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S U M M A R Y
We present a case study of the ranking and weighting of ground-motion prediction equations
(GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study
region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002.
We test the applicability of 36 GMPEs based on stochastic simulations previously proposed
for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress
drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper
Basin from the full set, we applied two methods. In the first, seismograms recorded on
the local monitoring network were spectrally analysed to determine characteristic stress and
attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH)
method was used to directly compare recorded and predicted short-period response spectral
accelerations. The resulting ranking was consistent with the models selected based on spectral
analysis, with the advantage that a transparent weighting approach was available using the
LLH method. Region-specific estimates of variability were computed, with significantly lower
values observed compared to previous studies of small earthquakes. This was consistent with
the limited range of stress drops and attenuation observed from the spectral analysis.

Key words: Earthquake ground motions; Earthquake source observations; Seismic monitor-
ing and test-ban treaty verification; Seismic attenuation.

I N T RO D U C T I O N

Ground shaking from seismicity associated with stimulation and
exploitation of a geothermal reservoir for heat and power produc-
tion can be a significant nuisance to the local population and can, in
some cases, lead to building damage. The Deep Heat Mining project
(Basel, Switzerland) in 2006 triggered an ML 3.4 (Mw 3.2) main
shock and thousands of smaller shocks and led to insurance claims
of more than $9 million (Giardini 2009). Two earthquakes (ML 2.4
and 2.7) occurred in the vicinity of the Landau (Germany) geother-
mal power plant in 2009, which caused macroseismic intensities
up to V+, while at another German geothermal project (Insheim)
two felt tremors (ML 2.2 and 2.4) occurred during reservoir stim-
ulation in 2010 (Groos et al. 2013). Most recently, in July 2013, a
geothermal project in St Gallen, Switzerland triggered a widely felt
ML 3.5 (Mw 3.4) event, which was followed by numerous smaller
aftershocks. In Majer et al. (2012), seven steps are proposed to help
assess and mitigate the seismic risk posed by geothermal systems.
Step 5 of the proposal is to ‘quantify the hazard from natural and
induced seismic events’ through either probabilistic or determinis-
tic approaches. They suggest a two-stage approach to quantify the
hazard: a baseline estimate initially established through regional

seismicity, with further refinement to a site-specific hazard assess-
ment through the analysis of induced seismicity recorded on the
local monitoring network. This paper addresses the second stage.

A necessary component of any study that seeks to assess the
seismic hazard (and/or risk) associated with geothermal projects
is a ground-motion model that estimates measures of shaking [e.g.
peak ground acceleration (PGA)] given an earthquake scenario (e.g.
in terms of magnitude and source-to-site distance). Motivated by
a lack of suitable models in the public literature, Douglas et al.
(2013) derived a set of stochastic and empirical ground-motion
models for application in geothermal areas. These models were
based on analyses of thousands of near-source seismograms of small
earthquakes, most of which were induced by geothermal activity or
gas extraction, while some were natural shallow events.

Because of the considerable epistemic uncertainty in the es-
timation of ground motions in geothermal areas, Douglas et al.
(2013) presented ground-motion prediction equations (GMPEs) for
36 stochastic simulation models (Boore 2003) that sought to cap-
ture this uncertainty. The ranges of the key parameters of these
stochastic models (stress parameter, �σ ; path attenuation, Q; near-
surface attenuation, κ) were defined based on the analysis of seismo-
grams collected from numerous regions. The analysis highlighted
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considerable variation in these parameters among regions and sites.
When conducting a seismic hazard assessment for a given geother-
mal project it is not known a priori which of the 36 models are most
applicable. Consequently Douglas et al. (2013) recommended, in
the absence of other information by which to constrain the stochas-
tic parameters for a given site, that a logic tree is used for seismic
hazard analysis with all 36 models as branches. Subsequently, as
seismograms are recorded at the geothermal project site, the ap-
plicability of some models should become evident and hence their
associated branches could be assigned higher weights, while others
may be downweighted or even dropped completely. There are two
complementary ways in which the branch weights can be updated:
direct assessment of the stochastic parameters, and comparison of
ground-motion predictions and observations.

As a demonstration of the use of the stochastic simulation
GMPEs and the proposed procedure for the assessment of the
logic-tree weights, Douglas et al. (2013) present a simple analy-
sis for Campi Flegrei (Italy), for which some seismograms from
small, shallow (but natural) earthquakes were available. However,
the small number of seismograms available (only 55), their limited
bandwidths and low quality of the metadata meant that the logic-tree
weights could not be significantly updated. The aim of this paper is
to use a much larger and higher quality data set from an enhanced
geothermal system (EGS), to better demonstrate the proposed se-
lection procedure and to investigate how many records are required
to significantly reduce the epistemic uncertainty in ground-motion
prediction for EGSs. The data set comes from Cooper Basin (Aus-
tralia), which was not considered by Douglas et al. (2013) when
developing their ground-motion models.

