^* , while the restriction to $O(X') \times O(X'')$ is $E_{O(X')} \times E_{O(X'')}$.

The action of O(X) by conjugation lifts to an action on the bundle $V_{O(X)}$, preserving the Dirac structure $E_{O(X)}$. Hence, $A_{O(X)}$ is an O(X)-equivariant Dixmier–Douady bundle.

The construction of $A_{O(X)}$, using the family of boundary conditions given by orthogonal transformations, is closely related to a construction given by Atiyah-Segal in [6], who also identify the resulting Dixmier-Douady class. The result is most nicely stated for the restriction to SO(X); for the general case, use an inclusion $O(X) \hookrightarrow$ $SO(X \oplus \mathbb{R})$.

Proposition 6.2. [6, Proposition 5.4] Let $(x, y) = DD(A_{SO(X)})$ be the Dixmier-Douady class.

- (a) For dim $X \ge 3$ and dim $X \ne 4$, the class X generates $H^3(SO(X), \mathbb{Z}) = \mathbb{Z}$.
- (b) For dim $X \ge 2$, the class y generates $H^1(SO(X), \mathbb{Z}_2) = \mathbb{Z}_2$.

Atiyah–Segal's proof uses an alternative construction $\mathcal{A}_{\text{SO}(X)}$ in terms of loop groups (see below). Another argument is sketched in Appendix B.

6.2 Pull-back under exponential map

Let $(\mathbb{V}_{\mathfrak{o}(X)}, E_{\mathfrak{o}(X)})$ be as in Section 2.7, and let $\mathcal{A}_{\mathfrak{o}(X)}$ be the resulting O(X)-equivariant Dixmier-Douady bundle. Since $E_{\mathfrak{o}}(X)|_a = \operatorname{Gr}_a$, its intersection with $X \subset \mathbb{X}$ is trivial, and so $\mathcal{A}_{\sigma(X)}$ is Morita trivial. Recall the Dirac morphism $(\Pi, -\varpi)$: $(\mathbb{V}_{\sigma(X)}, \mathcal{E}_{\sigma(X)}) \longrightarrow$ $(\mathbb{V}_{\mathrm{O}(X)}, E_{\mathrm{O}(X)})$, with underlying map $\exp: \mathfrak{o}(X) \to \mathrm{O}(X)$. We had shown that it is a strong Dirac morphism over the subset $o(X)_{\natural}$ where the exponential map has maximal rank, or equivalently where $\Pi_a = (I - e^{-a})/a$ is invertible. One hence obtains a Morita morphism

$$\mathcal{A}_{\mathfrak{o}(X)}|_{\mathfrak{o}(X)_{\mathbb{H}}} \dashrightarrow \mathcal{A}_{\mathcal{O}(X)}.$$

Together with the Morita trivialization $\mathbb{C} \dashrightarrow \mathcal{A}_{\mathfrak{o}(X)}$, this gives a Morita trivialization of $\exp^* \mathcal{A}_{\mathcal{O}(X)}$ over $\mathfrak{o}(X)_{\natural}$.

On the other hand, $\exp^* E_{O(X)}$ is the Lagrangian sub-bundle of $\mathfrak{o}(X) \times \mathbb{X}$ defined by the map $a \mapsto \exp(a) \in O(X)$. Replacing $\exp(a)$ with $\exp(sa)$, one obtains a homotopy E_s between $E_1 = \exp^* E_{O(X)}$ and $E_0 = X^*$, hence another Morita trivialization of $\exp^* A_{O(X)}$ (defined over all of $\mathfrak{o}(X)$). Let $L \to \mathfrak{o}(X)_{\natural}$ be the O(X)-equivariant line bundle relating these two Morita trivializations.

Proposition 6.3. Over the component containing 0, the line bundle $L \to \mathfrak{o}(X)_1$ is O(X)equivariantly trivial. In other words, the two Morita trivializations of $\exp^* \mathcal{A}_{O(X)}|_{\natural}$ are 2-isomorphic over the component of $\mathfrak{o}(X)_{\natural}$ containing 0. **Proof.** The linear retraction of $\mathfrak{o}(X)$ onto the origin preserves the component of $\mathfrak{o}(X)_{\natural}$ containing 0. Hence it suffices to show that the O(X)-action on the fiber of L at 0 is trivial. But this is immediate since both Morita trivializations of $\exp^* \mathcal{A}_{O(X)}$ at $0 \in \mathfrak{o}(X)_{\natural}$ coincide with the obvious Morita trivialization of $\mathcal{A}_{O(X)}|_e$.

6.3 Construction via loop groups

The bundle $\mathcal{A}_{\mathrm{SO}(X)}$ has the following description in terms of loop groups (cf. [6]). Fix a Sobolev level s>1/2, and let $\mathcal{P}\,\mathrm{SO}(X)$ denote the Banach manifold of paths $\gamma:\mathbb{R}\to\mathrm{SO}(X)$ of Sobolev class s+1/2 such that $\pi(\gamma):=\gamma(t+1)\gamma(t)^{-1}$ is constant. (Recall that for manifolds Q and P, the maps $Q\to P$ of Sobolev class greater than $k+\dim Q/2$ are of class C^k .) The map

$$\pi: \mathcal{P} SO(X) \to SO(X), \ \gamma \mapsto \pi(\gamma)$$

is an SO(X)-equivariant principal bundle, with structure group the loop group L $SO(X) = \pi^{-1}(e)$. Here, elements of SO(X) acts by multiplication from the left, while loops $\lambda \in L$ SO(X) acts by $\gamma \mapsto \gamma \lambda^{-1}$. Let $\mathcal{X} = L^2([0,1],X)$ carry the complex structure J_0 defined by $\frac{\partial}{\partial t}$ with anti-periodic boundary conditions, and let \mathcal{S}_0 be the resulting spinor module. The action of the group L SO(X) on \mathcal{X} preserves the polarization defined by J_0 , and defines a continuous map L $SO(X) \to O_{\rm res}(\mathcal{X})$. Using its composition with the map $O_{\rm res}(\mathcal{X}) \to PU(\mathcal{S}_0)$, we have the following.

Proposition 6.4. The Dixmier–Douady bundle $\mathcal{A}_{SO(X)}$ is an associated bundle $\mathcal{P} SO(X) \times_{LSO(X)} \mathbb{K}(\mathcal{S}_0)$.

Proof. Given $\gamma \in \mathcal{P} \operatorname{SO}(X)$, consider the operator M_{γ} on $\mathcal{X} = L^2([0,1],X)$ of pointwise multiplication by γ . As in Proposition 5.5, we see that M_{γ} takes the boundary conditions f(1) = -f(0) to $(M_{\gamma} f)(1) = -\pi(\gamma)(M_{\gamma} f)(0)$, and induces an isomorphism $\mathbb{K}(\mathcal{S}_0) = \mathcal{A}_I \to \mathcal{A}_{\pi(\gamma)}$. This defines a map

$$\mathcal{P} \operatorname{SO}(X) \times \mathbb{K}(\mathcal{S}_0) \to \mathcal{A}_{\operatorname{SO}(X)}$$

with underlying map $\pi: \mathcal{P} \operatorname{SO}(X) \to \operatorname{SO}(X)$. This map is equivariant relative to the action of $L \operatorname{SO}(X)$, and descends to the desired bundle isomorphism.

In particular, $\pi^* \mathcal{A}_{SO(X)} = \mathcal{P} SO(X) \times \mathbb{K}(S_0)$ has a Morita trivialization defined by the trivial bundle $\mathcal{E}_0 = \mathcal{P} \operatorname{SO}(X) \times \mathcal{S}_0$. The Morita trivialization is $\widehat{L} \operatorname{SO}(X) \times \operatorname{SO}(X)$ equivariant, using the central extension of the loop group obtained by pull-back of the central extension $U(S_0) \to PU(S_0)$.

7 q-Hamiltonian G-spaces

In this section, we will apply the correspondence between Dirac structures and Dixmier-Douady bundles to the theory of group-valued moment maps [2]. Most results will be immediate consequences of the functoriality properties of this correspondence. Throughout this section, G denotes a Lie group, with Lie algebra g. We denote by ξ^L , $\xi^R \in$ $\mathfrak{X}(G)$ the left and the right invariant vector fields defined by the Lie algebra element $\xi \in \mathfrak{g}$, and by $\theta^{\mathrm{L}}, \theta^{\mathrm{R}} \in \Omega^{1}(G, \mathfrak{g})$ the Maurer–Cartan forms, defined by $\iota(\xi^{\mathrm{L}})\theta^{\mathrm{L}} = \iota(\xi^{\mathrm{R}})\theta^{\mathrm{R}} = \xi$. For sake of comparison, we begin with a quick review of ordinary Hamiltonian G-spaces from the Dirac geometry perspective.

7.1 Hamiltonian G-spaces

A Hamiltonian G-space is a triple (M, ω_0, Φ_0) consisting of a G-manifold M, an invariant 2-form ω_0 and an equivariant moment map $\Phi_0: M \to \mathfrak{g}^*$ such that

- (i) $d\omega_0 = 0$,
- (ii) $\iota(\xi_M)\omega_0 = -d\langle \Phi_0, \xi \rangle, \ \xi \in \mathfrak{q}$,
- (iii) $\ker(\omega_0) = 0$.

