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Brain water content (brain edema), intracranial pressure, and cerebrospinal fluid (CSF)
concentrations of lactate and protein increased significantly during 24 h of experimental
meningitis due to Streptococcus pneumoniae, but changes were similar in normal and
neutropenic rabbits. In sterile meningitis induced by N-formyl-methionyl-leucyl-phenyl-
alanine (fMLP), low and high doses of fMLP were equally effective in inducing CSF
pleocytosis, whereas only high doses of fMLP caused brain edema. High doses of fMLP
injected intracisternally during pneumococcal meningitis also increased brain water con-
tent. The fMLP did not significantly increase intracranial pressure or CSF concentra-
tions of lactate or protein in sterile or pneumococcal meningitis, nor did it cause brain
edema in neutropenic animals. Thus, granulocytes may contribute to brain edema during
meningitis if adequately stimulated, but intracranial pressure and CSF protein and lac-
tate concentrations appear independent of granulocytes. Stimulation does not appear to
occur early in meningitis, when granulocytes were without effect on brain edema.

Morbidity and mortality from bacterial meningitis
remain high [1-4]. Pneumococcal meningitis has,
even in recent years, a death rate of almost 30% [3,
4]. This figure has not changed in the last 40 years,
despite new antibiotics and an improved understand-
ing of the principles of antibiotic therapy [5-7].
The functional and morphological substrates of
brain damage induced by bacterial meningitis are
only partially understood. Early pathological obser-
vations have indicated that brain edema and throm-
bosis of cerebral vessels may contribute to the loss
of neuronal functions [8-10]. In addition, evidence
exists that meningitis is often associated with in-
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creased intracranial pressure and that this factor may
in turn impair cerebral blood flow and thus limit the
supply of oxygen and nutrients to the brain [11-13].
Increased CSF outflow resistance [14], impaired ce-
rebral circulation [15], increased intracranial pres-
sure, and brain edema [16, 17] have been documented
in animal models. These changes are likely to cause
the brain to shift its energy production to anaerobic
glycolysis and thus increase the production of lac-
tate [18]. Increased lactate concentrations in CSF can
be documented readily during meningitis [19, 20].

Some evidence exists that both mortality and the
development of neurological sequelae may be related
to inflammatory CNS alterations. In animal studies
the time of death is associated with maximal inflam-
mation in the subarachnoidal space [21], and one
study suggested that neutropenic dogs with pneu-
mococcal meningitis may survive longer than
animals with a normal inflammatory reaction in the
CSF [22]. Fishman et al. [23], Chan and Fishman
[24], and Chan et al. [25] have demonstrated that
products of leukocytes, such as polyunsaturated fatty
acids and oxygen-free radicals, can induce brain
edema, increased lactate production, and energy
depletion in cortical brain slices of rats. However,
the role of leukocytes in the mediation of brain
edema during bacterial meningitis has not been ex-
amined. Whether other changes observed during
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meningitis, for example, increased intracranial pres-
sure, are mediated by leukocytes is also not known.

Demonstrating harmful effects of leukocytes in
the subarachnoidal space during meningitis could
have therapeutic consequences. We therefore evalu-
ated the influence of granulocytes on various
pathophysiological parameters in an animal model
of meningitis. Brain edema, increased intracranial
pressure, and changes in CSF concentrations of lac-
tate and protein were examined during bacterial
meningitis in normal and in neutropenic rabbits. In
addition, these studies were expanded using a model
of sterile meningitis in which granulocytic pleocy-
tosis in CSF was induced using a chemotactically ac-
tive peptide.

Materials and Methods

Infecting organism. A type 3 encapsulated Strep-
tococcus pneumoniae originally isolated from a clin-
ical specimen [26] was grown on blood agar plates,
resuspended in 0.9% NacCl, and stored at —70 C.
For infecting animals, the thawed inoculum was ei-
ther diluted directly to the desired concentration in
0.9% NaCl (first set of experiments) or was grown
in Todd-Hewitt broth for 6 h, washed, and suspended
in 0.9% NacCl (third set of experiments). The actual
titer of the inoculum was determined by quantita-
tive cultures on blood agar plates.