The next section summarizes the 36 stochastic models developed
by Douglas et al. (2013). They did not recommend their empiri-
cal models for application because they were derived using data
from a narrow magnitude–distance range (roughly Mw 1–3 and Rhyp

< 10 km) and a simple functional form was adopted. Because the
stochastic models were based on simulated ground motions from a
wider range of magnitudes and distances and a more complex func-
tional form was fit to these simulations, they are considered more
robust than the empirical equations for Mw 1–5 and Rhyp 1–50 km. As
with empirical models, however, extrapolation of stochastic models
outside their range of applicability is not recommended. Follow-
ing the introduction of the models, the data set from Cooper Basin
EGS is presented. The subsequent section derives estimates of the
stochastic parameters from these data and investigates the impact of
the number of seismograms used to estimate the parameters. Based
on this analysis, a set of weights for the 36 models is proposed. A
second set of weights is proposed in the following section based on
comparisons between the observed response spectral accelerations
and those predicted by the 36 GMPEs.

G RO U N D - M O T I O N M O D E L S F O R
I N D U C E D S E I S M I C I T Y

Ground motions from small earthquakes, particularly those
recorded in the near-source region, often exhibit large variabil-
ity for a given magnitude and distance, the principal independent
parameters for GMPEs. There are two explanations for this com-
mon observation: the first is related to the fact that metadata for
small earthquakes are often poorer quality (e.g. routine automatic
locations as opposed to manually reviewed locations). The second
reason (exacerbated by the first) is that ground motions from small
events are more sensitive to changes in hypocentral depth, while site

attenuation (κ) tends to filter out, to varying degrees, the dominant
high frequencies associated with smaller earthquakes (Douglas &
Jousset 2011). Furthermore, it is often observed that the variabil-
ity of the stress drop (or conversely, slip velocity) is significantly
higher for small events than for larger events (e.g. Cotton et al.
2013). Whether an artefact of inversion procedures (e.g. not prop-
erly accounting for attenuation), or reality, this nevertheless reflects
the greatly differing proportion of high-frequency energy observed
in small earthquakes of similar size.

Analysing data from six independent regions (Basel, Soultz,
Geysers, Hengill, Roswinkel and Vorendaal), Douglas et al. (2013)
found that a significant reduction in the overall prediction uncer-
tainty was obtained by accounting for region-specific biases. As
discussed, this can be interpreted as either systematic bias in the
metadata, or alternatively, region-specific ‘characteristic seismicity’
and recording conditions. Since magnitudes were recomputed ho-
mogeneously and hypocentral depths are generally well-constrained
for sources directly below the recording network (typical in geother-
mal installations), Douglas et al. (2013) suggested that differences
in source, path and site conditions were the likely cause of region-
specific differences. They proposed a suite of 36 stochastic models
with different source, path and site properties to cover the range
observed in their data sets.

In terms of seismic hazard assessment, these 36 models can
be considered to cover the epistemic uncertainty: in the case of a
completely unknown site, we cannot distinguish between any of
the models, and must weight them equally. In reality, of course,
some information about the site of interest will always be available:
for instance, if the EGS is not located on outcropping hard-rock,
then we can already rule out the models with the lowest levels of
site attenuation (κ). Each of the 36 models has its own associated
aleatory variability, which corresponds to a region-specific model.
An initial ‘naı̈ve’ application of these GMPEs would be similar
in terms of the resulting mean hazard to using the single empir-
ical GMPE developed by Douglas et al. (2013) using data from
all regions (along with the associated high aleatory variability).
In terms of the hazard distribution, the obvious difference is that the
empirical model leads to only one curve, while the stochastic mod-
els generate 36 individual hazard curves, representing the epistemic
uncertainty. However, in the case of improved knowledge of the
site’s seismicity, or recording conditions, we can begin to reassess
the weighting of the 36 models, reducing the epistemic uncertainty.
The advantage in this case is clear, since region-specific GMPEs
cannot typically be assessed due to limited recorded distance and
magnitude ranges, the stochastic model approach allows us to re-
fine the logic tree in the case of improved knowledge, which will be
quickly available after the installation of a monitoring network, or
even beforehand when local data already exist.

G RO U N D - M O T I O N DATA U S E D F O R
M O D E L S E L E C T I O N

The data used in this paper come from a sensitive seismic net-
work set-up to monitor the geothermal exploitation of the reservoir
at Cooper Basin (South Australia). A hot-fractured-rock project
was launched at Cooper Basin in 2002 to exploit the Habanero
granite reservoir at depths between 4 and 4.5 km. Various bore-
holes and stimulation experiments have been conducted since and
triggered earthquakes have been located and characterized (Baisch
et al. 2006). The data used here come from 2005 (data from 2003
are available but there is uncertainty over the calibration factors
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Figure 1. Map of microseismic monitoring network (McLeod #1: MCL,
MW01–3 and WA01–3). Catalogued events from 2005 are indicated by
grey symbols, those used in the spectral analysis for determination of κ and
�σ are shown by black symbols.

of the seismometers). Data from eight stations (Stang 2011) in-
stalled by Q-Con [McLeod #1 (MCL), WA01–04 and MW01–03]
are used (Fig. 1), all of which are located below the surface (all
at depths of less than 357 m, except for McLeod #1 at 1.8 km).
High-quality earthquake catalogues were provided by Q-Con for
these data. The available records come from earthquakes with mo-
ment magnitudes between 1.7 and 3.1 (roughly following a standard
Gutenberg–Richter distribution), hypocentral distances between 2.4
and 7.8 km (roughly uniformly distributed) and depths between
3.9 and 4.5 km (roughly normally distributed with a peak around
4.2 km). All records have been converted from velocity to acceler-
ation through time-domain differentiation and application of cali-
bration factors. Following the approach detailed in Douglas et al.
(2013) and Edwards & Douglas (2013), all earthquakes used here
have had their moment magnitudes consistently recalculated.