Conditions (ii) and (iii) may be rephrased in terms of Dirac morphisms. Let $E_{\mathfrak{g}^*} \subset \mathbb{T}\mathfrak{g}^*$ be the Dirac structure spanned by the sections

$$e_0(\xi) = (\xi^{\sharp}, \langle d\mu, \xi \rangle), \quad \xi \in \mathfrak{g}.$$

Here $\xi^{\sharp} \in \mathfrak{X}(\mathfrak{g}^*)$ is the vector field generating the co-adjoint action (i.e., $\xi^{\sharp}|_{\mu} = (ad_{\xi})^* \mu$), and $(d\mu, \xi) \in \Omega^1(\mathfrak{g}^*)$ denotes the 1-form defined by ξ . Then Conditions (ii) and (iii) hold if and only if

$$(d\Phi_0, \omega_0)$$
: $(\mathbb{T}M, TM) \longrightarrow (\mathbb{T}\mathfrak{g}^*, E_{\mathfrak{g}^*})$

is a strong Dirac morphism. Using the Morita isomorphism $\widetilde{\mathbb{C}}1(TM) \dashrightarrow \mathcal{A}_{TM}$, and putting $\mathcal{A}_{\mathfrak{q}^*}^{\mathrm{Spin}} := \mathcal{A}_{E_{\mathfrak{q}^*}}$ we obtain a G-equivariant Morita morphism

$$(\Phi_0, \mathcal{E}_0) \colon \widetilde{\mathbb{C}} \operatorname{l}(TM) \dashrightarrow \mathcal{A}_{\mathfrak{q}^*}^{\operatorname{Spin}}.$$

Since $E_{\mathfrak{g}^*} \cap T\mathfrak{g}^* = 0$, the zero Dirac morphism $(T\mathfrak{g}^*, E_{\mathfrak{g}^*}) \dashrightarrow (0,0)$ is strong, hence it defines a Morita trivialization $\mathcal{A}_{\mathfrak{g}^*}^{\operatorname{Spin}} \dashrightarrow \mathbb{C}$. From Proposition 5.8, we see that the resulting equivariant Spin_c structure $\widetilde{\mathbb{C}} \operatorname{l}(TM) \dashrightarrow \mathbb{C}$ is 2-isomorphic to the Spin_c structure defined by the symplectic form ω_0 . (Since symplectic manifolds are even-dimensional, we may work with $\mathbb{C} \operatorname{l}(TM)$ in place of $\widetilde{\mathbb{C}} \operatorname{l}(TM)$.)

7.2 q-Hamiltonian G-spaces

An Ad(G)-invariant inner product B on g defines a closed bi-invariant 3-form

$$\eta = \frac{1}{12} B(\theta^{\mathrm{L}}, [\theta^{\mathrm{L}}, \theta^{\mathrm{L}}]) \in \Omega^{3}(G).$$

A q-Hamiltonian G-manifold [2] is a G-manifold M, together with an invariant 2-form ω , and an equivariant $moment\ map\ \Phi: M \to G$ such that

- (i) $d\omega = -\Phi^*\eta$,
- (ii) $\iota(\xi_M)\omega = -\frac{1}{2}\Phi^*B((\theta^L + \theta^R), \xi),$
- (iii) $\ker(\omega) \cap \ker(d\Phi) = 0$ everywhere.

The simplest examples of q-Hamiltonian G-spaces are the conjugacy classes in G, with moment map the inclusion $\Phi: \mathcal{C} \hookrightarrow G$. Again, the definition can be re-phrased in terms of Dirac structures. Let $E_G \subset \mathbb{T}G$ be the Lagrangian sub-bundle spanned by the sections

$$e(\xi) = (\xi^{\sharp}, \frac{1}{2}B(\theta^{L} + \theta^{R}, \xi)), \quad \xi \in \mathfrak{g}.$$

Here $\xi^{\sharp} = \xi^{\mathrm{L}} - \xi^{\mathrm{R}} \in \mathfrak{X}(G)$ is the vector field generating the conjugation action. E_G is the *Cartan–Dirac structure* introduced by Alekseev, Ševera and Strobl [7, 31]. As shown by Bursztyn–Crainic [7], Conditions (ii) and (iii) above hold if and only if

$$(d\Phi, \omega): (\mathbb{T}M, TM) \longrightarrow (\mathbb{T}G, E_G)$$

is a strong Dirac morphism. Let

$$\mathcal{A}_G^{ ext{Spin}} := \mathcal{A}_{E_G}$$

be the G-equivariant Dixmier-Douady bundle over G defined by the Cartan-Dirac structure. The strong Dirac morphism $(d\Phi, \omega)$ determines a Morita morphism $A_{TM} \longrightarrow$ $\mathcal{A}_{G}^{\mathrm{Spin}}$. Since \mathcal{A}_{TM} is naturally Morita isomorphic to $\widetilde{\mathbb{C}}$ $\mathbb{I}(TM)$ we obtain a distinguished 2-isomorphism class of G-equivariant Morita morphisms

$$(\Phi, \mathcal{E}) \colon \widetilde{\mathbb{C}} 1(TM) \longrightarrow \mathcal{A}_G^{\text{Spin}}. \tag{18}$$

Definition 7.1. The Morita morphism (18) is called the canonical twisted Sping structure for the q-Hamiltonian G-space (M, ω, Φ) .

Remark 7.2.

- (a) Equation (18) generalizes the usual Spin structure for a symplectic manifold. Indeed, if $G = \{e\}$ we have $\mathcal{A}_G^{\text{Spin}} = \mathbb{C}$, and a q-Hamiltonian G-space is just a symplectic manifold. Proposition 5.8 shows that the composition $\widetilde{\mathbb{C}}$ $l(TM) \longrightarrow \mathcal{A}_{TM} \longrightarrow \mathbb{C}$ in that case is 2-isomorphic to the Morita trivialization defined by an ω -compatible almost complex structure.
- (b) The tensor product $\widetilde{\mathbb{C}}l(TM)\otimes\widetilde{\mathbb{C}}l(TM)=\widetilde{\mathbb{C}}l(TM\oplus TM)$ is canonically Morita trivial (see Section 3.5). Hence, the twisted Spin_c structure on a q-Hamiltonian G-space defines a G-equivariant Morita trivialization

$$\mathbb{C} \dashrightarrow \Phi^*(\mathcal{A}_G^{\mathrm{Spin}})^{\otimes 2}. \tag{19}$$

One may think of (19) as the counterpart to the canonical line bundle. Indeed, for $G = \{e\}$, (19) is a Morita isomorphism from the trivial bundle over M to itself. It is thus given by a Hermitian line bundle, and from (a) above one sees that this is the canonical line bundle associated to the Spin_c structure of (M, ω) .

Remark 7.3. In terms of the trivialization $TG = G \times \mathfrak{g}$ given by the left-invariant vector fields ξ^{L} , the Cartan–Dirac structure $(\mathbb{T}G, E_G)$ is just the pull-back of the tautological Dirac structure $(\mathbb{V}_{O(\mathfrak{g})}, E_{O(\mathfrak{g})})$ under the adjoint action Ad: $G \to O(\mathfrak{g})$. Similarly, $\mathcal{A}_G^{\mathrm{Spin}}$ is simply the pull-back of $\mathcal{A}_{O(\mathfrak{g})} \to O(\mathfrak{g})$ under the map Ad: $G \to O(\mathfrak{g})$.

In many cases q-Hamiltonian G-spaces have even dimension, so that we may use the usual Clifford algebra bundle $\mathbb{C}1(TM)$ in (18).

Proposition 7.4. Let (M, ω, Φ) be a connected q-Hamiltonian G-manifold. Then dim M is even if and only if $Ad_{\Phi(m)} \in SO(\mathfrak{g})$ for all $m \in M$. In particular, this is the case if G is connected.

Proof. This is proved in [4], but follows much more easily from the following Diracgeometric argument. The parity of the Lagrangian sub-bundle $TM \subset \mathbb{T}M$ is given by $(-1)^{\dim M} = \pm 1$. By Proposition 2.2, the parity is preserved under strong Dirac morphisms. Hence it coincides with the parity of E_G over $\Phi(M)$, and by Remark 7.3 this is the same as the parity of the tautological Dirac structure $E_{O(\mathfrak{g})}$ over $\mathrm{Ad}(\Phi(M)) \subset O(\mathfrak{g})$. The latter is given by $\mathrm{det}(\mathrm{Ad}_{\Phi}) = \pm 1$. This shows $\mathrm{det}(\mathrm{Ad}_{\Phi}) = (-1)^{\dim M}$.

As a noteworthy special case, we have the following.

Corollary 7.5. A conjugacy class $C = Ad(G)g \subset G$ of a compact Lie group G is even dimensional if and only if $det(Ad_g) = 1$.

