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Abstract
Observational clinical studies link acute kidney injury to
chronic kidney disease (CKD) progression. The pathophy-
siological mechanisms that underlie this process are cur-
rently unknown but recently published papers suggest that
tubular epithelial cells and interstitial mesenchymal cells
emerge as a single unit, and their integrity alteration as a
whole might lead to renal fibrosis and CKD. The present
article reviews the biological findings supporting the
hypothesis of an altered epithelial/mesenchymal crosstalk
in fibrosis development and progression toward CKD.
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Introduction

Acute kidney injury (AKI) is common and remains
closely associated with increases in short-term mortality
and health-care utilization. Observational clinical studies
have linked AKI to progressive chronic kidney disease
(CKD), including the development of end-stage renal
disease (ESRD) [1–4]. The relevance of this AKI/CKD
nexus was recently reinforced by the Chawla study, which
reports that the severity of AKI is a robust predictor of
progression to CKD [5]. The topic is currently a matter of
debate in the renal community [6]. Recent epidemiologi-
cal studies showed that AKI community-based incidence
was much higher than previously thought and has in-
creased by 60% in the last few years [7], averaging 21.7
per 1000 patient-years in the USA [8] and affecting 1.2%
of all hospitalized patients according to a prospective,
observational, single-center study [9] using the AKIN
criteria as defined by the ADQI Working group in 2002
[10]. The annual incidence of ESRD generated from AKI
survivors has also increased (2011 Annual Data Report

from the US Renal Data System) and will be precisely
assessed with the prospective ASSESS-AKI Study
(Assessment, Serial Evaluation, and Subsequent Sequelae
of Acute Kidney Injury) [11]. Thus, the estimated inci-
dence of ESRD attributed to patients who survived an
episode of AKI could be as high as a 25% (4.9 per 100
000 person-years), similar in importance to diabetes (5.2
per 100 000 person-years) and hypertension (4.8 per 100
000 person-years), well ahead of, for example, glomerular
disease (2.5 per 100 000 person-years) and cystic kidney
disease (0.6 per 100 000 person-years) [12–14].
Histopathologically, AKI, and especially acute tubular

necrosis, is characterized by marked epithelial damage
followed by a proliferative recovery phase where highly
dividing epithelial cells repopulate tubules, whereas CKD
is characterized by interstitial fibrosis and inflammatory
cell infiltration, tubular atrophy, glomerulosclerosis and
arteriolosclerosis. Clinico-pathological studies have de-
monstrated that the extent of tubulo-interstitial fibrosis
correlates better than that of glomerular sclerosis with the
degree and progression of renal impairment, regardless
of the type and anatomical origin of the inciting injury
[15–18]. Therefore, exploration of the molecular mechan-
isms of the AKI/CKD nexus, with special attention
focused to the cellular players active in these two patho-
logical processes, is a central issue in renal research.
Several older [19–21] and more recent experimental find-

ings [22, 23], together with the common histopathological
notion that regions of active interstitial fibrosis predomi-
nantly exhibit a peritubular rather than a perivascular distri-
bution [24, 25], suggest a causal role for tubular epithelial
cells (TECs) inducing the proliferation and activation of
myofibroblasts in diseased kidneys. Thus, a severe AKI
episode might be followed by an incomplete repair of re-
generating tubules giving rise to a paracrine activity trigger-
ing fibroblast proliferation and inflammation.
The present article reviews the biological findings that

support the hypothesis of an altered epithelial/mesenchy-
mal crosstalk leading to renal fibrosis.
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The normal tubulo-interstitial space