E S T I M AT I O N O F S T O C H A S T I C
PA R A M E T E R S

As noted, the estimation of suitable stochastic model parameters
allows the reduction of epistemic uncertainty related to ground-
motion prediction in the study region for the magnitude and distance
range of the data. For earthquakes outside the range of observations
(particularly larger magnitudes), however, there still remains con-
siderable epistemic uncertainty because it is not certain that the
most appropriate stochastic parameters (or the best-fitting models)
for the available data necessarily apply for such scenarios. In a first
step, we look for existing parameters published in the literature. At
Cooper Basin, Baisch et al. (2009) found an average whole-path
Qp = 112 ± 21 and �σ = 4.7 bars (0.47 MPa) from the analysis
of over 6000 events. Assuming Qp ≈ Qs and taking the measured
VP = 3.7 km s−1 and VP:VS = 1.9 from Baisch et al. (2009) we
obtain path attenuation (t∗) of approximately 0.02 s between the
event cloud and the surface. Due to the almost vertical propagation
through the basin, this t∗ can be completely assigned to the site-
specific term, κ0. Regional values of Q have been computed for

Australian earthquakes by Allen et al. (2006, 2007). For southeast-
ern Australia Allen et al. (2007) found

log Q( f ) = 3.66 − 1.44 log f + 0.768 (log f )2 + 0.058 (log f )3

(1)

for frequencies (f) 0.78–19.9 Hz, leading to consistently high Q
(1063–6671), while for southwestern Australia Allen et al. (2006)
found

Q( f ) = 457 f 0.37 (2)

for frequencies 1.07–25.0 Hz. The study of Allen et al. (2007) com-
puted a corresponding geometrical attenuation of rhyp

−1.3 in the first
90 km (where rhyp is hypocentral distance) based on the decay of
long-period displacement spectra. The central-east location (Fig. 1)
of Cooper Basin may be slightly better described by ‘southeast-
ern Australia’. However, in light of the known trade-off between
Q and geometrical decay, we may prefer to use the latter Q esti-
mate for southwestern Australia, which corresponds to the rhyp

−1

geometrical spreading model adopted by Douglas et al. (2013).
This frequency-dependent Q model (eq. 2) corresponds to 457 at
1 Hz and 1503 at 25 Hz, which could foreseeably be accommodated
through frequency-dependent weighting of the Douglas et al. (2013)
models developed with frequency-independent Q. Stress drop terms
derived by Allen et al. (2006) lie between 1 and 100 bars (0.1 and 10
MPa) but show a trend that increases with magnitude, albeit weakly.

To provide further estimates of the parameters, without the nu-
merous assumptions that may be required by using values from the
literature, we here also present the average Q, �σ and κ0 values as
determined from subsets of the data used for this study. We test the
impact of using 10, 25 and 50 per cent of all data to simulate the
effect of a developing database for a new network installation.

Kappa estimation

We estimated site κ0 consistent with the models of Douglas et al.
(2013) through least-squares minimization of spectra computed
over the duration of shaking. The window duration was based on
5–95 per cent of the velocity-squared integral, with spectral mod-
els fit between 10 and 100 Hz in the lin–log domain. The models
were based on the Brune (1970) source with single-event common
corner frequency and attenuation modelled using an exponential
function (Anderson & Hough 1984); refer to Douglas et al. (2013)
and Edwards et al. (2011) for an exhaustive description of the fitting
procedure. At least two instruments were required to have recorded
each event to include it in the processing. To estimate the impact of
limited data on the choice of model weights, we simulated different
stages of data collection through random sampling of the events for
which we had good recordings at two or more instruments.

Since the hypocentral distance was very limited, choice of Q has
a minimal impact on kappa: we chose Q = 1200 to be broadly
consistent with the results of Allen et al. (2006), who found values
of between 457 at 1 Hz and 1503 at 25 Hz. However, choosing the
Q = 600 model from Douglas et al. (2013) would only have an
impact of approximately �κ0 = 0.001s (2–4 per cent). We observe
that the kappa values determined for the Cooper Basin stations were
dependent on the location of the borehole. Instrument McLeod #1,
located at the centre of the network (1.8 km depth) has the lowest
value (0.028 s), consistent with the significant depth at which it
is located. Stations MW01, MW02 and MW03 (the inner ring) lie
within approximately 2.5 km of the central station (depths 109–
357 m) and show the highest kappa values (0.041–0.047 s). Stations
WA01, WA02 and WA03 (outer ring) lie within 5 km of the central
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Table 1. Kappa (and the standard deviation ±σ ; and standard error ±σ e) determined for the sites of Cooper Basin, along with the impact of reduced data sets.