7.3 Stiefel-Whitney classes

The existence of a $\operatorname{Spin}_{\operatorname{c}}$ structure on a symplectic manifold implies the vanishing of the third integral Stiefel–Whitney class $W^3(M) = \tilde{\beta}(w_2(M))$, while of course $w_1(M) = 0$ by orientability. For q-Hamiltonian spaces we have the following statement.

Corollary 7.6. For any q-Hamiltonian *G*-space,

$$W^3(M) \equiv \tilde{\beta}(w_2(M)) = \Phi^* x, \quad w_1(M) = \Phi^* y.$$

where $(x, y) \in H^3(G, \mathbb{Z}) \times H^1(G, \mathbb{Z}_2)$ is the Dixmier–Douady class of $\mathcal{A}_G^{\mathrm{Spin}}$. A similar statement holds for the G-equivariant Stiefel–Whitney classes.

Remark 7.7.

(a) The result gives in particular a description of $w_1(\mathcal{C})$ and $\tilde{\beta}(w_2(\mathcal{C}))$ for all conjugacy classes $\mathcal{C} \subset G$ of a compact Lie group.

- (b) If G is simply connected, so that $H^1(G, \mathbb{Z}_2) = 0$, it follows that $w_1(M) = 0$. Hence q-Hamiltonian spaces for simply connected groups are orientable. In fact, there is a canonical orientation [4].
- (c) Suppose G is simple and simply connected. Then x is h^{\vee} times the generator of $H^3(G,\mathbb{Z})=\mathbb{Z}$, where h^\vee is the dual Coxeter number of G. This follows from Remark 7.3, since

$$Ad^*: H^3(SO(\mathfrak{g}), \mathbb{Z}) = \mathbb{Z} \to H^3(G, \mathbb{Z}) = \mathbb{Z}$$

is multiplication by h^{\vee} . We see that a conjugacy class \mathcal{C} of G admits a Spin_c structure if and only if the pull-back of the generator of $H^3(G,\mathbb{Z})$ is $h^{\scriptscriptstyle\vee}\text{-torsion}$. Examples of conjugacy classes not admitting a $Spin_c$ structure may be found in [19].

7.4 Fusion

Let mult: $G \times G \to G$ be the group multiplication, and denote by $\sigma \in \Omega^2(G \times G)$ the 2-form

$$\sigma = -\frac{1}{2}B(pr_1^* \theta^L, pr_2^* \theta^R), \tag{20}$$

where $\operatorname{pr}_i : G \times G \to G$ are the two projections. By [1, Theorem 3.9] the pair $(\operatorname{d} \operatorname{mult}, \sigma)$ define a strong G-equivariant Dirac morphism

$$(d \text{ mult}, \sigma) : (\mathbb{T}G, E_G) \times (\mathbb{T}G, E_G) \longrightarrow (\mathbb{T}G, E_G).$$

This can also be seen using Remark 7.3 and Proposition 2.5, since left trivialization of TG intertwines d mult with the map Σ from (3), taking (20) to the 2-form σ on $V_{O(\mathfrak{g})}$ \times $V_{O(\mathfrak{g})}$. It induces a Morita morphism

(mult,
$$\mathcal{E}$$
): $\operatorname{pr}_{1}^{*} \mathcal{A}_{C}^{\operatorname{Spin}} \otimes \operatorname{pr}_{2}^{*} \mathcal{A}_{C}^{\operatorname{Spin}} \longrightarrow \mathcal{A}_{C}^{\operatorname{Spin}}.$ (21)

If (M, ω, Φ) is a q-Hamiltonian $G \times G$ -space, then M with diagonal G-action, 2-form $\omega_{\mathrm{fus}} = \omega + \Phi^* \sigma$, and moment map $\Phi_{\mathrm{fus}} = \mathrm{mult} \circ \Phi \colon M \to G$ defines a q-Hamiltonian G-space

$$(M, \omega_{\text{fus}}, \Phi_{\text{fus}}).$$
 (22)

The space (22) is called the fusion of (M, ω, Φ) . Conditions (ii) and (iii) hold since

$$(d\Phi_{\text{fus}}, \omega_{\text{fus}}) = (d \text{ mult}, \sigma) \circ (d\Phi, \omega)$$
(23)

is a composition of strong Dirac morphisms, while (i) follows from $d\sigma = \text{mult}^* \eta - \text{pr}_1^* \eta - \text{pr}_2^* \eta$. The Dirac–Dixmier–Douady functor (Theorem 5.7) shows that the twisted Spin_c structures are compatible with fusion, in the following sense.

Proposition 7.8. The Morita morphism $\widetilde{\mathbb{C}}$ $l(TM) \longrightarrow \mathcal{A}_G^{\mathrm{Spin}}$ for the q-Hamiltonian G-space $(M, \omega_{\mathrm{fus}}, \Phi_{\mathrm{fus}})$ is equivariantly 2-isomorphic to the composition of Morita morphisms

$$\widetilde{\mathbb{C}1}(\mathit{TM}) \dashrightarrow \mathrm{pr}_1^*\,\mathcal{A}_{\mathit{G}}^{\mathrm{Spin}} \otimes \mathrm{pr}_2^*\,\mathcal{A}_{\mathit{G}}^{\mathrm{Spin}} \dashrightarrow \mathcal{A}_{\mathit{G}}^{\mathrm{Spin}}$$

defined by the twisted Spin_c-structure for (M, ω, Φ) , followed by (21).

7.5 Exponentials

Let $\exp: \mathfrak{g} \to G$ be the exponential map. The pull-back $\exp^* \eta$ is equivariantly exact, and admits a canonical primitive $\varpi \in \Omega^2(\mathfrak{g})$ defined by the homotopy operator for the linear retraction onto the origin.

Remark 7.9. Explicit calculation shows [3] that ϖ is the pull-back of the 2-form (denoted by the same letter) $\varpi \in \Gamma(\wedge^2 V_{\mathfrak{o}(\mathfrak{g})}^*) \cong C^{\infty}(\mathfrak{o}(\mathfrak{g}), \wedge^2 \mathfrak{g}^*)$ from Section 2.7 under the adjoint map, ad: $\mathfrak{g} \to \mathfrak{o}(\mathfrak{g})$. Using the inner product to identify $\mathfrak{g}^* \cong \mathfrak{g}$, the Dirac structure $E_{\mathfrak{g}^*} \equiv E_{\mathfrak{g}}$ is the pull-back of the Dirac structure $E_{\mathfrak{o}(\mathfrak{g})}$ by the map ad: $\mathfrak{g} \to \mathfrak{o}(\mathfrak{g})$.

The differential of the exponential map together with the 2-form ϖ define a Dirac morphism

$$(\operatorname{d}\exp,-\varpi)\colon (\mathbb{T}\mathfrak{g},\;E_{\mathfrak{g}}) \dashrightarrow (\mathbb{T}G,\;E_G)$$

which is a strong Dirac morphism over the open subset \mathfrak{g}_{\natural} where exp has maximal rank. See [1, Proposition 3.12], or Proposition 2.6.

Let (M, Φ_0, ω_0) be a Hamiltonian G-space with $\Phi_0(M) \subset \mathfrak{g}_{\natural}$, and $\Phi = \exp \Phi_0$, $\omega = \omega_0 - \Phi_0^* \varpi$. Then $(\mathrm{d} \Phi, \omega) = (\mathrm{d} \exp, -\varpi) \circ (\mathrm{d} \Phi_0, \omega_0)$ is a strong Dirac morphism, hence (M, ω, Φ) is a q-Hamiltonian G-space. It is called the *exponential* of the Hamiltonian G-space (M, ω_0, Φ_0) .

The canonical twisted Spin_{c} structure for (M, ω, Φ) can be composed with the Morita trivialization $\Phi^* \mathcal{A}_G^{\text{Spin}} = \Phi_0^* \exp^* \mathcal{A}_G^{\text{Spin}} \longrightarrow \mathbb{C}$ defined by the Morita trivialization of $\exp^* \mathcal{A}_G^{Spin}$, to produce an ordinary equivariant $Spin_c$ structure. On the other hand, we have the equivariant Spin_c structure defined by the symplectic form ω_0 .

Proposition 7.10. Suppose (M, ω_0, Φ_0) is a Hamiltonian *G*-space, such that Φ_0 takes values in the zero component of $\mathfrak{g}_{\natural} \subset \mathfrak{g}$. Let (M, ω, Φ) be its exponential. Then the composition

$$\widetilde{\mathbb{C}}\operatorname{l}(TM) \dashrightarrow \Phi^*\mathcal{A}_G^{\operatorname{Spin}} \dashrightarrow \mathbb{C}$$

is 2-isomorphic to the Morita morphism $\widetilde{\mathbb{C}}l(TM) \longrightarrow \mathbb{C}$ given by the canonical Spin_cstructure for ω_0 . (We could also write $\mathbb{C}l(TM)$ in place of $\widetilde{\mathbb{C}}l(TM)$ since dim M is even.)