Model of experimental pneumococcal meningi-
tis. The model of experimental meningitis in rab-
bits originally described by Dacey and Sande [27]
was used. New Zealand white rabbits weighing 2-3
kg were anesthetized iv with 30 mg of pentobarbi-
tal/kg (Carter-Glogau Laboratory, Glendale, Ariz)
for all experimental procedures. A helmet formed
with dental acrylic was attached to the skull by four
screws with the animal under general anesthesia,
which allowed placement of the animals in stereotac-
tic frames constructed to puncture the cisterna mag-
na (provided by Dr. O. Zak, Ciba-Geigy, Basel, Swit-
zerland). Three days after attachment of the helmet,
the animals were again anesthetized with pentobar-
bital and placed in the stereotactic frames. The
cisterna magna was punctured with a spinal needle
(3.5 inches; 25 gauge; Becton, Dickinson and Co.,
Rutherford, NJ). After the pressure was recorded (see
below), 0.5 mL of CSF was withdrawn, and 5-7 X
10° cfu of S. pneumoniae suspended in 0.5 mL of
0.9% NaCl was injected into the cisterna magna.
Twenty-four hours later anesthesia was reinduced,
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the animals were placed in the stereotactic frames,
and the cisterna was punctured for collection of CSF
and measurement of the other experimental
parameters. At the time of infection and after 24 h,
blood was collected by cardiac puncture with a 25-
gauge, 5/8-inch needle so that the white blood cell
(WBC) and differential counts could be determined.

Neutropenic rabbits. Neutropenia was induced
in some experimental groups of rabbits by injection
of mechlorethamine HCI (nitrogen mustard; Merck
Sharp & Dohme, West Point, Pa), 1.85 mg/kg iv,
three days before infection or intracisternal injection
of a chemotactic stimulus. Simultaneously with the
injection of nitrogen mustard, the animals received
1.2 x 10° U of procaine penicillin im so that Pas-
teurella multocida pneumonia during neutropenia
was prevented. At the time of induction of meningi-
tis, three days later, peripheral WBC and differen-
tial counts were determined. Neutropenic animals
were not visibly sick at this point.

Chemotactic peptide-induced sterile meningitis.
Sterile meningitis was induced in normal and neu-
tropenic rabbits by intracisternal injection of a so-
Iution of N-formyl-1-methionyl-1-leucyl-1-phenylal-
anine (fMLP; Sigma, St. Louis). Two doses of fMLP
were examined: a low dose with 105 M fMLP and
a high dose with 10* M fMLP. fMLP was diluted
in 0.1% (vol/vol) dimethyl sulfoxide and PBS and
was injected into the cisterna magna in a volume of
0.5 mL after removal of an equal volume of CSF.
Animals received three injections of fMLP 5 h apart
and underwent final examination 24 h after the ex-
periment began. One injection of the fMLP carrier
alone did not induce CSF pleocytosis of >50
WBCs/mm? in any of the five control animals. The
carrier also did not affect the intracranial pressure
of rabbits with pneumococcal meningitis. Before in-
jections of fMLP and at the end of the experiment,
WBC counts and all other experimental parameters
were determined in CSF.

Stimulation of granulocytes in CSF of rabbits with
pneumococcal meningitis, In some animals in-
fected with S. pneumoniae, the cisterna magna was
punctured 20 h after infection, 0.5 mL of CSF was
removed and examined, and 0.5 mL of 10~ M fMLP,
prepared as described above, was injected intracister-
nally so that the WBCs present in the subarachnoi-
dal space were stimulated. Control animals simul-
taneously received the same amount of 0.9% NaCl.
The animals underwent final examination 4 h later
as described above.
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Experimental parameters. CSF from the cisterna
magna was collected through the spinal needle. Bac-
terial titers in CSF were determined quantitatively
by culturing 10-fold dilutions of CSF on blood agar
plates incubated overnight at 35 C in room air with
5% CO, WBC counts in CSF and blood were de-
termined in a Neubaur hemacytometer. Differential
WBC counts were done using smears stained with
Giemsa stain. For determination of lactate and pro-
tein concentrations, CSF was centrifuged for 30 s
within minutes after collection. The supernatant was
frozen immediately at —70 C. Samples were then
analyzed using commercially available methods and
a centrifugal analyzer in a routine chemical labora-
tory. Lactate content was determined using an en-
zymatic method that detects the generation of pyru-
vate in the presence of lactate dehydrogenase
(Monotest Lakatat®; Boehringer, Mannheim, Fed-
eral Republic of Germany). Protein content was de-
termined using a colorimetric method (total protein
test; Bio-Rad, Glattbrugg, Switzerland).