100 per cent 50 per cent 25 per cent 10 per cent

Station Depth (m) κ (s) ±σ (s) # ±σ e (s) �{κ0} �{±σ} �{#} �{κ0} �{±σ} �{#} �{κ0} �{±σ} �{#}
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

MCL 1783 0.0277 0.0133 113 0.0013 0.31 −2.23 −49 1.16 0.22 −76 −1.09 −13.89 −91
WA01 97.5 0.0335 0.0159 48 0.0023 −0.27 −1.47 −51 2.51 −3.36 −76 −4.20 −22.33 −90
WA02 96 0.0371 0.0136 49 0.0019 0.81 −3.17 −51 0.28 −10.13 −77 0.30 −30.00 −91
WA03 110 0.0307 0.0158 81 0.0018 0.28 −0.58 −49 1.28 −2.46 −75 1.04 −9.48 −90
WA04 97.5 0.0380 0.0149 109 0.0014 −0.05 −0.10 −50 0.26 −1.10 −76 3.34 −7.47 −90
MW01 357 0.0470 0.0128 161 0.0010 0.16 −1.80 −50 0.47 −2.81 −76 0.14 −7.29 −90
MW02 109 0.0405 0.0217 223 0.0015 0.05 −0.80 −50 −0.65 −1.09 −76 −1.55 −3.41 −90
MW03 239 0.0469 0.0134 194 0.0010 0.03 −1.09 −49 0.60 −0.90 −76 0.45 −4.16 −90

Table 2. Statistical analysis of stress parameter. All values in natural log-scale. <ln[�σ ]> is
the ln-average stress parameter and σ ln[�σ ] is the standard deviation of the individual event
stress parameters; σ<ln[�σ ]> is the standard deviation of the mean and σσ ln[�σ ] is the standard
deviation of the standard deviation over 1000 randomizations.

Per cent of data <ln[�σ ]> (bars) <�σ> (bars) σ<ln[�σ ]> σ ln[�σ ] σσ ln[�σ ]

100 2.93 18.67 0.000 0.502 0.000
75 2.91 18.40 0.024 0.497 0.015
50 2.92 18.56 0.041 0.528 0.055
25 2.93 18.78 0.111 0.502 0.110
10 2.78 16.20 0.163 0.390 0.076

station and show moderate values of kappa (0.03–0.037 s), despite
being located shallower than stations MW01, MW02 and MW03
(at depths of 96–110 m). The similarity of the kappa values for
each ring of the network is remarkable, and may be due to similar
geology for these stations or, since the earthquakes are all located
near to the well-head, due to the similarity of the propagation paths
to each of the stations of a given ring.

We estimated the impact of reduced data sets by bootstrapping
100 times over random subsamples of the complete data set; mea-
suring the changes in absolute value and scatter. The impact of a
reduced data set (even down to 10 per cent of the original events:
corresponding to an average of 14 events) was minimal in terms of
the average kappa, with changes of only a few per cent (Table 1).
In the case of the standard deviation, the reduced data sets led to
significant underestimation of the true uncertainty. This should not
be an issue in our application, however, since we are interested in
the median values; aleatory variability is independently assigned
based on the work of Douglas et al. (2013).

Stress parameter estimation

Source corner frequencies of the spectra were re-estimated, fixing
Q = 1200 and κ0 as in Table 1. An inversion was performed in
the log–log domain, again minimizing the least-squares misfit of
the spectral model. Given the moment magnitude determined by
Edwards & Douglas (2013), we can then estimate the stress param-
eter as

�σ = M0

(
fc

0.4906β

)3

, (3)

where β = 3500 m s–1 and M0 is estimated following the origi-
nal formulation of the moment magnitude by Hanks & Kanamori
(1979).

After selecting events with available Mw and fc estimates a total of
95 earthquakes from Cooper Basin were assigned stress parameters.
The log-average was 19 bars with a standard deviation of 0.5 (ln
units; a factor of 1.65). Repeating the analysis with subselections
of the events from Cooper Basin we obtain standard deviations on
both the mean and standard deviation of the target value (Table 2).
We see that even with only 25 per cent of the events, the mean stress
parameter <ln[�σ ]> (and the variability of individual event stress
parameters σ ln[�σ ]) is robust, with a variability (represented by the
standard deviation) of a factor of 1.12. Reducing the data set to
10 per cent (around 9–10 events) we begin to observe larger (albeit
not significant) deviations from the mean.

Based on the spectral analysis, we can choose to assign weights
to the models based on expert judgement. We select models from
Douglas et al. (2013) with Q = 600 and Q = 1800 (covering the
range observed in the literature for this region), and based on the
limited range of measured surface attenuation values, κ = 0.04 s
(Table 1). To cover the 19 bar average seen in the spectral analyses,
we then make a further selection of models with 10 and 100 bar
stress parameter. This leaves four candidate models (Table 3). No
preference in terms of weighting is given to GMPEs based on the
two different Q models due to the uncertainty of this parameter
(Table 3). The final weighting of the four selected models is then
given by 0.365 for the two 10-bar and 0.135 for the two 100-bar
models. These weights were chosen such that the log-average equiv-
alent stress parameter of the weighted model was 19 bars: that is,

Table 3. Weighting scheme for the selected models based on Q and �σ .