Proof. Proposition 6.3 shows that over the zero component of \mathfrak{g}_{\flat} , the Morita trivialization of $\exp^* \mathcal{A}_G^{\mathrm{Spin}}$ is 2-isomorphic to the composition of the Morita isomorphism $\mathcal{A}_{\mathfrak{g}}^{\mathrm{Spin}} \longrightarrow \mathcal{A}_{G}^{\mathrm{Spin}}$ induced by $(\mathrm{d} \exp, -\varpi)$, with the Morita trivialization of $\mathcal{A}_{\mathfrak{g}}^{\mathrm{Spin}}$ (induced by the Dirac morphism $(T\mathfrak{g}^*, E_{\mathfrak{g}}) \longrightarrow (0, 0)$. The result now follows from Theorem 5.7.

7.6 Reduction

In this section, we will show that the canonical twisted Spin_c structure is well-behaved under reduction. Let (M, ω, Φ) be a q-Hamiltonian $K \times G$ -space. Thus, Φ has two components Φ_K and Φ_G , taking values in K and G, respectively. Suppose $e \in G$ a regular value of Φ_G , so that $Z = \Phi_G^{-1}(e)$ is a smooth $K \times G$ -invariant submanifold. Let $\iota: Z \to M$ be the inclusion. The moment map condition shows that the G-action is locally free on Z, and that $\iota^*\omega$ is G-basic. Let us assume for simplicity that the G-action on Z is actually free. Then

$$M_{\rm red} = Z/G$$

is a smooth K-manifold, the G-basic 2-form $\iota^*\omega$ descends to a 2-form ω_{red} on M_{red} , and the restriction $\Phi|_Z$ descends to a smooth K-equivariant map $\Phi_{\mathrm{red}} \colon M_{\mathrm{red}} \to K$.

Proposition 7.11. [2] The triple $(M_{\rm red}, \phi_{\rm red}, \phi_{\rm red})$ is a q-Hamiltonian K-space. In particular, if $K = \{e\}$ it is a symplectic manifold. We wish to relate the canonical twisted $\mathrm{Spin}_{\mathrm{c}}$ -structures for M_{red} to that for M. We need the following lemma.

Lemma 7.12. There is a $G \times K$ -equivariant Morita morphism

$$\widetilde{\mathbb{C}}l(TM)|_{Z} \longrightarrow \widetilde{\mathbb{C}}l(TM_{red}),$$
 (24)

with underlying map the quotient map $\pi: Z \to M_{\mathrm{red}}$.

Proof. Consider the exact sequences of vector bundles over *Z*,

$$0 \to Z \times \mathfrak{g} \to TZ \to \pi^* TM_{\text{red}} \to 0, \tag{25}$$

where the first map is inclusion of the generating vector fields, and

$$0 \to TZ \to TM|_Z \to Z \times \mathfrak{g}^* \to 0, \tag{26}$$

where the map $TM|_Z \to \mathfrak{g}^* \cong \mathfrak{g} = T_eG$ is the restriction $(d\Phi)|_Z$. (We are writing \mathfrak{g}^* in (26) to avoid confusion with the copy of \mathfrak{g} in (25).) The Euclidean metric on TM gives orthogonal splittings of both exact sequences, hence it gives a $K \times G$ -equivariant direct sum decomposition

$$TM|_{Z} = \pi^* TM_{\text{red}} \oplus Z \times (\mathfrak{q} \oplus \mathfrak{q}^*). \tag{27}$$

The standard symplectic structure

$$\omega_{\mathfrak{g}\oplus\mathfrak{g}^*}((v_1,\mu_1),(v_2,\mu_2)) = \mu_1(v_2) - \mu_2(v_1)$$
(28)

defines a $K \times G$ -equivariant $\operatorname{Spin}_{\operatorname{c}}$ structure on $Z \times (\mathfrak{g} \oplus \mathfrak{g}^*)$, and gives the desired equivariant Morita isomorphism.

Note that the restriction of the Morita morphism $\widetilde{\mathbb{C}}$ $l(TM) \dashrightarrow \mathcal{A}_{K \times G}^{\mathrm{Spin}}$ to $Z \subset M$ takes values in $\mathcal{A}_{K \times G}^{\mathrm{Spin}}|_{K \times \{e\}}$. Let

$$\mathcal{A}_{K\times G}^{\mathrm{Spin}}|_{K\times \{e\}} \longrightarrow \mathcal{A}_{K}^{\mathrm{Spin}} \tag{29}$$

be the Morita isomorphism defined by the Morita trivialization of $\mathcal{A}_{G}^{\mathrm{Spin}}|_{\{e\}}$. The twisted $Spin_c$ structure for (M, ω, Φ) descends to the twisted $Spin_c$ structure for the *G*-reduced space $(M_{\rm red}, \omega_{\rm red}, \Phi_{\rm red})$, in the following sense.

Theorem 7.13 (Reduction). Suppose (M, ω, Φ) is a q-Hamiltonian $K \times G$ -manifold, such that e is a regular value of Φ_G and such that G acts freely on $\Phi_G^{-1}(e)$. The diagram of $K \times G$ -equivariant Morita morphisms

$$\begin{split} \widetilde{\mathbb{C}} \, \mathbf{l}(TM)|_{Z} & ---- & \Rightarrow & \mathcal{A}_{K \times G}^{\mathrm{Spin}}|_{K \times \{e\}} \\ & \mid & \mid & \mid \\ & \mid & \mid & \mid \\ & \mid & \vee & \vee \\ \widetilde{\mathbb{C}} \, \mathbf{l}(TM_{\mathrm{red}}) & --- & \Rightarrow & \mathcal{A}_{K}^{\mathrm{Spin}} \end{split}$$

commutes up to equivariant 2-isomorphism. Here the vertical maps are given by (24) and (29).

The proof uses the following normal form result for $TM|_{Z}$.

Lemma 7.14. For a suitable choice of invariant Euclidean metric on TM. the decomposition $TM|_Z = \pi^*TM_{\rm red} \oplus Z \times (\mathfrak{g} \oplus \mathfrak{g}^*)$ from (27) is compatible with the 2-forms. That is,

$$\omega|_{Z} = \pi^* \omega_{\text{red}} \oplus \omega_{n \oplus n^*}.$$

Proof. We will construct $K \times G$ -equivariant splittings of the exact sequences (25) and (26) so that (27) is compatible with the 2-forms. (One may then take an invariant Euclidean metric on $TM|_Z$ for which these splittings are orthogonal, and extend to TM.) Begin with an arbitrary $K \times G$ -invariant splitting

$$TM|_Z = TZ \oplus F$$
.

Since $F \cap \ker(\omega) = 0$, the sub-bundle $F^{\omega} \subset TM|_{Z}$ (the set of vectors ω -orthogonal to all vectors in F) has codimension $\operatorname{codim}(F^{\omega}) = \dim F = \dim \mathfrak{g}$. The moment map condition shows that ω is nondegenerate on $F \oplus Z \times \mathfrak{g}$. Hence $(Z \times \mathfrak{g}) \cap F^{\omega} = 0$, and therefore

$$TM|_Z = (Z \times \mathfrak{g}) \oplus F^{\omega}.$$

Let $\phi: TM|_Z \to Z \times \mathfrak{g}$ be the projection along F^{ω} . The subspace

$$F' = \{v - \frac{1}{2}\phi(v) | v \in F\}$$

is again an invariant complement to TZ in $TM|_{Z}$, and it is *isotropic* for ω . Indeed, if $v_1, v_2 \in F$,

$$\omega(v_1 - \frac{1}{2}\phi(v_1), \ v_2 - \frac{1}{2}\phi(v_2)) = \frac{1}{2}\omega(v_1, v_2 - \phi(v_2)) + \frac{1}{2}\omega(v_1 - \phi(v_1), v_2)$$

vanishes since $v_i - \phi(v_i) \in F^\omega$. The restriction of $(\mathrm{d}\Phi_G)|_Z \colon TM|_Z \to \mathfrak{g}^*$ to F' identifies $F' = Z \times \mathfrak{g}^*$. We have hence shown the existence of an invariant decomposition $TM|_Z = TZ \oplus Z \times \mathfrak{g}^*$ where the second summand is embedded as an ω -isotropic subspace, and such that $(\mathrm{d}\Phi_G)|_Z$ is projection to the second summand. From the G-moment map condition

$$\iota(\xi_M)\omega|_Z = -\frac{1}{2}\Phi_G^*B((\theta^L + \theta^R)|_Z, \xi) = -B((d\Phi_G)|_Z, \xi), \quad \xi \in \mathfrak{g},$$

we see that the induced 2-form on the sub-bundle $Z \times (\mathfrak{g} \oplus \mathfrak{g}^*)$ is just the standard one, $\omega_{\mathfrak{g} \oplus \mathfrak{g}^*}$. The ω -orthogonal space $Z \times (\mathfrak{g} \oplus \mathfrak{g}^*)^{\omega}$ defines a complement to $Z \times \mathfrak{g} \subset TZ$, and is hence identified with π^*TM_{red} .