Intracisternal pressure was determined through the
spinal needle placed in the cisterna magna while the
anesthetized rabbits were secured in a sitting posi-
tion [16]. Pressure was recorded on a multichannel
polygraph (Grass Instrument Co., Quincy, Mass; or
Gilson Medical Electronics, Middieton, Wis) by con-
necting the needle to a water-filled mechanical pres-
sure transducer (Gould Statham model P23ID;
Gould, Oxnard, Calif). Each animal served as its own
control, and results were expressed as change in pres-
sure from the baseline (preinfection) value. Deter-
mination of pressure was considered accurate when
mean pressure was stable during a 10-s period and
when respiration-induced changes could be identi-
fied on the recording. This method revealed an in-
traassay reproducibility of <1 mm Hg.

At the end of the experiment, 24 h after infection
or induction of sterile meningitis, animals were killed
by an iv overdose of pentobarbital. The skull was
opened beneath the helmet, and the brain was im-
mediately removed and dissected on filter paper. One
hemisphere was weighed and then dried to a stable
dry weight in a vacuum oven at 105 C [16]; the other
hemisphere was dissected into gray and subcortical
white matter, and these fractions were also weighed
and dried. Brain water content was then calculated
and expressed as grams of water per 100 g of dry
weight. Minimal technical modifications were intro-
duced in an attempt to increase the reproducibility
of the brain water determination. These modifica-
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tions influenced the normal values of brain water
content in uninfected controls. Thus in each phase
of the experiments, separate groups of uninfected
animals were included as controls. These animals
were examined simultaneously with the correspond-
ing experimental animals by using identical tech-
niques.

Statistics. Results are expressed as mean + SD
values unless stated otherwise. Groups were com-
pared by the Student’s 7 test; paired values were ex-
amined by the paired ¢ test.

Results

Normal vs. neutropenic rabbits. 1n a first set of
experiments the role of granulocytes in the develop-
ment of brain edema, increased intracranial pressure,
and increased CSF concentrations of lactate and pro-
tein during meningitis was evaluated by comparing
the effect of pneumococcal meningitis in normal and
neutropenic rabbits. Fifty rabbits were divided into
four groups: normal uninfected, normal infected,
neutropenic uninfected, and neutropenic infected.
On the day of the experiments, neutropenic rabbits
had peripheral WBC counts of 550 + 350/mm,’
compared with 6500 + 2020 WBCs/mm? in normal
rabbits (P < .001). In neutropenic rabbits, granulo-
cytes consistently accounted for <10% of the periph-
eral WBCs, compared with 35.2% =+ 14.4% in nor-
mal rabbits (P < .001). All other experimental
parameters were not significantly different in neu-
tropenic rabbits compared with healthy controls.

Table 1. WBC counts and bacterial titers in CSF of rab-
bits with experimental meningitis.

Experimental group (n) WBC count Bacterial titer

Infected
Normal (14)
Neutropenic (12)
fMLP
Low-dose (5)
High-dose (5)
Normal infected, at 20 h
after infection (29)
Infected (24 h)
fMLP-stimulated (15)
Saline-injected (14)

2200 (350-7050)* 5.7+ 0.9
138 (13-500)t 59+ 1.1

Sterile
Sterile

1400 (340-4500)*
700 (400-1000)*

1900 (255-8000)* 6.0 + 1.3

3500 (595-9200)* 56 + 1.0
3430 (720-9150)* 59 £ 1.5

NOTE. The WBC count (no. of cells/mm?) is given as me-
dian value (range), and bacterial titer (log,e no. of cfu/mL) is
given as mean + SD.

* More than 90% of the WBCs were granulocytes.