The tubulo-interstitial space is composed of tubules and
the interstitium [26–28]. TECs represent the large majority
of the cells of the normal tubulo-interstitial space. The in-
terstitium consists of sparse interstitial cells (fibroblasts
and inflammatory cells) and peritubular capillaries, both
embedded in an extracellular matrix (ECM) network (col-
lagens I, III, VII; fibronectin; tenascin) [28–30]. Interstitial
fibroblasts are mesenchymal cells with a spindle-shaped
morphology [28, 31]. The fibroblasts in the peritubular in-
terstitium bridge the spaces between the capillaries and the
epithelia [32] and form a continuous network throughout
the kidney. Renal fibroblasts display similar shapes and ul-
trastructure as fibroblasts in the interstitium of other organs
[33–35]. They synthesize many constituents of the fibrillar
ECM such as type I, III, and V collagen, and fibronectin
[36, 37]. They are also a major source of ECM-degrading
proteases such as matrix metalloproteinases, underscoring
their crucial role in maintaining ECM homeostasis via
ECM turnover regulation [38, 39]. Inflammatory cells
present in the normal interstitium include macrophages (or
histiocytes), dendritic cells and leukocytes such as plasma
cells, lymphocytes and mast cells [40]. Finally, pericytes
or perivascular cells are the supportive and pro-angiogenic
cells of the peritubular capillaries.

Crosstalk among tubulo-interstitial cells, and between
tubulo-interstitial cells and ECM, is very probably tightly
regulated in the normal renal microenvironment. How-
ever, currently available knowledge on the physiological
mechanisms and feedback loops is sparse and relies upon
data derived from the altered microenvironment during
disease.

The fibrotic tubulo-interstitial space

In contrast to the normal renal interstitium, fibrotic tubulo-
interstitium is characterized by numerous cells (fibroblasts,
myofibroblasts, inflammatory cells and atrophic TECs), rar-
efaction of peritubular capillaries and excessive accumu-
lation of ECM as well as proteins originating from tubular
and vascular basement membranes (collagen IV, laminin)
[30, 41, 42].

Key cellular mediators of fibrosis are myofibroblasts
[43]. Myofibroblasts share features with smooth muscle
cells including expression of α-smooth muscle actin (α-
SMA) and secreting ECM [44, 45]. Despite its pivotal
role in disease progression, the origin of renal myofibro-
blasts is currently a matter of debate. Several hypotheses
have been proposed, e.g. migration of circulating fibro-
cytes to the lesion site [46], differentiation from local
fibroblasts [47] or pericytes [48], as well as direct trans-
formation of resident epithelial cells or endothelial cells
through an ‘epithelial-to-mesenchymal transition’ (EMT)
or an ‘endothelial-to-mesenchymal transition’ [49, 50]. In
parallel, a growing body of evidence involves the tubulo-
interstitial microenvironment as a whole, whose altera-
tions might be a fundamental trigger leading to myofibro-
blast activation.

EMTand fibrosis: a fascinating hypothesis under
close evaluation

Several authors have stressed the relevance of TEC contri-
bution to the fibrotic process through a direct transform-
ation into activated fibroblasts known as EMT [45, 51].
This hypothesis is perfectly sound as the EMT process is
well known in ontogeny and cancer where it contributes,
respectively, to mesodermal structure formation and
metastasis diffusion. In both cases, when migration is
needed, epithelial cells have to transform into a migratory
phenotype corresponding, in animal cells, to a mesenchy-
mal phenotype with a contractile apparatus and a metallo-
proteinase arsenal that allow movement in the dense
ECM. This hypothesis has become a widely accepted
mechanism by which injured renal TECs contribute to
renal fibrosis development [52, 53]. However, an increas-
ing number [22, 48] of both in vitro [54] and in vivo [55]
studies is raising doubts about the role of the EMT in the
fibrotic process, not only in the kidney but also in other
organs.

