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NONLINEAR ALTERNATIVE: APPLICATION
TO AN INTEGRAL EQUATION
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Abstract. We prove the existence of solutions to an integral equation
modeling the infiltration of a fluid in an isotropic homogeneous porous
medium.

Let us consider the mathematical theory of the infiltration of a fluid
from a cylindrical reservoir into an isotropic homogeneous porous medium.
Describing this phenomena in the Boussinesq model (see [1]), we are led to
the nonlinear integral equation (see also [5])

(1) u2(t) = L(t) +
∫ t

0
K(t− s)u(s)ds, t ∈ R+,

where K and L are known smooth functions depending on physical param-
eters. The unknown function u denotes the height of the percolating fluid
above the horizontal base, multiplied by a positive factor. This is the reason
why, from the physical point of view, nonnegative solutions of (1) are most
interesting.

Our analysis of equation (1) is based on the following (see [3, 4]):
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Nonlinear alternative. Assume that O is an open subset of a convex set
S in a Banach space. Let A : cl(O) → S be a compact map and assume
that 0 ∈ O. Then either A has a fixed point in cl(O) or there is a point
x ∈ ∂O and an λ ∈ (0, 1) such that x = λAx.

We denoted by cl(O) and ∂O the closure and respectively the boundary
of the open set O.

Theorem. Assume that K ∈ C1(R+,R+) is nondecreasing and that L ∈
C1(R+,R+) is nondecreasing with L(0) = 0. Then (1) has a solution u(t)
on R+ with u(t) ≥ 0 for t ∈ R+.

Proof. Let us consider the integrodifferential equation

(2) x′(t) = L′(t) +K(0)w(x(t)) +
∫ t

0
K ′(t− s)w(x(s))ds, t > 0,

with the initial condition

(3) x(0) = 0,

where w ∈ C(R,R+) is the function

w(x) =

{√
x, if x ≥ 0,

0, if x < 0.

We shall establish a priori estimates, independent of λ, for the solutions
of the family of problems (0 ≤ λ ≤ 1)

(4.λ)

{
x′(t) = λ [L′(t) +K(0)w(x(t)) +

∫ t
0 K

′(t− s)w(x(s))ds],
x(0) = 0,

considered on the interval [0, 1].
Let D+f denote the right upper Dini derivative of the function f .
If x(t) is a solution to (4.λ) on [0, 1], let y(t) =

√
|x(t)|, t ∈ [0, 1]. We

have then that

(D+y2)(t) := lim sup
h→0+

y2(t+ h)− y2(t)
h

≤ |x′(t)|, 0 < t < 1,

as
y2(t+ h)− y2(t)

h
=
|x(t+ h)| − |x(t)|

h
≤ |x(t+ h)− x(t)|

h
, 0 < t < 1.

Taking into account (4.λ), we obtain

(D+y2)(t) ≤ L′(t) +K(0)y(t) +
∫ t

0
K ′(t− s)y(s)ds, 0 < t < 1.
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Let us now denote

θ(t) := L(t) +K(0)
∫ t

0
y(s)ds+

∫ t

0
{
∫ s

0
K ′(s− τ)y(τ)dτ}ds, 0 ≤ t ≤ 1.

By the above we have that

(D+y2)(t) ≤ θ′(t), 0 < t < 1,

or, equivalently, (
D+(y2 − θ)

)
(t) ≤ 0, 0 < t < 1.

We infer from this inequality by continuity that the function (y2 − θ) is
nondecreasing (cf., e.g., [2]). Hence

y2(t)− θ(t) ≤ y2(0)− θ(0) = 0, 0 ≤ t ≤ 1,

that is,

y2(t) ≤ L(t) +K(0)
∫ t

0
y(s)ds+

∫ t

0
{
∫ s

0
K ′(s− τ)y(τ)dτ}ds, 0 ≤ t ≤ 1.

Let us define

V (t) = 1+L(1)+K(0)
∫ t

0
y(s)ds+

∫ t

0
{
∫ s

0
K ′(s− τ)y(τ)dτ}ds, 0 ≤ t ≤ 1.

We have then that 1 ≤ V (t) and y2(t) ≤ V (t) on [0, 1].
Observe that

V ′(t) = K(0)y(t) +
∫ t

0
K ′(t− s)y(s)ds, 0 ≤ t ≤ 1,

thus

V ′(t) ≤ K(0)
√
V (t) +

∫ t

0
K ′(t− s)

√
V (s)ds, 0 ≤ t ≤ 1,

and since V (t) ≥ 1 on [0, 1] is nondecreasing, we obtain that

V ′(t)
2
√
V (t)

≤ 1
2
K(0) +

1
2

∫ t

0
K ′(t− s)ds =

1
2
K(t), 0 ≤ t ≤ 1.