T All WBCs were mononuclear cells.
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Pneumococcal meningitis induced clinical disease
(lethargy and fever) and progressive changes in all
experimental parameters. Bacterial titers in CSF af-
ter 24 h of disease were identical in normal and neu-
tropenic rabbits (table 1). WBC counts in CSF were,
however, markedly different (table 1). In normal rab-
bits the median CSF WBC count was 2200/mm?, and
>90% of these cells were granulocytes. In contrast,
neutropenic animals had a median of only 138
WBCs/mm?® in CSF 24 h after infection, and all these
cells were mononuclear cells (P < .001).

Brain water content increased as a result of the
infection, but the increase was identical in normal
and neutropenic rabbits (figure 1). The water con-
tent of hemispheres increased from 392 + 8 g of wa-
ter/100 g of dry weight in uninfected normal rabbits
and 394 + 9 g/100 g in uninfected neutropenic rab-
bits to 403 + 10 and 403 + 12 g/100 g, respectively
(P < .01 for normal and neutropenic rabbits com-
bined). The corresponding values for white matter
water content were 240 + 12 g/100 g in normal and
242 + 19 g/100 g in neutropenic rabbits to 252 +
12 and 251 + 22 g/100 g, respectively (P < .05 for
normal and neutropenic rabbits combined). There
was also a slight but not statistically significant in-
crease in gray matter water content during infection
in both the normal and neutropenic animals.

Intracisternal pressure increased significantly (P
< .01) during the 24-h infection in normal rabbits
and slightly less in neutropenic rabbits (figure 2A;
4.6 + 1.8 vs. 3.4 + 1.8 mm Hg; difference not sig-
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Figure 1. Brain water content in normal and neutropenic
rabbits. Animals were examined before and 24 h after in-
duction of pneumococcal meningitis. Darker columns rep-
resent brain water content of hemispheres; lighter columns
represent brain water content of subcortical white matter.
Data are mean + SD (bars) values. The difference between
uninfected and infected animals was significant (P < .05).
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Figure 2. Changes in intracisternal pressure (mm Hg)
in animals during pneumococcal meningitis. Data are mean
+ SD (bars) values. A: Neutropenic animals had an in-
crease in intracisternal pressure during infection, similar
to that in the infected controls. B: In animals with pneu-
mococcal meningitis injected with high-dose fMLP 20 h
after induction of infection, pressure decreased signifi-
cantly (P < .01) compared with control animals, which
received saline at 20 h.

nificant). CSF concentrations of lactate and protein
increased markedly during meningitis, but there was
no significant difference in changes between normal
and neutropenic rabbits: for lactate, 1.3 + 0.3
mmol/L in uninfected rabbits, 7.14 + 3.7 mmol/L
in normal infected animals (P < .001), and 5.25 +
2.9 mmol/L in neutropenic infected rabbits (differ-
ence not significant); and for protein, 0.5 + 0.2 g/L
in uninfected controls, 2.0 + 1.5 g/L in normal in-
fected animals (P < .01), and 2.8 + 1.4 g/L in neu-
tropenic infected animals (difference not significant).

Chemotactic peptide-induced sterile meningitis.
A second approach was designed for evaluating the
role of granulocytes in the development of
pathophysiological changes during meningitis. Ster-
ile meningitis was induced by repeated (three times)
intracisternal injection of fMLP into experimental
groups of five or six rabbits. The chemotactic and
neutrophil-stimulating properties of this oligopep-
tide have been well characterized in vitro [28-30].
Two doses of fMLP were examined: a low dose with
10~% M fMLP per injection and a high dose with 102
M fMLP. If an ~100-fold dilution in CSF and tis-
sue of animals is assumed, these doses were chosen
so that in vivo concentrations in the range of those
capable of inducing oxygen free radical generation
and degranulation of granulocytes in vitro [29, 30]
were achieved.

Injections with the lower dose of fMLP were as
effective in inducing CSF pleocytosis as were injec-
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Figure 3. Brain water content in control animals and in
rabbits receiving intracisternal injections of low or high
doses of fMLP. Darker columns indicate water content
of hemispheres; lighter columns indicate water content of
subcortical white matter. Data are mean = SD (bars)
values. The differences between high-dose and low-dose
fMLP were significant (P < .02).
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tions of the higher dose (table 1). In all animals
>90% of the cells in the CSF were granulocytes. The
pleocytosis induced by low-dose fMLP was not as-
sociated with significant changes in any of the ex-
perimental parameters (figures 3 and 4). Brain wa-
ter content of the hemispheres was 380 + 7g/100 g
of dry weight compared with 384 + 16 g/100 g in
controls; white matter water content was 228 + 8
g/100 g compared with 229 + 10 g/100 g in controls
(figure 3). CSF pressure did not change significantly
during the 24-h course of sterile meningitis (0.1 +
2.7 mm Hg). Similarly, CSF concentrations of lac-
tate (1.6 + 0.2 mmol/L) and protein (0.4 + 0.14g/L)
were not different from control values (figure 4).