Epithelial cells are still under the spotlight

Nevertheless, beyond EMT, TECs remain central players
in fibrosis. Histopathologically, epithelial cells are, in fact,
the main injured cells in AKI. Clinically, whereas the
majority of AKI patients do recover, it is now increasingly
recognized that patients with severe AKI can progress to
CKD [1, 2, 4]. Scientific evidence supports this AKI/
CKD connection and derives from some interesting exper-
imental work by Nath et al. [56]. These authors showed
that AKI insult, which was induced through repetitive
exposure to heme proteins, was invariably accompanied
by a long-term glomerular filtration rate decrease associ-
ated with chronic tubulo-interstitial damages as measured
by collagen deposition and transforming growth factor
(TGF)-β1 activation. More recently, the causal association
between acute epithelial injury and fibroblast activation
with consequent fibrotic outcome was documented in a
number of AKI experimental modes, including ischemic,
toxic and obstructive models [57]. The authors convin-
cingly showed that injured TECs stopped in the G2/M
phase of the cell cycle, released pro-fibrotic cytokines,
and that bypassing the G2/M arrest by administration of a
p53 inhibitor, reduced fibrosis. Another group [58]
additionally showed that sustained p53 inhibition with
prolonged pifithrin-α administration negatively affected fi-
brosis in a rat model of ischemic AKI. This finding could
however be due to an increased viability of infiltrating
macrophages, as demonstrated by immunohistochemistry
and in vitro analyses. Indeed, other studies confirmed that
p53 inhibition in macrophages sustained their survival
and pro-inflammatory function [59, 60]. These results
therefore underscore the importance of appropriate timing
and duration of p53 inhibition and also suggest that devel-
oping pharmaceutical strategies to selectively inhibit p53
in TECs as opposed to leucocytes may be an important
consideration in the AKI therapeutic approach [58].
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Renal epithelial cells and mesenchymal cells
interact

Several studies showed that renal TECs and mesenchymal
cells modulate mutually their biological behavior, through
paracrine mechanisms as well as direct intercellular contacts:

(i) Co-cultured renal TECs (Madin–Darby canine
kidney cells) were demonstrated to decrease the
mesenchymal stem cell (MSC) proliferation and
regeneration, and, in turn, MSCs were shown to
promote TECs cell differentiation, attesting to a bi-
directional epithelial/mesenchymal crosstalk [23].

(ii) Co-cultured rat renal TECs and human stromal cells
(mesenchymal multipotent stromal cells) were de-
monstrated to interact, with the formation of differ-
ent types of intercellular contacts, including
‘tunneling nanotubes’ through which transfer and
exchange of cell contents, such as cytoplasm and
organelles, can occur [61].

(iii) Co-cultured renal TECs (proximal) were shown to
increase cortical fibroblast proliferation and
collagen synthesis through paracrine mechanisms,
including the production and release of TGF-β1
and platelet-derived growth factor (PDGF)-AB
[19, 20].

(iv) Co-cultured renal TECs (porcine LLC-PK1 and rat
IRPTC cell lines) and rat MSCs were shown to in-
teract in a paracrine manner [62]. Paracrine factors
secreted by MSCs in response to injured TECs
which were submitted to stressful conditions mi-
micking AKI, i.e. ATP depletion and/or serum free
starvation were demonstrated to promote renal epi-
thelial cell proliferation and to protect them against
cell death. In particular, only conditioned medium
recovered from the ‘homeostatic microenvironment’
(previous TECs/MSCs co-culture), but not from
MSCs alone (without previous interaction with
TECs), which were capable of inducing both the
TECs proliferative response and cell death arrest.
These results, which indicate that MSCs require a
previous stimulus to secrete their bioactive mol-
ecules in order to have beneficial effects on injured
TECs, clearly demonstrate a mutual crosstalk
through a paracrine mechanism.

(v) In a tetracycline-controlled transgenic mouse
model, conditional overexpression of TGF-β1 con-
fined to renal TECs was demonstrated to induce
widespread peritubular proliferation of resident
fibroblasts, differentiation into myofibroblasts and
subsequent proliferation, and progressive deposition
of ECM [63].