Note that √
V (0) ≤ 1 + L(1)

and therefore an integration yields√
V (t) ≤ 1 + L(1) +

1
2

∫ t

0
K(s)ds, 0 ≤ t ≤ 1.

Recall that y2(t) ≤ V (t) on [0, 1] so that

(5)
√
|x(t)| ≤ 1 + L(1) +

1
2

∫ t

0
K(s)ds.

Put P 2 = 1 + L(1) + (1/2)
∫ 1

0 K(s)ds, P > 0.
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Let us denote ||v|| = sup0≤t≤1 {|v(t)|} for v ∈ C[0, 1] and let X be the
Banach space {x ∈ C1[0, 1] : x(0) = 0} with the norm ||x||1 = ||x|| + ||x′||
for x ∈ X.

Observe that the linear operator D : X → C[0, 1] defined by Dx = x′ has
a bounded inverse D−1.

Denote by F : X → C[0, 1] the operator

Fx(t) = L′(t) +K(0)w(x(t)) +
∫ t

0
K ′(t− s)w(x(s))ds], 0 ≤ t ≤ 1,

and define A : X → X by Ax = D−1Fx for x ∈ X. It is clear that A is a
compact operator.

Let us consider the open set

O = {x ∈ X : ||x||1 < 1 + P + sup
0≤t≤1

{L′(t)}+K(1)
√
P}.

By (5) we have that there is no point x ∈ ∂O such that for some λ ∈ (0, 1)
we have x = λAx (if x ∈ X satisfies equation (4.λ) for some λ ∈ (0, 1), then
||x|| ≤ P and

||x′|| ≤ sup
0≤t≤1

{L′(t)}+K(0)
√
P +

√
P

∫ 1

0
K ′(1− s)ds

≤ sup
0≤t≤1

{L′(t)}+K(1)
√
P ).

We deduce by the Nonlinear alternative that A has a fixed point in
cl(O), that is, there is a solution x(t) on [0, 1] to the problem (2)–(3). Since
x(0) = 0 we obtain from the form of (2) that x(t) ≥ 0 on [0, 1] so that, if
we let u(t) =

√
x(t), 0 ≤ t ≤ 1, we have

2u(t)u′(t) = L′(t) +K(0)u(t) +
∫ t

0
K ′(t− s)u(s)ds, 0 ≤ t ≤ 1,

and an integration yields (u(0) = 0 and L(0) = 0)

u2(t) = L(t) +
∫ t

0
K(t− s)u(s)ds, 0 ≤ t ≤ 1.

We proved that (1) has a solution u(t) on [0, 1] with u(t) ≥ 0 for all t in
the interval [0, 1].

Let

x1 = lim
t→1

u2(t) = u2(1).
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As before, we show that the integrodifferential equation

z′(t) =L′(t) +
∫ 1

0
K ′(t− s)u(s)ds+K(0)w(z(t) + x1)

+
∫ t

1
K ′(t− s)w(z(s) + x1)ds, t ≥ 1,

with initial condition
z(1) = 0

has a solution z(t) on [1, 2] and that z(t) ≥ 0 on [1, 2].
Let us extend u(t) to [0, 2] by letting

u(t) =
√
z(t) + x1, 0 ≤ t ≤ 2.

The so-defined u is a solution of (1) on [0, 2].
Continuing this way, we construct a solution of (1) on R+ which is non-

negative on R+.

The equation (1) was also considered in [5] under the assumption that
the function r → L(r)/

√
r is nondecreasing and convex on (0,∞). We can

easily find examples of functions L such that to the corresponding equation
(1) our theorem is applicable and the results of [5] are not.
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Math. 282 (1976), 983–985.
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CH–8057, Switzerland