In contrast to the animals receiving low-dose
fMLP, the CSF pleocytosis induced by high-dose
fMLP had a significant effect on brain water con-
tent (figure 3): hemispheres, 393 + 6 g/100 g of dry
weight (P < .02 vs. low-dose fMLP; difference not
significant vs. controls); and white matter, 262 +
16 g/100 g (P < .01). This induction of brain edema
was associated with an increase in CSF concentra-
tions of protein and lactate (2.84 + 3.60 g/L and
2.15 + 1.12 mmol/L, respectively; figure 4). How-
ever, because not all animals in this group showed
chemical alterations of CSF (the SD was large), these
differences did not reach statistical significance. CSF
pressure did not change significantly during the
course of sterile meningitis induced by high-dose
fMLP (0.8 + 1.6 mm Hg).

The possibility that the observed development of
brain edema was induced by fMLP itself was ex-
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Figure 4. Protein (lighter columns) and lactate (darker
columns) concentrations in CSF of rabbits with sterile and
pneumococcal (“infected”) meningitis. Data are mean +
SD (bars) values. Sterile meningitis was induced with three
doses of fMLP. Infected animals were compared after in-
tracisternal injection of saline or fMLP 20 h after infec-
tion, 4 h before they were killed. Infection induced a sig-
nificant increase in lactate and protein concentrations (P
< .01); all other differences were not significant.

cluded by injection of high-dose fMLP into four neu-
tropenic animals. Brain water content in these
animals was not significantly different from that in
control animals: hemispheres, 370 + 5 vs. 375 +
8 /100 g of dry weight in controls; and white mat-
ter, 222 + 14vs. 220 + 11 g/100 g. Thus these results
show that only the CSF pleocytosis (predominantly
granulocytes) induced with high-dose fMLP was as-
sociated with development of brain edema and a
moderate increase in CSF concentrations of lactate
and protein.

Stimulation of granulocytes with fMLP during
pneumococcal meningitis. Results reported so far
are compatible with the hypothesis that activated
(high-dose fMLP), in contrast to inactive (low-dose
fMLP), granulocytes can contribute to development
of brain edema. The lack of a measurable effect of
granulocytes on brain edema during the first 24 h
of meningitis (first set of experiments) can be ex-
plained by the absence of a sufficient stimulation
of granulocytes in the CSF during infection. This
proposal is supported by the inability of granulo-
cytes to reduce bacterial titers in CSF [31].

To test this hypothesis we examined the effect of
stimulating granulocytes during pneumococcal men-
ingitis. A group of 15 animals with pneumococcal
meningitis was injected with high-dose fMLP intra-
cisternally 4 h before they were killed (20 h after in-
fection) in an attempt to stimulate the granulocytes
then present in CSF. These animals were compared
with 14 animals with pneumococcal meningitis
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receiving 0.9% NaCl. In both groups, CSF WBCs
increased to similar final counts between 20 and 24 h
(table 1). Bacterial titers were also similar in the two
groups (table 1).

Intracisternal injection of fMLP was associated
with higher brain water content compared with
values in infected controls (figure 5): hemispheres,
391 + 12vs. 381 = 10 g/100 g of dry weight (P <
.03); and white matter, 244 + 18vs. 234 + 13g/100 g
(P < .1). Gray matter water content also increased
slightly. As in the previous experiments, infected
animals had higher brain water content than did
uninfected controls (figure 5).