(vi) Injury of TECs and the consequent activation of the
Notch signaling pathway, whose major biological
role is to control the cell fate determination, differ-
entiation and patterning of highly organized tissues
[64], was demonstrated to play a key role in tubulo-
interstitial fibrosis development. Thus, a study
using in vitro and in vivo genetic and pharmaco-

logic experiments [65] demonstrated that TGF-β1-
treated TEC induced Notch1 pathway activation.
TEC expression of Notch1 correlated with both epi-
thelial and interstitial cell proliferation, and TEC
specific expression of Notch1 was necessary and
sufficient for tubulo-interstitial fibrosis
development.

(vii) TEC injury and consequent deregulation of the
BMP-7 signaling pathway was demonstrated to
play a role in renal fibrosis in in vitro and in vivo
studies. BMP-7 was shown to be expressed in
tubules and might maintain a healthy differentiated
epithelial cell phenotype [66, 67]. BMP-7
expression was found to be decreased in both acute
[67] and chronic [68] renal disease models, and re-
combinant BMP-7 administration reduces the sever-
ity of acute injury [69] and prevents renal
fibrogenesis in chronic renal disease [70–72]. In
contrast, the BMP receptor activin-like kinase 3
(Alk3), whose tubular deletion was shown to
enhance both epithelial damage with TGF-β1 sig-
naling and fibrosis, was found to be up-regulated
early in diseased kidneys after injury [73]. Admin-
istration of a synthetic small peptide agonist of
BMP signaling that functions through the Alk3 re-
ceptor (THR-123) was shown to reverse established
fibrosis in different mouse models of acute and
chronic renal injury [73]. (If, for one moment, we
make an abstraction of EMT as an explanation for
BMP-7-mediated effects, epithelial cell protection
would be advocated as the causal role of reduced
fibrosis.) Thus, a possible hypothesis would be that
the degree of BMP-7-mediated effects on EMT de-
termines the reduction in renal fibrosis.

(viii) TEC injury and the consequent up-regulation of the
chemokine CTGF, which is mainly expressed in
tubular cells [74], could also play a role in renal
fibrosis. In an in vitro co-culture model of TECs
and tubule-interstitial fibroblasts (TFBs) that mimic
the renal subepithelial mesenchyme, tubular TGF-
β1-induced CTGF was demonstrated to increase
pro-fibrotic mRNA molecular levels in TFBs [75,
76]. In subtotally nephrectomized TGF-β1 trans-
genic mice, where an enhanced CTGF expression
correlated with an accelerating renal fibrogenesis
[75, 76], CTGF antisense oligodeoxynucleotides
treatment significantly blocked CTGF mRNA
expression in the proximal TECs, despite the pres-
ence of sustained levels of TGF-β1 mRNA [75,
76]. This tubular CTGF mRNA level reduction par-
alleled an mRNA levels reduction in matrix mol-
ecules, suppressing renal interstitial fibrosis [75,
76]. Similar results were obtained with hepatocyte
growth factor administration with respect to its
effect on CTGF [75, 76].

In summary, these results suggest that epithelial/me-
senchymal cells in the context of the physiological renal
microenvironment constitute an ‘epithelial/mesenchymal
unit’ (Figure 1). Imbalance of the normal homeostatic
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microenvironment might be, per se, a cause of fibroblast
proliferation and myofibroblast differentiation leading to
fibrosis. Hence, therapeutic targets which preserve the
structural integrity of the epithelial/mesenchymal unit
might represent an alternative to blockading the myofibro-
blast activation