Proof of Theorem 7.13. Let $\Theta: TM|_{Z} \longrightarrow TM_{\text{red}}$ be the bundle morphism given by projection to the first summand in (27), followed by the quotient map. Then

$$(\Theta, \omega_{\mathfrak{q} \oplus \mathfrak{q}^*}) : (\mathbb{T}M|_Z, TM|_Z) \dashrightarrow (\mathbb{T}M_{\text{red}}, TM_{\text{red}}),$$

is a strong Dirac morphism, and the resulting Morita morphism $\mathcal{A}_{TM|_Z} \dashrightarrow \mathcal{A}_{TM_{\mathrm{red}}}$ fits into a commutative diagram

$$\widetilde{\mathbb{C}}1(TM)|_{Z} -- > \mathcal{A}_{TM}|_{Z} \qquad (30)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

On the other hand, letting $\operatorname{pr}_1 \colon T(K \times G)|_{K \times \{e\}} \to TK$ be projection to the first summand, we have

$$(\mathrm{pr}_1,0)\circ(\mathrm{d}\Phi|_Z,\omega|_Z)=(\mathrm{d}\Phi_{\mathrm{red}},\omega_{\mathrm{red}})\circ(\Theta,\omega_{\mathfrak{g}\oplus\mathfrak{g}^*}),$$

so that the resulting diagram of Morita morphisms

commutes up to 2-isomorphism. Placing (30) next to (31), the Theorem follows.

Remark 7.15. If e is a regular value of Φ_G , but the action of G on Z is not free, then the reduced space $M_{\rm red}$ is usually an orbifold. The theorem extends to this situation with obvious modifications.

Remark 7.16. Reduction at more general values $g \in G$ may be expressed in terms of reduction at e, using the shifting trick: Let $G_q \subset G$ be the centralizer of g, and $Ad(G)g^{-1} \cong$ $G/G_{q^{-1}}$ the conjugacy class of g^{-1} . Then

$$M//_qG := \Phi_G^{-1}(g)/G_q = (M \times Ad(G)g^{-1})//_G,$$

where $M \times \mathrm{Ad}(G).g^{-1}$ is the fusion product. Again, one finds that g is a regular value of Φ_G if and only if the G_g -action on $\Phi^{-1}(g)$ is locally free, and if the action is free then $M//_gG$ is a q-Hamiltonian K-space.

8 Hamiltonian *LG*-spaces

In his 1988 paper, Freed [13] argued that for a compact, simple and simply connected Lie group G, the canonical line bundle over the Kähler manifold LG/G (and over the other coadjoint orbits of the loop group) is a \widehat{LG} -equivariant Hermitian line bundle $K \to LG/G$, where the central circle of \widehat{LG} acts with a weight $-2h^{\vee}$, where h^{\vee} is the dual Coxeter number. In [22], this was extended to more general Hamiltonian LG-spaces.

In this section, we will use the correspondence between Hamiltonian LG-spaces and q-Hamiltonian G-spaces to give a new construction of the canonical line bundle, in which it is no longer necessary to assume G simply connected. We begin by recalling the definition of a Hamiltonian LG-space. Let G be a compact Lie group, with a given invariant inner product B on its Lie algebra. We fix s>1/2, and take the loop group LG to be the Banach Lie group of maps $S^1\to G$ of Sobolev class s+1/2. Its Lie algebra $L\mathfrak{g}$ consists of maps $S^1\to \mathfrak{g}$ of Sobolev class s+1/2. We denote by $L\mathfrak{g}^*$ the \mathfrak{g} -valued 1-forms on S^1 of Sobolev class s-1/2, with the gauge action $g\cdot \mu=\mathrm{Ad}_g(\mu)-g^*\theta^R$. A Hamiltonian LG-manifold is a Banach manifold N with an action of LG, an invariant (weakly) symplectic 2-form $\sigma\in\Omega^2(N)$, and a smooth LG-equivariant map $\Psi:N\to L\mathfrak{g}^*$ satisfying the moment map condition

$$\iota(\xi^{\sharp})\sigma = -\mathrm{d}\langle \Psi, \xi \rangle, \quad \xi \in L\mathfrak{g}.$$

Here the pairing between elements of $L\mathfrak{g}^*$ and of $L\mathfrak{g}$ is given by the inner product B followed by integration over S^1 .

Suppose now that G is connected, and let $\mathcal{P}G$ be the space of paths $\gamma\colon\mathbb{R}\to G$ of Sobolev class s+1/2 such that $\pi(\gamma)=\gamma(t+1)\gamma(t)^{-1}$ is constant. The map $\pi\colon\mathcal{P}G\to G$ taking γ to this constant is a G-equivariant principal LG-bundle, where $a\in G$ acts by $\gamma\mapsto a\gamma$ and $\lambda\in LG$ acts by $\gamma\mapsto\gamma\lambda^{-1}$. One has $\mathcal{P}G/G\cong L\mathfrak{g}^*$ with quotient map $\gamma\mapsto\gamma^{-1}\dot{\gamma}\mathrm{d}t$. Let $\tilde{N}\to N$ be the principal G-bundle obtained by pull-back of the bundle $\mathcal{P}G\to L\mathfrak{g}^*$, and $\tilde{\Psi}\colon\tilde{N}\to\mathcal{P}G$ the lifted moment map. Then $\tilde{\Psi}$ is $LG\times G$ -equivariant. Since the LG-action on $\mathcal{P}G$ is a principal action, the same is true for the action on \tilde{N} . Assuming that Ψ (hence $\tilde{\Psi}$) is proper, one obtains a smooth compact manifold $M=\tilde{N}/LG$ with an induced G-map $\Phi\colon M\to G=\mathcal{P}G/LG$.

$$egin{array}{cccc} ilde{N} & \stackrel{ ilde{\psi}}{\longrightarrow} & \mathcal{P}G \ & & & & \downarrow^{\pi_G} \ & & & & \downarrow^{\pi_G} \ & & & & & G \end{array}$$

In [2], it was shown how to obtain an invariant 2-form ω on M, making (M, ω, Φ) into a q-Hamiltonian G-spaces. This construction sets up a 1-1 correspondence between Hamiltonian LG-spaces with proper moment maps and q-Hamiltonian spaces.

As noted in Remark 7.2, the canonical twisted ${\rm Spin_c}$ structure for (M,ω,Φ) defines a G-equivariant Morita trivialization of the bundle $\mathcal{E} \colon \mathbb{C} \dashrightarrow \Phi^* \mathcal{A}_C^{\mathrm{Spin}^{\otimes 2}}$ over M. On the other hand, let $\widehat{LG}^{\mathrm{Spin}}$ be the pull-back of the basic central extension $\widehat{L\mathrm{SO}(\mathfrak{g})}$ under the adjoint action. By the discussion in Section 6.3, the pull-back bundle $\mathcal{A}_{\mathcal{L}}^{\mathrm{Spin}}$ to $\mathcal{P}G$ has a canonical $\widehat{LG}^{Spin} \times G$ -equivariant Morita trivialization,

$$S_0: \mathbb{C} \dashrightarrow \pi_G^* \mathcal{A}_G^{\mathrm{Spin}},$$

where the central circle of $\widehat{LG}^{\mathrm{Spin}}$ acts with weight 1. Tensoring \mathcal{S}_0 with itself, and pulling everything back to \hat{N} we obtain two Morita trivializations $\pi_M^*\mathcal{E}$ and $\tilde{\Psi}^*(\mathcal{S}_0\otimes\mathcal{S}_0)$ of the Dixmier–Douady bundle $\mathcal C$ over $\tilde N$, given by the pull-back of $\mathcal A_G^{\mathrm{Spin}^{\otimes 2}}$ under $\Phi \circ \pi_M =$ $\pi_G \circ \tilde{\Psi}$. Let

$$\tilde{K} := \operatorname{Hom}_{\mathcal{C}}(\tilde{\Psi}^*(\mathcal{S}_0 \otimes \mathcal{S}_0), \pi_M^* \mathcal{E}).$$

Then $ilde{K}$ is a $\widehat{LG}^{ ext{Spin}} imes G$ -equivariant Hermitian line bundle, where the central circle in $\widehat{LG}^{\text{Spin}}$ acts with weight -2. Its quotient $K = \widetilde{K}/G$ is the desired *canonical bundle* for the Hamiltonian LG-manifold N.

Remark 8.1. For G simple and simply connected, the central extension \widehat{LG}^{Spin} is the h^{\vee} -th power of the "basic central" extension \widehat{LG} . We may thus also think of K_N as a \widehat{LG} -equivariant line bundle where the central circle acts with weight $-2h^{\vee}$.

The canonical line bundle is well-behaved under symplectic reduction. That is, if e is a regular value of Φ then $0 \in L\mathfrak{g}^*$ is also a regular value of Ψ , and $\Phi^{-1}(e) \cong \Psi^{-1}(0)$ as G-spaces. Assume that G acts freely on these level sets, so that $M/\!\!/ G = N/\!\!/ G$ is a symplectic manifold. The canonical line bundle for $M/\!\!/ G$ is simply $K_{M/G} = K_N|_{\psi^{-1}(0)}/G$. As in [22], one can sometimes use this fact to compute the canonical line bundle over moduli spaces of flat *G*-bundles over surfaces.

Acknowledgements

It is a pleasure to thank Gian-Michel Graf, Marco Gualtieri, and Nigel Higson for useful comments and discussion.