Model Model description Q weight �σ weight Total weight

19 �σ = 10 bar; Q = 600; κ = 0.04 s 0.25 0.365 0.365
23 �σ = 10 bar; Q = 1800; κ = 0.04 s 0.25 0.365 0.365
31 �σ = 100 bar; Q = 600; κ = 0.04 s 0.25 0.135 0.135
35 �σ = 100 bar; Q = 1800; κ = 0.04 s 0.25 0.135 0.135
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Figure 2. Comparison of median PGA predictions from the weighted
stochastic GMPE (with weights based on spectral analysis) and the em-
pirical model of Douglas et al. (2013).

2 × 0.365 × log(10 bar) + 2 × 0.135 × log(100 bar) ≈ log(19 bar).
The resulting weighted stochastic GMPE is shown in Fig. 2 for
PGA along with predictions from the purely empirical model of
Douglas et al. (2013) and recorded data. The weighted stochastic
model shows better fit to the recorded data from small events, while
for the few events with M ≈ 3, both models predict similar motions.

R E S I D UA L A NA LY S E S

In this section, we analyse residuals computed from the 36 ground-
motion models and data from Cooper Basin. 2089 pairs of hori-
zontal time histories were available for this analysis from the eight
local stations and 427 earthquakes. From these time histories, the
geometric means of the pseudo-spectral accelerations (PSAs) for
5 per cent damping from each pair are computed for 0.01 s (100 Hz,
assumed equal to PGA) and 0.05 s (20 Hz) natural periods. The
limited bandwidth of the seismometers installed at Cooper Basin
does not allow accurate PSAs to be computed for frequencies lower
than about 15 Hz. Consequently, the engineering use of these data
is limited to examining the response to shaking of stiff structures
(e.g. low-rise masonry buildings) and non-structural elements. The
observed and predicted response spectra shown by Douglas et al.
(2013) show that PSA(0.05 s) is likely to be close to the peak PSA
for the magnitude range covered by the Cooper Basin data. In this
section, these two sets of PSAs are statistically compared to the 36
ground-motion models proposed by Douglas et al. (2013). These
models consist of: the equations for the median PSAs derived using
the stochastic method and the aleatory-variability models for the
single-station within-event standard deviation (ϕSS) (e.g. Al Atik
et al. 2010) and the zone-specific between-event standard deviation
(τZS) equal to the average of the models for this variability for the
Soultz and Basel EGSs. The impact of changing the model for the
aleatory variability is investigated below.

Scherbaum et al. (2009) and Kale & Akkar (2013) propose meth-
ods to judge the applicability of GMPEs to a given set of ground-
motion data. These methods consist of the calculation of variables:
log-likelihood (LLH, Scherbaum et al. 2009) and Euclidian dis-
tance ranking (EDR, Kale & Akkar 2013), which are both based
on the differences between the natural logarithms of the observed

and predicted PSAs, although the influence of the aleatory vari-
ability is different in the two cases. Because we are assuming the
same aleatory variability for all tested models we could simply use
the differences in mean residuals to rank the models but the use
of the LLH values allows us to weight the different models in a
mathematically rigorous way (see below). The lower the value of
LLH and EDR, the closer the match between the observations and
predictions. The large number of records available from Cooper
Basin enables us to investigate the impact of the number of records
available on the results of the GMPE testing. Generally, geothermal
projects will have fewer records available with which to judge the
applicability of the available GMPEs (especially before stimulation
or early on in the stimulation phase) and hence it is useful to study
whether the GMPE testing is sensitive to the number of records
used.

Based on comparisons between the LLHs and EDRs (and the im-
plied ranking of models) computed for PSA(0.01 s) and PSA(0.05 s)
it was found that LLH and EDR are strongly linearly correlated for
both periods, as are these values for the two structural periods.
Therefore, for brevity, in the rest of this section only LLHs (and
GMPE ranking and logic-tree weights derived from these values) for
PSA(0.01 s) are presented. LLH is preferred to EDR as a measure of
the applicability of GMPEs because of the direct link between a set
of LLHs and logic-tree weights in the case of well-distributed data
and similar model extrapolation behaviour (as is the case for phys-
ically based stochastic models). About a third of the seismograms
from Cooper Basin required high-cut filters that removed ground
motions with periods below 0.05 s (frequencies above 20 Hz), which
could be affecting PSA(0.01 s). However, repeating the analyses de-
scribed below with and without these seismograms showed that the
influence of these band-limited records on the results is minimal.
Therefore, all 2089 geometric-mean observations of PSA(0.01 s)
were used, from which normalized residuals were computed. For
the total variability, we use a value of 0.96 (ln units), the value
computed from the estimates of ϕ and τ given by Douglas et al.
(2013).

To test the stability of the LLH values with respect to the number
of records being used, a bootstrap procedure was followed whereby
100 random sets of 1044 (half the total), 522 (quarter of the total) and
261 (eighth of the total) samples are selected from the 2089 available
and the analysis repeated. From these results, the mean and standard
deviation (from the 100 results) of the LLH of each ground-motion
model were computed (Table 4). As expected, the standard deviation
increases as the number of available records decreases. Surprisingly,
however, the standard deviations remain low and consequently the
LLHs are stable, even when only an eighth of the records are used.
This suggests that even a few hundred seismograms would enable
robust logic-tree weights to be computed for hazard assessments of
EGS projects if it were assumed that the highest weighted models
apply for magnitudes and distances outside the range covered by
observations.