Epithelial/mesenchymal unit interact with
inflammatory cells

Interstitial inflammation is a well-known condition ac-
companying fibrotic lesions [77]. The epithelial/mesench-
ymal unit interacts with inflammatory cells, but details
about these interactions are unclear, in part due to the
complexity and heterogeneity of the inflammatory

infiltrate [77]. Following renal injury, both TECs and in-
terstitial fibroblasts express receptors or produce soluble
mediators, such as chemokines, cytokines, growth factors
and lipid mediators [77–79], which induce interstitial
mononuclear inflammation [77, 80–82]. Experimental
attenuation of inflammation has been shown to influence
the fibrosis process (Table 1). On their own, macrophages,
with still unidentified soluble factors [83], have been
shown to induce apoptosis of TECs, hence creating a
vicious cycle.
In contrast, in the embryo, tissue damage can be re-

paired without any inflammation, scarring or fibrosis.
Differences in both the inflammatory response (lower
number of less differentiated inflammatory cells) and the
growth factor profile (low levels of TGF-β1 and TGF-β2,
low levels of PDGF and high levels of TGF-β3) were ob-
served in scar-free healing in embryonic wounds in com-
parison to scar-forming healing in adult wounds [84].

Epithelial/mesenchymal unit alteration hypothesis
in the CKD progression

Alterations of the epithelial/mesenchymal crosstalk might
contribute to the progression of AKI to CKD. Progression
might be due to processes unrelated to the original pathol-
ogy that initiated AKI, occurring without any external
novel or repeated obvious insult but through an internal,
continuing and self-reinforcing pathological process re-
sembling a vicious circle.
It could be hypothesized that pathological processes

developing in regenerating tubules after a severe AKI
episode, characterized by differentiation failure (stop in

Fig. 1. Epithelial, mesenchymal and inflammatory cells interactions in physiologic and pathologic conditions.

Table 1. Inflammatory cells and fibrotic microenvironment interactions:
data from the literature

Finding Reference

Macrophages depletion ameliores fibrogenesis in mice 101
Macrophages induce apoptosis of proximal TECs 83
CD11c(+) F4/80(+) dendritic subset depletion is associated
with persistent kidney damage after ischemia–reperfusion
injury

102

Rag-2-null mice lacking both mature B and T lymphocytes
are protected from renal interstitial fibrosis

103

FoxP3+ regulatory T cells (Tregs) were required for
physiologic kidney regeneration

104

Renal collecting duct epithelial cells regulate inflammation
in tubulointerstitial damage in mice

78

TECs regulate NK cell-mediated kidney ischemia–
reperfusion injury through osteopontin expression

79
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the G2/M phase) and persistently high signaling activity
(TGF-β paracrine secretion), might be the proximate
cause that drives downstream interstitial events (fibroblast
activation and proliferation) leading to tubulo-interstitial
fibrosis and loss of functional renal parenchyma. Conco-
mitantly, the same pathological processes could develop
in the remnant healthy tissue, leading to CKD and finally
ESRD. Indeed, in analogy to the experimental remnant
kidney model [85], simulating human disease-associated
loss of renal parenchyma, an alteration of the epithelial/
mesenchymal unit through internal and continuing is-
chemic and/or toxic injuries might be the main factor
responsible of the tubulo-interstitial fibrosis onset [86]. In
the experimental remnant kidney model, compensatory
adaptations, characterized by increased blood flow and
glomerular hyperfiltration, maintain function at increased
levels per nephron, leading to hypertrophy of the glomer-
uli and tubules [85]. As a consequence, renal structure
and function deteriorate steadily, reaching an end-stage
within several months. Therefore, it can be speculated that
tubular ischemia due to tubular hypertrophy with in-
creased epithelial transport, higher rates of O2 consump-
tion, with concomitant consecutive reduction in oxygen
tension and hypoxic signaling together with tubular toxic-
type injury due to glomerular hyperfiltration with protein
overload and increased tubular reabsorption [87] might be
the main process inducing alterations of the epithelial/me-
senchymal crosstalk. It is interesting to note that this
tubular-driven hypothesis is supported by Megyesi et al.’s
study [88] reporting that partial kidney ablation in p21-
deficient mice did not lead to tubulo-interstitial fibrosis and
chronic renal failure. The P21 gene is induced to very high
levels by oxidative stress and DNA damage, and the p21-
derived protein is implicated in the control of the G1 to S
phase transition in mammals, effectively stopping cell-
cycle progression [89]. Thus, in Megyesi et al.’s study
[88], the lack of a functional p21 gene induced an in-
creased hyperplastic tubular reaction, as demonstrated by an
increased proliferating cell nuclear antigen expression,
which is a marker of cell-cycle progression, and inhibited
the development of tubulo-interstitial fibrosis.