Funding

This work was supported by the Swiss National Science Foundation, grants 200020-120042 and 200020-121675 (to A.A.) and also supported by an NSERC Discovery Grant and a Steacie Fellowship (to E.M.).

Appendix A. Boundary conditions

In this section, we will prove several facts about the operator $\frac{\partial}{\partial t}$ on the complex Hilbert space $L^2([0,1],\mathbb{C}^n)$, with boundary conditions defined by $A \in U(n)$,

$$\mathrm{dom}(D_A) = \{ f \in L^2([0,1], \mathbb{C}^n) | \dot{f} \in L^2([0,1], \mathbb{C}^n), \ f(1) = -Af(0) \}.$$

Let $e^{2\pi i \lambda^{(1)}}, \ldots, e^{2\pi i \lambda^{(n)}}$ be the eigenvalues of A, with corresponding normalized eigenvectors $v^{(1)}, \ldots, v^{(n)} \in \mathbb{C}^n$. Then the spectrum of D_A is given by the eigenvalues $2\pi i(\lambda^{(r)} + k - \frac{1}{2})$, $k \in \mathbb{Z}$, $r = 1, \ldots, n$ with eigenfunctions

$$\phi_k^{(r)}(t) = \exp\left(2\pi\mathrm{i}\left(\lambda^{(r)} + k - \frac{1}{2}\right)t\right)v^{(r)}.$$

We define $J_A = i \operatorname{sign}(-iD_A)$; this coincides with $J_A = D_A/|D_A|$ if D_A has trivial kernel.

Proposition A.1. Let $A, A' \in U(n)$. Then $J_{A'} - J_A$ is Hilbert–Schmidt if and only if A' = A.

Proof. Suppose $A' \neq A$. Let Π and Π' be the orthogonal projection operators onto $\ker(J_A - \mathbf{i})$, $\ker(J_{A'} - \mathbf{i})$. It suffices to show that $\Pi' - \Pi$ is not Hilbert–Schmidt, that is, that $(\Pi' - \Pi)^2$ is not trace class. Since

$$(\Pi - \Pi')^2 = \Pi(I - \Pi')\Pi + (I - \Pi)\Pi'(I - \Pi).$$

is a sum of two positive operators, it suffices to show that $\Pi(I-\Pi')\Pi$ is not trace class. Let $\phi_l^{'(s)}$ be the eigenfunctions of $D_{A'}$, defined similar to those for D_A , with eigenvalues $2\pi i(\lambda^{'(s)}+l-\frac{1}{2})$. Indicating the eigenvalues and eigenfunctions for A' by a prime ', we have

$$\operatorname{tr}(\Pi(I - \Pi')\Pi) = \sum_{i} |\langle \phi_k^{(r)}, \phi_l^{'(s)} \rangle|^2,$$

where the sum is over all k, r, l, s satisfying $\lambda^{(r)} + k - \frac{1}{2} > 0$ and $\lambda^{'(s)} + l - \frac{1}{2} \le 0$. But

$$|\langle \phi_k^{(r)}, \phi_l^{'(s)} \rangle|^2 = \left| \frac{\langle v^{(r)}, v^{'(s)} \rangle (\mathrm{e}^{2\pi \mathrm{i} (\lambda^{'(s)} - \lambda^{(r)})} - 1)}{2\pi (\lambda^{'(s)} - \lambda^{(r)} + l - k)} \right|^2.$$

Since $A' \neq A$, we can choose r and s such that

$$e^{2\pi i \lambda^{(r)}} \neq e^{2\pi i \lambda^{'(s)}}$$
 and $\langle v^{(r)}, v^{'(s)} \rangle \neq 0$.

For such r and s, the enumerator is a nonzero constant, and the sum over k and l is divergent.

Proposition A.2. Given $A, A' \in U(n)$, let

$$\gamma: [0,1] \to \operatorname{Mat}_n(\mathbb{C})$$

be a continuous map with

$$A'\gamma(0) = \gamma(1)A$$
,

and such that $\dot{\gamma} \in L^{\infty}([0, 1], \operatorname{Mat}_n(\mathbb{C}))$. Let M_{γ} be the bounded operator on $L^2([0, 1], \mathbb{C}^n)$ given as multiplication by γ . Then

$$M_{\scriptscriptstyle Y} J_{\scriptscriptstyle A} - J_{\scriptscriptstyle A'} M_{\scriptscriptstyle Y}$$

is Hilbert–Schmidt. □

Proof. This is a mild extension of Proposition(6.3.1) in Pressley–Segal [26, p. 82], and we will follow their line of argument. Using the notation from the proof of Proposition A.1, it suffices to show that $M_{\gamma}\Pi - \Pi'M_{\gamma}$ is Hilbert–Schmidt, or equivalently that both $(I - \Pi')M_{\gamma}\Pi$ and $\Pi'M_{\gamma}(I - \Pi)$ are Hilbert–Schmidt. We will give the argument for $\Pi'M_{\gamma}(I - \Pi)$, the discussion for $(I - \Pi')M_{\gamma}\Pi$ is similar. We must prove that

$$\begin{split} \operatorname{tr}((\Pi'M_{\gamma}(I-\Pi))(\Pi'M_{\gamma}(I-\Pi))^*) &= \operatorname{tr}(\Pi'M_{\gamma}(I-\Pi)M_{\gamma}^*) \\ &= \sum |\langle \phi_k^{'(r)}|\, M_{\gamma}|\, \phi_l^{(s)}\rangle|^2 < \infty, \end{split}$$

where the sum is over all k and r with $\lambda^{'(r)} + k - \frac{1}{2} > 0$ and over all l and s with $\lambda^{(s)} + l - \frac{1}{2} \le 0$. Changing the sum by only finitely many terms, we may replace this with a summation over all k, r, l and s such that k > 0 and $l \le 0$. Since $\langle \phi_k^{'(r)} | M_\gamma | \phi_l^{(s)} \rangle = \langle \phi_{k+n}^{'(r)} | M_\gamma | \phi_{l+n}^{(s)} \rangle$ for all $n \in \mathbb{Z}$, and since there are m terms with fixed k - l = m, the assertion is equivalent to

$$\sum_{r,s} \sum_{m>0} m |\langle \phi_0^{'(r)} | M_{\gamma} | \phi_m^{(s)} \rangle|^2 < \infty.$$
 (A.1)

To obtain this estimate, we use $\dot{\gamma} \in L^{\infty}([0, 1], \operatorname{Mat}_n(\mathbb{C}))$. We have

$$\sum_{r,s} \sum_{m \in \mathbb{Z}} |\langle \phi_0^{'(r)} | M_{\dot{\gamma}} | \phi_m^{(s)} \rangle|^2 = \sum_r || M_{\dot{\gamma}}^* \phi_0^{'(r)} ||^2 < \infty.$$

An integration by parts shows

$$\begin{split} \langle \phi_0^{'(r)} | M_{\dot{\gamma}} | \phi_m^{(s)} \rangle &= -2\pi \mathrm{i}(\lambda^{(s)} - \lambda^{'(r)} + m) \langle \phi_0^{'(r)} | M_{\gamma} | \phi_m^{(s)} \rangle \\ &+ \langle \phi_0^{'(r)}(1) | \gamma(1) | \phi_m^{(s)}(1) \rangle - \langle \phi_0^{'(r)}(0) | \gamma(0) | \phi_m^{(s)}(0) \rangle. \end{split}$$

The boundary terms cancel since $A'\gamma(0) = \gamma(1)A$, and

$$\phi_0^{(r)}(1) = -A'\phi_0^{(r)}(0), \quad \phi_m^{(s)}(1) = -A\phi_m^{(s)}(0).$$

Hence we obtain

$$\sum_{r,s}\sum_{m\in\mathbb{Z}}(\lambda^{(s)}-\lambda^{'(r)}+m)^2\;|\langle\phi_0^{'(r)}|M_\gamma|\phi_m^{(s)}\rangle|^2<\infty$$

which implies (A.1).

Proposition A.3. Let $A \in \mathrm{U}(n)$, and let $\mu \in L^\infty([0,1],\mathfrak{u}(n))$. Consider $D_{A,\mu} = D_A + M_\mu$ with domain equal to that of D_A , and define $J_{A,\mu}$ similar to J_A . Then $J_{A,\mu} - J_A$ is Hilbert–Schmidt.

Proof. Let $\gamma \in C([0, 1], U(n))$ be the solution of the initial value problem $\dot{\gamma}\gamma^{-1} = -\mu$ with $\gamma(0) = I$. Let $A = \gamma(1)A'$. The operator M_{γ} of multiplication by γ takes $dom(D_{A'})$

to $dom(D_A)$, and

$$M_{\gamma} D_{A'} M_{\gamma}^{-1} = D_A - \dot{\gamma} \gamma^{-1} = D_{A,\mu}.$$

Hence $M_{\gamma}J_{A'}M_{\gamma^{-1}}=J_{A,\mu}$. By Proposition A.2, $M_{\gamma}J_{A'}M_{\gamma^{-1}}$ differs from J_A by a Hilbert-Schmidt operator.

