Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability

Montecucco, Fabrizio ; Vuilleumier, Nicolas ; Pagano, Sabrina ; Lenglet, Sébastien ; Bertolotto, Maria ; Braunersreuther, Vincent ; Pelli, Graziano ; Kovari, Enikö ; Pane, Bianca ; Spinella, Giovanni ; Pende, Aldo ; Palombo, Domenico ; Dallegri, Franco ; Mach, François ; Roux-Lombard, Pascale

In: European Heart Journal, 2011, vol. 32, no. 4, p. 412-421

Ajouter à la liste personnelle
    Summary
    Aims Anti-Apolipoprotein A-1 auto-antibodies (anti-ApoA-1 IgG) represent an emerging prognostic cardiovascular marker in patients with myocardial infarction or autoimmune diseases associated with high cardiovascular risk. The potential relationship between anti-ApoA-1 IgG and plaque vulnerability remains elusive. Thus, we aimed to investigate the role of anti-ApoA-1 IgG in plaque vulnerability. Methods and results Potential relationship between anti-ApoA-1 IgG and features of cardiovascular vulnerability was explored both in vivo and in vitro. In vivo, we investigated anti-ApoA-1 IgG in patients with severe carotid stenosis (n = 102) and in ApoE−/− mice infused with polyclonal anti-ApoA-1 IgG. In vitro, anti-ApoA-1 IgG effects were assessed on human primary macrophages, monocytes, and neutrophils. Intraplaque collagen was decreased, while neutrophil and matrix metalloprotease (MMP)-9 content were increased in anti-ApoA-1 IgG-positive patients and anti-ApoA-1 IgG-treated mice when compared with corresponding controls. In mouse aortic roots (but not in abdominal aortas), treatment with anti-ApoA-1 IgG was associated with increased lesion size when compared with controls. In humans, serum anti-ApoA-1 IgG levels positively correlated with intraplaque macrophage, neutrophil, and MMP-9 content, and inversely with collagen. In vitro, anti-ApoA-1 IgG increased macrophage release of CCL2, CXCL8, and MMP-9, as well as neutrophil migration towards TNF-α or CXCL8. Conclusion These results suggest that anti-ApoA-1 IgG might be associated with increased atherosclerotic plaque vulnerability in humans and mice