Therefore, it could be speculated that tubular injury
might induce epithelial/mesenchymal crosstalk alterations
with consecutive myofibroblasts activation and fibrosis,
accounting for the AKI–CKD connection and the there-
fore CKD progression. Thus, microtubular internal
events due to an altered parenchymal microenvironment,
occurring without any external AKI factor and without
any detected (or currently detectable) clinical expression,
might lead to microfoci of interstitial fibrosis which pro-
gressively expand, to become diffuse and clinically ex-
pressed as CKD. It should however be emphasized that
there are currently no human data to provide supporting
evidence for epithelial/mesenchymal crosstalk alteration
hypothesis in injured renal microenvironment. Therefore,
analyses of human kidney diseases, such as diabetic
glomerulosclerosis, IgA glomerulonephritis or primary
FSGS, as well as on chronic allograft nephropathy are
needed to demonstrate the relevance of an epithelial/me-
senchymal crosstalk alteration in human nephropathies
leading to CKD.

Conclusion: more research needed to pave the
way to new anti-fibrotic medicines

Altered epithelial/mesenchymal crosstalk emerges as an
interesting pathophysiological hypothesis to explain the
clinically observed AKI/CKD interaction. Beyond the
supposed or real role of EMT, epithelial cell phenotype
retains a clinical and research interest. Thus, the exper-
imental data in this review provide supportive evidence
for a role of epithelial cells in fibrosis progression beyond
the mere activation of fibroblasts toward an activated
myofibroblast. Epithelial and mesenchymal cells emerge
as a single unit whose integrity ensure normal renal struc-
ture and function. Correspondingly, fibrosis emerges as an
alteration of that unit. The idea of a renal tubulo-intersti-
tial unit would match perfectly with other pathological
processes, e.g. stromal reaction to a carcinoma, where fi-
brotic cells have been already shown to play a pivotal role
in disease onset and progression [90]. Striking similarities
to alteration of epithelial/mesenchymal unit as a whole in
kidney disease have been shown in idiopathic pulmonary
fibrosis (IPF) where fibrosis has been shown to be the
result of an altered epithelial/mesenchymal interaction
[91]. Various human studies performed on IPF tissues de-
monstrated that activated alveolar epithelial cells were the
main site of synthesis of TGF-β, PDGF and tumor necro-
sis factor-α [92–95]. In vitro studies suggested that during
repair, regenerating epithelial cells lose their ability to
inhibit fibroblast proliferation [96].
Beyond mere scientific interest, the hypothesis of

curing fibrosis by preserving the structural integrity of the
epithelial/mesenchymal unit is an attractive concept and
might represent an alternative to the blockade of myofi-
broblast activation. Many pharmacological approaches
targeting fibroblast activation-driven mechanisms, such as
TGF-β1, have, in fact, shown shortcomings due to the
multiple functions of these mediators. In addition, rather
different results have been obtained in animal models
[97–99] that have not been confirmed in humans [100].
Strategies aimed at preserving the epithelial/mesenchymal
homeostatic microenvironment will also have the advan-
tage of allowing earlier intervention, for instance in AKI
survivors at risk for CKD progression [2]. Earlier inter-
vention might result in longer preservation of organ func-
tion, delaying the need for replacement therapy and
improved cardiovascular protection. Therefore, basic and
clinical studies are required in order to confirm the role of
the epithelial/mesenchymal unit in fibrosis and to analyze
which targets would protect epithelial cells without any
risk of cancer induction.
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