In parallel with the fMLP-induced increase in brain
water, intracisternal pressure was reduced (figure 2B).
Twenty hours after infection, when fMLP was in-
jected, intracisternal pressure had increased by 5.4
+ 2.3 mm Hg (P < .01). Four hours later the pres-
sure had dropped to 0.8 + 2.9 mm Hg (P < .01),
despite the concomitant increase in brain edema. In
animals receiving saline intracisternally, the pressure
remained stable between 20 and 24 h (final pressure,
4.7 + 3.7mm Hg; P < .005 compared with final pres-
sure in fMLP-treated animals). CSF concentrations
of lactate and protein were not significantly affected
by intracisternal injection of fMLP and the as-
sociated increase in brain edema (figure 4): lactate,
10.7 + 3.3 vs. 11.0 + 5.1 mmol/L; and protein, 3.9
+ 2.8vs. 5.8 + 5.7 g/L.

Discussion

That various elements of the body’s inflammatory
response can be destructive for the host’s own tissue
has recently become clear. The most important cells
involved in such inflammation-associated tissue dam-
age are the neutrophils. Granulocytes have been im-
plicated as playing a key role in the development of
adult respiratory distress syndrome [32, 33], even
though recent data suggest that this syndrome can
also develop in neutropenic individuals [34]. In other
situations granulocytic enzymes may develop their
harmful activity in conjunction with microbial en-
zymes, a mechanism that has been documented in
the bronchial system of children with cystic fibrosis
colonized with Pseudomonas aeruginosa [35]. In ar-
thritis the toxic products of granulocytes that ac-
cumulate in the inflamed joint also appear to
contribute to development of chronic tissue dam-
age [36, 37].

Some indirect evidence exists that granulocytes

461

= 405 o
fm 270 ¢
5 [

[ 3
3 400 4 3
3 280 g

W5 T N

9 & Fzsa T o

g = i

I - m

&E 240 > gz

S m

g s a|s 2 g
- L e I
§ 380 - z:0 g
&

8 &
a7s 220
b £
: ¢

370 - zig &

normay

conteal

infected

Figure 5. Brain water content in normal uninfected rab-
bits and in rabbits with pneumococcal meningitis receiv-
ing intracisternal saline or fMLP. Saline or high-dose
fMLP was injected intracisternally 20 h after infection,
4 h before the animals were killed. Darker columns repre-
sent hemispheres; lighter columns represent subcortical
white matter. Data are mean + SD (bars) values. Injec-
tion of fMLP was associated with a significant (P < .05)
increase in brain edema.

could also contribute to brain damage during menin-
gitis. Petersdorf and Luttrell [22] found that neu-
tropenic dogs with experimentally induced pneumo-
coccal meningitis survived the infection an average
of 62 h compared with 46 h for normal dogs with
an unimpaired inflammatory response in CSF. The
statistical significance of this difference has not been
determined. McAllister et al. [21] observed an associ-
ation between the maximal inflammation in CSF and
the time of death in rabbits with experimental pneu-
mococcal meningitis. Extensive work by Fishman et
al. [23], Chan and Fishman [24], and Chan et al.
[25] has implicated granulocytes as an important fac-
tor in development of brain edema. Both arachidonic
acid and other free polyunsaturated fatty acids
[38-40], which represent major constituents of the
granulocytic cell wall and are found in high concen-
trations in pus, as well as oxygen-derived free radi-
cals [25, 41] appear to be involved in the generation
of brain edema in vitro and in vivo.

Despite these data the role of granulocytes in the
pathogenesis and pathophysiology of bacterial
meningitis has not been well defined. In one study
Ernst et al. [31] showed that granulocytes in CSF of
rabbits with pneumococcal meningitis were ineffec-
tive in reducing bacterial growth. This observation
has been confirmed in the present study. In their
study, changes in CSF concentrations of lactate, pro-
tein, and glucose were also examined. There was no
obvious difference between normal and neutropenic
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animals, but this conclusion was based on only three
neutropenic rabbits examined [31]. A more recent
study in rats indicated that leukocytes were not es-
sential for development of increased blood-brain
barrier permeability during experimental Haemophi-
lus influenzae meningitis [42].