It is interesting to note that the best-performing models are for
values of �σ , Q and κ0 similar to those previously reported for the
Cooper Basin area or calculated earlier. This suggests that logic-tree
weights can be preliminarily assessed based on values of these key
parameters taken from the literature (if they are mutually consis-
tent) or from seismological analyses of data, without statistically
comparing the observations and predictions.

The definition of LLH allows a direct computation of logic-tree
weights (Scherbaum et al. 2009). Such an approach is not necessar-
ily appropriate in terms of a probabilistic seismic hazard assessment,
however, because the weights do not represent the probability of a
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Table 4. Mean LLHs and their standard deviations (computed using a bootstrapping procedure) for the 36
ground-motion models and various proportions of the Cooper Basin data set. Models indicated in bold are
the 12 best performing models whereas those in italics are the 12 worst performing.

�σ Q κ0 All data Half Quarter Eighth No.

1 200 0.005 2.1007 2.0969 ± 0.0228 2.0978 ± 0.0407 2.0992 ± 0.0622 1
1 200 0.02 1.7971 1.7965 ± 0.0129 1.7982 ± 0.0233 1.7988 ± 0.0335 2
1 200 0.04 2.6115 2.6129 ± 0.0255 2.6157 ± 0.0464 2.6159 ± 0.0705 3
1 200 0.06 3.7752 3.7780 ± 0.0384 3.7816 ± 0.0694 3.7818 ± 0.1068 4
1 600 0.005 3.7820 3.7755 ± 0.0438 3.7750 ± 0.0787 3.7788 ± 0.1238 5
1 600 0.02 1.7664 1.7648 ± 0.0147 1.7663 ± 0.0257 1.7672 ± 0.0381 6
1 600 0.04 2.2444 2.2453 ± 0.0205 2.2482 ± 0.0372 2.2479 ± 0.0574 7
1 600 0.06 3.2774 3.2798 ± 0.0337 3.2836 ± 0.0609 3.2831 ± 0.0955 8
1 1800 0.005 5.2068 5.1987 ± 0.0584 5.1963 ± 0.1035 5.2031 ± 0.1685 9
1 1800 0.02 1.8220 1.8200 ± 0.0172 1.8213 ± 0.0299 1.8224 ± 0.0453 10
1 1800 0.04 2.1426 2.1432 ± 0.0190 2.1461 ± 0.0344 2.1457 ± 0.0533 11
1 1800 0.06 3.1200 3.1222 ± 0.0321 3.1261 ± 0.0580 3.1253 ± 0.0916 12
10 200 0.005 4.5300 4.5227 ± 0.0477 4.5232 ± 0.0891 4.5248 ± 0.1319 13
10 200 0.02 2.0125 2.0091 ± 0.0223 2.0091 ± 0.0417 2.0113 ± 0.0631 14
10 200 0.04 1.7867 1.7857 ± 0.0125 1.7865 ± 0.0226 1.7889 ± 0.0289 15
10 200 0.06 2.4931 2.4938 ± 0.0242 2.4953 ± 0.0427 2.4981 ± 0.0603 16
10 600 0.005 8.9585 8.9475 ± 0.0758 8.9457 ± 0.1397 8.9512 ± 0.2162 17
10 600 0.02 2.7308 2.7261 ± 0.0348 2.7252 ± 0.0636 2.7281 ± 0.0997 18
10 600 0.04 1.7389 1.7372 ± 0.0136 1.7378 ± 0.0254 1.7398 ± 0.0357 19
10 600 0.06 2.1503 2.1504 ± 0.0189 2.1520 ± 0.0331 2.1541 ± 0.0462 20
10 1800 0.005 1.9403 11.9273 ± 0.0952 11.9222 ± 0.1716 11.9328 ± 0.2782 21
10 1800 0.02 3.1481 3.1427 ± 0.0406 3.1414 ± 0.0734 3.1450 ± 0.1168 22
10 1800 0.04 1.7710 1.7690 ± 0.0156 1.7695 ± 0.0290 1.7715 ± 0.0424 23
10 1800 0.06 2.0488 2.0487 ± 0.0171 2.0503 ± 0.0300 2.0522 ± 0.0416 24
100 200 0.005 8.3257 8.3160 ± 0.0695 8.3176 ± 0.1313 8.3168 ± 0.1878 25
100 200 0.02 3.0079 3.0031 ± 0.0367 3.0021 ± 0.0695 3.0041 ± 0.1045 26
100 200 0.04 1.7318 1.7298 ± 0.0143 1.7292 ± 0.0283 1.7324 ± 0.0398 27
100 200 0.06 2.0443 2.0440 ± 0.0175 2.0442 ± 0.0306 2.0482 ± 0.0384 28
100 600 0.005 6.2242 16.2098 ± 0.1033 16.2079 ± 0.1929 16.2123 ± 0.2911 29
100 600 0.02 4.5644 4.5579 ± 0.0529 4.5557 ± 0.0985 4.5585 ± 0.1523 30
100 600 0.04 1.9695 1.9666 ± 0.0222 1.9656 ± 0.0430 1.9685 ± 0.0650 31
100 600 0.06 1.8382 1.8374 ± 0.0136 1.8374 ± 0.0246 1.8408 ± 0.0298 32
100 1800 0.005 1.2923 21.2752 ± 0.1278 21.2684 ± 0.2330 21.2802 ± 0.3724 33
100 1800 0.02 5.4541 5.4468 ± 0.0607 5.4438 ± 0.1120 5.4475 ± 0.1760 34
100 1800 0.04 2.1350 2.1317 ± 0.0260 2.1305 ± 0.0499 2.1333 ± 0.0766 35
100 1800 0.06 1.7930 1.7920 ± 0.0130 1.7919 ± 0.0242 1.7952 ± 0.0299 36