Let us finally consider the continuity properties of the family of operators D_A , $A \in U(n)$. Recall [28, Chapter VIII] that the norm resolvent topology on the set of unbounded skewadjoint operators on a Hilbert space is defined by declaring that a net D_i converges to D if and only if $R_1(D_i) = (D_i - I)^{-1} \rightarrow R_1(D) = (D - I)^{-1}$ in norm. This then implies that $R_z(D_i) \to R_z(D)$ in norm, for any z with nonzero real part, and in fact $f(D_i) \to f(D)$ in norm for any bounded continuous function f. For bounded operators, convergence in the norm resolvent topology is equivalent to convergence in the norm topology.

Proposition A.4. The map $A \mapsto D_A$ is continuous in the norm resolvent topology.

Proof. We will use that $||R_1(D)|| = ||(D-I)^{-1}|| < 1$ for any skew-adjoint operator D. Let us check continuity at any given $A \in U(n)$. Given $a \in \mathfrak{u}(n)$, let us write $D_a = D_{\exp(a)A}$. We will prove continuity at A by showing that

$$||R_1(D_a) - R_1(D_0)|| \le 3||a||.$$

Let $U_a \in U(V)$ be the operator of pointwise multiplication by $\exp(ta) \in U(V)$. Then

$$||U_a - U_0|| = \sup_{t \in [0, 1]} || \exp(ta) - I|| \le ||a||.$$

The operator U_a takes the domain of D_0 to that of D_a , since f(1) = -Af(0) implies $(U_a f)(1) = \exp(a) f(1) = -\exp(a) Af(0)$. Furthermore,

$$D_a = U_a (D_0 + M_a) U_a^{-1}$$

Hence

$$R_1(D_a) = U_a R_1(D_0 + M_a) U_a^{-1}.$$

The second resolvent identity $R_1(D_0 + M_a) - R_1(D_0) = R_1(D_0 + M_a)M_aR_1(D_0)$ shows

$$||R_1(D_0 + M_a) - R_1(D_0)|| \le ||M_a|| = ||a||.$$

Hence

$$\begin{split} ||R_{1}(D_{a}) - R_{1}(D_{0})|| \\ &= ||U_{a}R_{1}(D_{0} + M_{a})U_{a}^{-1} - U_{0}R_{1}(D_{0})U_{0}^{-1}|| \\ &\leq ||(U_{a} - U_{0})R_{1}(D_{0} + M_{a})U_{a}^{-1}|| + ||U_{0}R_{1}(D_{0} + M_{a})(U_{a}^{-1} - U_{0}^{-1})|| \\ &+ ||U_{0}(R_{1}(D_{0} + M_{a}) - R_{1}(D_{0}))U_{0}^{-1}|| \\ &\leq 2||a|| \; ||R_{1}(D_{0} + M_{a})|| + ||R_{1}(D_{0} + M_{a}) - R_{1}(D_{0})|| < 3||a||. \end{split}$$

Appendix B. The Dixmier-Douady bundle over S^1

Let $S^1 = \mathbb{R}/\mathbb{Z}$ carry the *trivial* action of S^1 . The Morita isomorphism classes of S^1 -equivariant Dixmier-Douady bundles $A \to S^1$ are labeled by their class

$$DD_{S^1}(A) \in H^3_{S^1}(S^1, \mathbb{Z}) \times H^1(S^1, \mathbb{Z}_2).$$

The bundle corresponding to $x \in H^3_{S^1}(S^1,\mathbb{Z}) = H^2_{S^1}(\operatorname{pt}) = \mathbb{Z}$ and $y \in H^1(S^1,\mathbb{Z}_2) = H^0(\operatorname{pt},\mathbb{Z}_2) = \mathbb{Z}_2$ may be described as follows. Let $L_{(x,y)} \cong \mathbb{C}$ be the \mathbb{Z}_2 -graded S^1 -representation, of parity given by the parity of y, and with S^1 -weight given by x. Choose a \mathbb{Z}_2 -graded S^1 -equivariant Hilbert space \mathcal{H} with an equivariant isomorphism $\tau: \mathcal{H} \to \mathcal{H} \otimes L$ preserving \mathbb{Z}_2 -gradings. Then τ induces an S^1 -equivariant *-homomorphism

$$\bar{\tau}: \mathbb{K}(\mathcal{H}) \to \mathbb{K}(\mathcal{H} \otimes L) = \mathbb{K}(\mathcal{H}),$$

preserving \mathbb{Z}_2 -gradings. The bundle $\mathcal{A} \to \mathcal{S}^1$ with Dixmier–Douady class (x,y) is obtained from the trivial bundle $[0,1] \times \mathbb{K}(\mathcal{H})$, using $\bar{\tau}$ to glue $\{0\} \times \mathbb{K}(\mathcal{H})$ and $\{1\} \times \mathbb{K}(\mathcal{H})$. Given another choice \mathcal{H}' , τ' , one obtains a Morita isomorphism $\mathcal{E} \colon \mathcal{A} \to \mathcal{A}'$, where \mathcal{E} is obtained from a similar boundary identification for $[0,1] \times \mathbb{K}(\mathcal{H}',\mathcal{H})$.

A convenient choice of H, τ defining the bundle with x = 1 and y = 1 is as follows. Let \mathcal{H} be a Hilbert space with orthonormal basis of the form s_K , indexed by the subsets $K = \{k_1, k_2, \ldots\} \subset \mathbb{Z}$ such that $k_1 > k_2 > \cdots$ and $k_l = k_{l+1} + 1$ for l sufficiently large. Let

$$m_K = \#\{k \in K | k > 0\} - \#\{k \in \mathbb{Z} - K | k \le 0\}.$$

Let \mathcal{H} carry the S^1 -action such that s_K is a weight vector of weight m_K , and a \mathbb{Z}_2 -grading, defined by the weight spaces of even/odd weight. Let $\tau(K) = \{k+1 | k \in K\}$. Then $m_{\tau(K)} = \{k+1 | k \in K\}$. $m_K + 1$, hence the automorphism $\tau : \mathcal{H} \to \mathcal{H}$ taking s_K to $s_{\tau(K)}$ has the desired properties.

The Hilbert space $\mathcal H$ can also be viewed as a spinor module. Let $\mathcal V$ be a real Hilbert space, with complexification $\mathcal{V}^{\mathbb{C}}$, and let f_k , $k \in \mathbb{Z}$ be vectors such that f_k together with f_k^* are an orthonormal basis. The elements s_K for $K = \{k_1, k_2, \ldots\}$ with $k_1 > k_2 > \cdots$ are written as formal infinite wedge products

$$s_K = f_{k_1} \wedge f_{k_2} \wedge \cdots$$

suggesting the action of the Clifford algebra: $\varrho(f_k)$ acts by exterior multiplication, while $\varrho(f_{k^*})$ acts by contraction. The automorphism $\tau \in \mathrm{U}(\mathcal{H})$ is an implementer of the orthogonal transformation $T \in O(V)$,

$$Tf_k = f_{k+1}, \quad Tf_k^* = f_{k+1}^*.$$
 (B.1)

Let us denote the resulting Dixmier–Douady bundle by $A_{(1,1)}$.

Proposition B.1. The Dixmier–Douady bundle $A_{(1,1)} \to S^1$ is equivariantly isomorphic to the Dixmier-Douady bundle $A \to SO(2) \cong S^1$, constructed as in Section 6.

Proof. For $s \in \mathbb{R}$, let $A_s \in SO(2)$ be the matrix of rotation by $2\pi s$, and let D_s be the skewadjoint operator $\frac{\partial}{\partial t}$ on $L^2([0,1],\mathbb{R}^2)$ with boundary conditions $f(1)=-A_sf(0)$. The operator ator D_0 has an orthonormal system of eigenvectors $f_k,\,f_k^*,\,\,k\!\in\!\mathbb{Z}$ given by

$$f_k(t) = e^{2\pi i(k-\frac{1}{2})t}u,$$

with $u=\frac{1}{\sqrt{2}}(1,i)$. The eigenvalues for f_k , f_k^* are $\pm 2\pi i(k-\frac{1}{2})$. We see that the +i eigenspace of $J=D_0/|D_0|$ is given by

$$V_+ = \text{span}\{\cdots, f_3, f_2, f_1, f_0^*, f_{-1}^*, \cdots\}.$$

There is a unique isomorphism of $\mathbb{C} l(\mathcal{V})$ -modules $\mathcal{S}_J \to \mathcal{H}$ taking the "vacuum vector" $1 \in \mathcal{S}_J = \overline{\wedge \mathcal{V}_+}$ to the "vacuum vector" $f_0 \wedge f_{-1} \wedge \cdots$.