Here we measured pathophysiological changes

that have previously been characterized in this model

[16, 43]. Brain edema was examined because of its
association with brain injury due to various causes
[44]. In experimental meningitis the development of
brain edema, albeit not massive, has been documen-
ted [16, 43, 45], and clinical evidence exists of severe
brain edema in fatal cases of meningitis [8, 46]. Ac-
cording to Fishman et al. [23] and Fishman [44],
brain edema during meningitis (“granulocytic
edema”) comprises all three types of brain edema,
i.e., vasogenic edema, cytotoxic edema, and intersti-
tial edema. As shown in this and previous studies,
brain edema in experimental meningitis in rabbits
develops primarily in the white matter, a localiza-
tion that is typical for vasogenic edema {43]. Vaso-
genic edema is the expression of increased perme-
ability of the blood-brain barrier typical for bacterial
meningitis [42, 47]. Determination of CSF protein
concentrations, which reflect this leakage into the
interstitial space, have been included here.
Intracranial pressure was also monitored. Few
studies have examined intracranial pressure during
meningitis despite the general consensus that pres-
sure increases during the disease [11-13, 17, 45]. Mas-
sively increased intracranial pressure may impair ce-
rebral blood flow [48). Increased brain volume due
to swelling is thought to be one mechanism con-
tributing to increased intracranial pressure, but our
own experimental data indicate that this mechanism
cannot be the only one, because infected animals
treated with methylprednisolone had increased pres-
sure despite the absence of brain edema [16].
CSF lactate concentrations were included as an ex-
perimental parameter to serve as an indicator of im-
paired glucose metabolism of the brain [18]. Glucose
is the major source of energy of the CNS, and any
alteration of this metabolism has potentially serious
functional consequences [49, 50]. Elevated lactate
concentrations in CSF, which appear to be only mini-
mally influenced by direct lactate production of bac-
teria or leukocytes in CSF, have been associated with
increased mortality from meningitis in humans [51]
and in experimental pneumococcal meningitis [52].
The results of this study indicate that granulocytes

Tauber, Borschberg, and Sande

are of minor relevance for the pathophysiological
alterations examined. All parameters changed sig-
nificantly when animals were infected, but the vir-
tually complete absence of granulocytes in neutro-
penic rabbits did not have any significant effect on
the magnitude of these changes. Obviously, factors
other than granulocytes must be involved. Prelimi-
nary studies indicate that bacterial products may be
important. Endotoxin released during treatment of
Escherichia coli meningitis with a new cephalospo-
rin was responsible for development of brain edema
in one study [43]. Products of pneumococcal cell
walls induce inflammation, increased intracranial
pressure, and brain edema in the same animal model
[53-55].

It was only when granulocytes in CSF were stimu-
lated by high doses of fMLP that any effect attributa-
ble to granulocytes could be documented, i.e., in-
creased brain edema. Moreover, the increase in brain
edema was moderate and was not reflected by in-
creased lactate production. Increased lactate concen-
trations in CSF would be expected if the additional
edema was detrimental to the brain’s glucose metab-
olism. Whether stimulation of granulocytes occurs
during meningitis is unknown. The comparison be-
tween neutropenic and normal animals indicates that
at least during the first 24 h of the disease there is
no substantial stimulation, despite the pronounced
inflammatory changes in CSF. The apparent lack of
stimulation can be explained by the inefficient
phagocytosis by granulocytes [31], which is reflected
by the uniformly fatal course of the untreated dis-
ease [5]. The increase of brain edema after fMLP
stimulation was associated with a decrease in in-
tracisternal pressure. A similar reduction of in-
tracranial pressure was observed in very sick animals
with meningitis induced by high doses of pneumo-
coccal cell walls [53]. These observations emphasize
that increased brain volume is not necessarily the ba-
sis for the increased intracranial pressure.

In summary, these studies show that granulocytes
are not important in the development of brain edema,
increased intracranial pressure, or changes in CSF
concentrations of lactate or protein during the first
24 h of experimental meningitis due to S. pneumo-
niae. This conclusion modifies the concept of Fish-
man et al. 23] and Fishman [44] and indicates that
brain edema during meningitis may not be “granulo-
cytic” edema. The mere presence of granulocytes in
CSF appears to be insufficient to contribute to brain
edema or other pathophysiological alterations dur-
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ing bacterial meningitis. Rather, stimulation of the
granulocytes is necessary. Further studies must clar-
ify whether such stimulation plays a role in advanced
stages of meningitis and whether the release of ac-
tive products from the infecting bacteria after insti-
tution of therapy can stimulate granulocytes in the
CSF [43, 56].
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