given model being correct (Delavaud et al. (2012). Instead, LLH-
based weights represent a given model’s ability to fit the observed
data, favouring ‘better models’. Typically, the goal of a complete
logic-tree based hazard analysis is to capture not only the centre
and body, but also the range of possibilities. In this sense, the LLH
weights, by design, will not cover the entire range (i.e. extreme sce-
narios not yet recorded). To bypass this limitation, Delavaud et al.
(2012) suggest weighting based on expert judgement, with help
from LLH information. However, a fully transparent approach for
logic-tree weighting still does not exist. Considering this limitation,
we adopt the LLH-based logic-tree weights for this analysis. Never-
theless, for the purpose of hazard assessment in geothermal zones,
we would recommend further expert elicitation to ensure that the
complete range of possible models are appropriately considered in
the logic tree.

Applying the equation of Scherbaum et al. (2009) to the values
of LLH listed in Table 4 for the complete data set gives the weights
summarized in Fig. 3, from which it can be seen that roughly half
of the models contribute about 75 per cent of the total weight. Mod-
ifying the standard deviation associated with each model from 0.96
[the sigma proposed by Douglas et al. (2013), for use with the
stochastic models] to 0.64 (the sigma obtained by regression anal-
yses on the Cooper Basin data, see later) does not alter the model

ranking but it slightly increases the distinction between models.
Therefore, the model weights are concentrated in the best ranked
models (75 per cent of the weight is contributed by roughly one-
third of the models). In terms of computational efficiency, the use
of 36 models in a logic tree may be problematic. In this case, it may
be useful to trim the number of models from the total 36 before
weighting. As discussed previously, LLH weighting tends to favour
models which better predict the data. By using the LLH weighting
of the full set of models it should, therefore, be possible to find and
remove models that do not add any information about possible epis-
temic uncertainty. For instance, if the highest and second-highest
weighted models predict very similar ground motions, then the sec-
ond model can be removed without affecting the hazard results.
Such analysis is, however, beyond the scope of this paper.

A L E AT O RY VA R I A B I L I T Y

To assess the aleatory variability of the Cooper Basin ground-
motion data, random-effects regression was performed using the
functional form of model 1 of Douglas et al. (2013):

ln PSA(0.01 s) = a + bMw + c ln
√

r 2
hyp + h2 + drhyp, (4)
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Figure 3. Ranking of models against cumulative weights for two different sigmas. See Tables 4 and 2 for the correspondence between model number and
parameters of the stochastic model. Grey numbers indicate models consistent with the spectral analysis and literature (Q equal to 600–1800; �σ equal to
10–100 bars and κ0 = 0.04 s).

where PSA(0.01 s) is in m s–2, Mw is moment magnitude and a, b, c,
d and h are regression coefficients. The limited distance range of the
Cooper Basin data does not allow robust estimates of h (describing
near-source saturation) and d (describing anelastic attenuation) to
be found and, therefore, these coefficients are constrained to zero.
The coefficients obtained from using the entire 2089 records are:
a = −6.899, b = 2.569 and c = −2.589 with a between-event
standard deviation (τ ) of 0.099 and a within-even standard deviation
(ϕ) of 0.627, leading to an overall standard deviation (σ ) of 0.635.
Comparing these coefficients to those obtained by Douglas et al.
(2013) from regression on data from six areas indicates slightly
higher magnitude dependence (coefficient b) and faster attenuation
(coefficient c) for Cooper Basin data. The most notable difference,
however, is the much smaller values of ϕ and, in particular, τ , from
regression on the Cooper Basin data compared to those obtained
by Douglas et al. (2013). The much lower value of τ can be partly
explained by the use of data from a single zone (this type of τ

is called τZS by Douglas et al. 2013) but it appears that ground
motions at Cooper Basin are much less variable than those at other
EGS sites; Douglas et al. (2013) found for Basel τZS = 0.637 and
for Soultz τZS = 0.902.