For $s \in \mathbb{R}$, define orthogonal transformations $U_s \in O(\mathcal{V})$, where U_s is pointwise multiplication by $t \mapsto A_{st}$. On f_k the operator U_s acts as multiplication by $e^{2\pi i st}$, and on f_k^* as multiplication by $e^{-2\pi i st}$. Hence

$$f_k^{(S)} = U_S f_k, \quad (f_k^{(S)})^* = U_S f_k^*$$

are the eigenvectors of D_s , with shifted eigenvalues $\pm 2\pi i(k-\frac{1}{2}+s)$. The complex structure

$$J_s = U_s J U_s^{-1}$$

differs from $J_{D_s}=\mathrm{i}\,\mathrm{sign}(-\mathrm{i}D_s)$ by a finite rank operator. Hence, letting \mathcal{S}_s denote the $\mathbb{C}\,\mathrm{l}(\mathcal{V})$ -module defined by J_s , the fiber of $\mathcal{A}\to\mathrm{SO}(2)$ at A(s) may be described as $\mathbb{K}(\mathcal{S}_s)$. The orthogonal transformation U_s extends to an orthogonal transformation of $\overline{\wedge \mathcal{V}}$, taking $\mathcal{S}=\overline{\wedge \mathcal{V}_+}$ to $\mathcal{S}_s=\overline{\wedge \mathcal{V}_+}$, where $\mathcal{V}_{\pm,s}=U_s\mathcal{V}_\pm$. Hence each \mathcal{S}_s is identified with $\mathcal{S}\cong\mathcal{H}$ as a Hilbert space (not as a $\mathbb{C}\,\mathrm{l}(\mathcal{V})$ -module). The identification $\mathbb{K}(\mathcal{S}_0)\cong\mathbb{K}(\mathcal{S}_1)$ is given by the choice of any isomorphism of $\mathbb{C}\,\mathrm{l}(\mathcal{V})$ -modules $\mathcal{S}_0\to\mathcal{S}_1$. In terms of the identifications with \mathcal{H} , such an isomorphism is given by an implementer of the orthogonal transformation U_1 . The proof is completed by the observation that $U_1=T$ (cf. (B.1)), which is implemented by τ .

We are now in a position to outline an alternative argument for the computation of the Dixmier–Douady class of $\mathcal{A}_{\mathrm{SO}(n)}$, Proposition 6.2. Note that $\mathcal{A}_{\mathrm{SO}(n)}$ is equivariant under the conjugation action of $\mathrm{SO}(n)$. One has $H^3_{\mathrm{SO}(n)}(\mathrm{SO}(n),\mathbb{Z})=\mathbb{Z}$ for $n\geq 2,\ n\neq 4$, and the natural maps to ordinary cohomology are isomorphisms for $n\geq 3$ and $n\neq 4$. Similarly $H^1_{\mathrm{SO}(n)}(\mathrm{SO}(n),\mathbb{Z}_2)=\mathbb{Z}_2$ for $n\geq 2$, and the natural map to $H^1(\mathrm{SO}(n),\mathbb{Z}_2)$ is an isomorphism. On the other hand, the map $H^3_{\mathrm{SO}(n)}(\mathrm{SO}(n),\mathbb{Z})\to H^3_{\mathrm{SO}(2)}(\mathrm{SO}(2),\mathbb{Z})$ (defined by the inclusion $\mathrm{SO}(2)\hookrightarrow\mathrm{SO}(n)$ as the upper left corner) is an isomorphism for $n\geq 2$ and $n\neq 4$, and likewise for $H^1(\cdot,\mathbb{Z}_2)$. It hence suffices to check that the bundle over $\mathrm{SO}(2)$ has equivariant

Dixmier–Douady class $(1,1) \in \mathbb{Z} \times \mathbb{Z}_2$. But this is clear from our very explicit description of $\mathcal{A}_{SO(2)}$.

References

- [1] Alekseev, A., H. Bursztyn, and E. Meinrenken. "Pure spinors on Lie groups." Astérisque 327 (2009): 131–99.
- [2] Alekseev, A., A. Malkin, and E. Meinrenken. "Lie group valued moment maps." Journal of Differential Geometry 48, no. 3 (1998): 445-95.
- [3] Alekseev, A. and E. Meinrenken. "The non-commutative Weil algebra." Inventiones Mathematicae 139, no. 1 (2000): 135–72.
- Alekseev, A., E. Meinrenken, and C. Woodward. "Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces." Geometry and Functional Analysis 12, no. 1 (2002): 1-31.
- [5] Araki, H. "Bogoliubov automorphisms and Fock representations of canonical anticommutation relations." American Mathematical Society Contemporary Mathematics 62 (1987): 23-141.
- [6] Atiyah, M. and G. Segal. "Twisted K-theory." Ukrainian Mathematical Bulletin 1, no. 3 (2004): 291-334.
- [7] Bursztyn, H. and M. Crainic. "Dirac Structures, Momentum Maps, and Quasi-Poisson Manifolds". The Breadth of Symplectic and Poisson Geometry, 1-40. Progress in Mathematics 232. Boston, MA: Birkhäuser, 2005.
- [8] Bursztyn, H. and O. Radko. "Gauge equivalence of dirac structures and symplectic groupoids." Annales de l'Institut Fourier (Grenoble) 53, no. 1 (2003): 309-37.
- [9] Carey, A., J. Mickelsson, and M. Murray. "Index theory, gerbes, and Hamiltonian quantization." Communications in Mathematical Physics 183, no. 3 (1997): 707-22.
- Connes, A. and G. Skandalis. "The longitudinal index theorem for foliations." Kyoto Univer-[10] sity. Research Institute for Mathematical Sciences. Publications 20, no. 6 (1984): 1139-183.
- Dixmier, J. and A. Douady. "Champs continus d'espaces hilbertiens et de C*-algèbres." [11] Bulletin de la Societe Mathematique de France 91 (1963): 227-84.
- Douglas, C. L. "On the twisted K-homology of simple Lie groups." Topology 45, no. 6 (2006): [12] 955-88.
- [13] Freed, D. S. "The geometry of loop groups." Journal of Differential Geometry 28, no. 2 (1988): 223-76.
- [14] Freed, D., M. Hopkins, and C. Teleman. "Loop groups and twisted K-theory II". Preprint: arXiv:math.AT/0511232.
- [15] Hitchin, N. "Lectures on special Lagrangian submanifolds." Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, 151-82. Cambridge, MA, 1999: American Mathematical Society, Providence, RI, 2001.
- Mathai, V., R. Melrose, and I. Singer. "The index of projective families of elliptic operators." [16] Geometry and Topology 9 (2005): 341-73 (electronic).

- [17] Mathai, V., R. Melrose, and I. Singer. "Fractional analytic index." *Journal of Differential Geometry* 74, no. 2 (2006): 265–92.
- [18] Mathai, V., R. Melrose, and I. Singer. "The index of projective families of elliptic operators: The decomposable case." *Astérisque* 328 (2009): 255–96.
- [19] Meinrenken, E. "On the quantization of conjugacy classes." *L' Enseignement Mathematique* 55, no. 1–2 (2009): 33–75.
- [20] Meinrenken, E. "Twisted k-homology and group-valued moment maps" (2010): Preprint arXiv:1008.1261.
- [21] Meinrenken, E. "Quantization of q-Hamiltonian SU(2)-spaces." Geometric Aspects of Analysis and Mechanics, in Honor of Hans Duistermaat. Basel: Birkhäuser, in press.
- [22] Meinrenken, E. and C. Woodward, "Canonical bundles for Hamiltonian loop group manifolds." *Pacific Journal of Mathematics* 198, no. 2 (2001): 477–87.
- [23] Mickelsson, J. *Gerbes and Quantum Field Theory*. Encyclopedia of Mathematical Physics, edited by T. Francoise and G. Naber. Amsterdam: Elsevier, 2006.
- [24] Plymen, R. J. "Strong Morita equivalence, spinors and symplectic spinors." *Journal of Operator Theory* 16 (1986): no. 2, 305–24.
- [25] Plymen, R. J. and P. L. Robinson. *Spinors in Hilbert Space*. Cambridge: Cambridge University Press, 1994.
- [26] Pressley, A. and G. Segal. Loop Groups. Oxford: Oxford University Press, 1988.
- [27] Raeburn, I. and D. Williams. *Morita equivalence and continuous-trace C*-algebras*. Mathematical Surveys and Monographs 60. Providence, RI: American Mathematical Society, 1998.
- [28] Reed, M. and B. Simon. Functional Analysis. New York: Academic Press, 1972.
- [29] Rosenberg, J. "Continuous-trace algebras from the bundle theoretic point of view." *Journal of Australian Mathematical Society Series A* 47, no. 3 (1989): 368–81.
- [30] Segal, G. "Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others)." Astérisque (1988) 161–162, Exp. No. 695, 4 (1989): 187–201 Séminaire Bourbaki, Vol. 1987/88.
- [31] Ševera, P. and A. Weinstein. "Poisson geometry with a 3-form background." *Progress in Theoretical Physics Suppl.* no. 144 (2001): 145–54, Noncommutative geometry and string theory (Yokohama, 2001).
- [32] Shale, D. and W. F. Stinespring. "Spinor representations of infinite orthogonal groups." *Journal of Mathematics and Mechanics* 14 (1965): 315–22.
- [33] Wang, B.-L. "Geometric cycles, index theory and twisted k-homology." *Journal of Noncommutative Geometry* 2, no. 4 (2008): 497–552.