The value of τ for Cooper Basin is even lower than those associ-
ated with GMPEs derived from moderate and large earthquakes [see
fig. 10(c) of Douglas et al. (2013), where τ for none of the consid-
ered GMPEs is lower than 0.2]. This very small τ can be related to
the small variability in the stress drops of Cooper Basin: found to be
0.5 ln units, corresponding to a factor of 1.65. This is significantly
lower than most other studies: for instance, Allmann & Shearer
(2009) find a value of 1.46 ln units for global intraplate events;

Edwards & Fäh (2013) find 1.83 and 1.43 ln units for the Swiss
foreland and Alpine regions, respectively; Oth et al. (2010) find
1.38 ln units for Japanese earthquakes and Rietbrock et al. (2013)
find 1.38 ln units for UK events. Cotton et al. (2013) showed that
spectral analysis methods applied to small earthquakes often led to
significantly larger stress variability than seen in larger events. They
presented the required variability in stress parameter corresponding
to the aleatory variability of several GMPEs and concluded that
the variability should lie between 0.26 and 0.59 ln units for large
events. The difference may relate to the strong regional variability
in source, path and site effects for small earthquakes, either real
or due to parameter trade-off. Treated independently, the data from
Cooper Basin (a limited source zone) and the consistency of wave
propagation may mean that the observed variability usually inherent
with such small events is not apparent. One issue to consider, in this
case, is whether the observed variability truly reflects the possible
future variability: that is, do we account for a near-surface event
outside of the seismic cloud as was the case for the largest event re-
lated to the Berlı́n (El Salvador) geothermal project (Bommer et al.
2006), or of significantly different stress drop?

Single-station ϕ was calculated for the eight Cooper Basin sta-
tions as ϕSS = 0.493, which is again smaller than that obtained
by Douglas et al. (2013), ϕSS = 0.576. The relatively low value is
consistent with the limited range of station kappa values (with three
distinct groups corresponding to the middle, inner and outer sta-
tions). The total sigma (combining the between- and within-event
variability) is, therefore, much lower than that for the empirical
models of Douglas et al. (2013) and it is more in line with those
associated with GMPEs for moderate and large earthquakes. This
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Figure 4. (a) PGA data for Cooper Basin for events with 2.5 < M < 3.1 and the selected predictions (stochastic and empirical) from Douglas et al. (2013) for
M 2.8 along with the best fit of the data to eq. (3). (b) The empirical model of Douglas et al. (2013) along with the weighted median stochastic model (from
LLH testing) including their variabilities.

demonstrates that at least some of the large variability in the em-
pirical models of Douglas et al. (2013) is due to mixing data from
various sites when deriving these models.

R E D U C T I O N O F E P I S T E M I C
U N C E RTA I N T Y

As highlighted by Douglas et al. (2013) the disadvantages of apply-
ing their empirical GMPE are twofold. First, the limited magnitude–
distance range means that application to rarer, but potentially dam-
aging events, is tenuous and, secondly, the aleatory variability as-
signed to their equation was strongly contaminated by epistemic
uncertainty from combining several regional data sets (e.g. due to
differences in seismicity and attenuation). Effectively, the empirical
model can be thought of as a mixture model: comprising several
different sets of source and propagation behaviour, but without con-
sideration of the increased sigma relative to a predictive relation.
Nevertheless, it is not trivial to isolate such effects given limited
recordings. Douglas et al. (2013) suggest that to reduce the uncer-
tainty, stochastic simulation models can be used. Of course, such
models are not without uncertainty outside their ‘calibrated’ model-
space: the magnitude and distance range over which the simulation
model can be tested against recorded seismograms. However, unlike
empirical models, due to their physical basis, alternative models can
be easily developed to cover the epistemic uncertainty outside the
magnitude range available in instrumental databases. For this pur-
pose, Douglas et al. (2013) provided 36 GMPEs to cover a range of
simulation parameters: with various κ , Q and �σ . A further benefit
of testing and weighting simulation models, as performed here for
Cooper Basin, is that it can help to limit the influence of epistemic
uncertainty contamination related to mixing different sites.

The analysis undertaken here showed that the stochastic models
can be selected based on spectral analysis, or on LLH testing. Four
stochastic models performed well in LLH testing, whist also having
stochastic model parameters consistent with the results of spectral
analysis: Models 31, 23, 19 and 35. These models, along with
the empirical model of Douglas et al. (2013) and the best-fitting
empirical model just using the Cooper Basin data are shown in

Fig. 4(a). We see that the preferred stochastic models are similar to
the empirical model based on Cooper Basin data (eq. 4), while the
best-fitting model for the data set shows a slightly faster decay. By
producing weights following Scherbaum et al. (2009) the resulting
weighted median stochastic model (from all 36 weighted component
models) is shown in Fig. 4(b). The weighted median model leads to
lower PGA at M < 3 (up to a factor of 1.5) than the empirical model
of Douglas et al. (2013), while the aleatory variability is reduced
by over 25 per cent.

C O N C LU S I O N S

In this study, we have taken an existing EGS site as a case study of
the proposals by Majer et al. (2012) and Douglas et al. (2013) to
characterize the expected ground motions. To simulate the realis-
tic temporal development of a seismic database and corresponding
earthquake catalogue, we randomly resampled the full databases to
one-half, one-quarter and one-eighth of the full data set. Following
the approach of Douglas et al. (2013), we then developed weighted
median models to describe the subdata sets. It was found that both
spectral analysis for the stochastic model parameters and residual
analysis provided complementary results, with the highest weighted
models from Douglas et al. (2013) consistent with both existing lit-
erature and values determined here. Using the LLH method, we
were able to automatically assign weights using a consistent and
transparent approach. The resulting models were shown to signif-
icantly reduce the epistemic uncertainty related to ground-motion
prediction for EGS projects.
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