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Introduction

In this article we extend the study of 'plumbing' initiated in [10] to the case of
fibred even-dimensional knots. Plumbing is a geometric operation on the fibre-surfaces
of two fibred knots of the same dimension that produces another such knot.

All knots obtained in this way are 'free' (i.e. simple in a strong sense) (cf. § 1) and
non-spherical knots occur. We classify these fibred free even-dimensional knots
algebraically by means of equivalence classes of triples of matrices (cf. § 2). This
classification is due to Kojima[7] in the case of spherical knots but some of our proofs
differ from [7].

As a result of the classification, we show that there are exactly 4 types of nontrivial
knots of smallest possible rank.

In § 3 we define the concept of plumbing for even-dimensional knots, characterize
the triples of matrices associated with knots obtained by plumbing (Theorem 3-4) and
show that there exist infinitely many free fibred knots that are NOT obtained by this
process (Theorem 3-6).

Spinning an odd-dimensional simple fibred knot K produces an even-dimensional
free fibred knot cr(K) (cf. § 4). We compute the matrix triple associated to such a spun
knot and recover in this context a result of C. Kearton[4]. In particular we show that
if K is obtained by plumbing, so is the spun knot o-(K).

1. Definitions

All manifolds considered are differentiable; q will always denote an integer ^ 4.
A (2q)-dimensional knot is a closed oriented submanifold K of dimension 2q of the

oriented (2q + 2)-dimensional sphere #2«+2 such that K is (q- 2)-connected.
The knot K is called spherical if K is homeomorphic to 82*1.
K is a, free knot if n^S^+^K) ^ n^S1) iori^q-1 and ng(S^+2\K) is a torsion-free

abelian group.
It is well known that every (2^)-dimensional knot K bounds a Seifert surface V, i.e.

a (2q + l)-dimensional oriented submanifold of S^+z. The normal bundle to V in S2**2

is trivial and there are two maps i+ (resp. i_): V -»• )S
29+2\ F obtained by pushing points

of V in the positive (resp. negative) direction of this bundle.
A free Seifert surface V for K is a (q— l)-connected Seifert surface such that

nq( V) ~ Hq( V) is a free abelian group.

LEMMA 1-1. K is a free knot if and only if K admits a free Seifert surface.
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118 D A N I E L L I N E S

Proof. Let K be a free knot and V be a Seifert surface for K. By ([8], theorem 2) we
may suppose that V is (q- l)-connected; ([8], lemma 3) implies that

are injective. ([5], p. 246) shows that under these circumstances the torsion subgroups
of 7Tq(S^+2\K) and Hg{S*+2\V) are isomorphic, hence V is (q- l)-connected and Hq(V)
is free abelian.

Conversely, suppose that K admits a free Seifert surface V. Let £ be the infinite
cyclic cover of K and set Y = >S2«+2\ V. The standard construction of JT from copies of Y
implies that n^S^+^K) is isomorphic to n^S1) for i < q - 1 (cf. [6], § 2). By Alexander
duality and universal coefficients Hq(Y) is a free abelian group; the kernels of
i±: Hq(V) -+Hq(Y) are therefore generated by indivisible elements. Applying ([8],
lemma 3) to these elements, one gets a new free Seifert surface V for K such that
i±: Hq( V) -> fir

9(5
2«+2\ V) are both injective. The argument of ([5], p. 246) shows again

that nq(S^+2\K) is torsion-free.
Let TK be the tubular neighbourhood of K; TKia a, trivial disc bundle over K.

Definition. K is fibred if there is a trivialization O: IV-> iiT xZ)2 such that
pr2oQ>: dTK -+ S1 extends to a locally trivial fibration of S^+2\TK over S1. The inverse
image of a point is (after collaring) a Seifert surface for K called the fibre-surface.

Note that if K is a free fibred knot and F is the fibre-surface, F is necessarily a free
Seifert surface for K since F has the homotopy type of the infinite cyclic cover XoiK.

Using Lefschetz duality and universal coefficients one easily proves the following:

LEMMA 1-2. If K is a (2q)-dimensional knot bounding a free Seifert surface V, then:
(i) Sk{K) = Ofor 0 < k s£ q-2 andq + 2 ^ k < 2q,
(ii) ffk(V) = Sk{V) = Ofor k < q-i and k > q+2.

Hk( V) and Hk( V) are free abelian for k= q,q+ 1.

Remark. By a theorem of Smale [12], V is obtained from the disc Z)29+1 by attaching
handles of index q and q + 1.

The following lemma is proved using Alexander duality.

LEMMA 1 • 3. Let Vbe a free Seifert surface in S29*2 and Wbea tubular neighbourhood of V.
Set W = S^+2\W. The two linking forms

L:Hq(W)xHq+1(W')->I,

L':Hq(W')xHq+1(W)-+Z,

are unimodular, in particular Hq(W) and Hq+1(W) are free abelian groups.
The following bilinear forms are attached to a free Seifert surface V: the intersection

form

the (homological) Seifert forms

A+: Hq(V) *Hq+1(V) -> Z (x; y) -+ L(x; i+

A_: Hq(V) *Hq+1(V) -> Z (x; y) -* L(x; i_

Note that I(x; y) = L(x; i+y-ijy) = A+(x; y)-A_(x; y).
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On even-dimensional fibred knots obtained by plumbing 119

LEMMA 1-4. Let K be a (2q)-dimensional knot bounding a free Seifert surface V tvith
intersection form I; then K is spherical if and only if I is unimodular.

Proof. Consider the two relative intersection forms of F

J:Hg(V)xHg+1(V;8V)->l,

J':Hq(V;8V)xHq+1(V)-+l.

Since Hq(V) and Hq(V; dV) are free abelian, Lefschetz duality implies that J and J'
are unimodular. Furthermore I(x; y) = J(x; py) = J'(p'x; y) where

P-Hq+1(V)^Hq+1{V;8V) and p': Hq(V)-* Hq(V; 8V)

are the natural maps. This shows that / is unimodular if and only if p and p' are
isomorphisms. The long exact sequence of the pair (F; 8V) shows that the latter is
equivalent to Hk(K) = 0 for g - 1 ^ k ^ q+1. Since q ^ 3, this condition is satisfied if
and only if K is homeomorphic to S29.

LEMMA 1-5. Let V be a free Seifert surface in /S2«+2. Then i±: Hk( V) -> Hk(S^+!i\V) are
isomorphisms for k = q, q+ 1 if and only if A+ and A_ are unimodular.

Proof. t±: Hq+1{V) -> Hq+1(S^+2\V) are isomorphisms if and only if

A±{x; y) = L(x; i±y)

are unimodular forms, by Lemma 1-3. Conversely if A+ and A_ are unimodular, to
show that i±: Hq(V) -*• flr

g(/S
2fl+2\F) are also isomorphisms, consider the equality

L'(i±x; y) = L(x; i^y) = A^(x; y)

and recall that L' is unimodular.

PROPOSITION 1-6. Let Kbea (2q)-dimensional knot bounding a free Seifert surface V
and let A+ and A_ be the associated Seifert forms. Then K is fibred tvith fibre-surface V if
and only if A+ and A_ are unimodular.

Proof. If K is fibred with fibre-surface F, i+ and i_ are homotopy equivalences and
induce isomorphisms in homology. Lemma 1-5 shows that A+ and A_ are unimodular.
Conversely if ̂ 4+ and A _ are unimodular i±: Hk(V) -> H^S^+^V) are isomorphisms for
all k. Denote by Tv a tubular neighbourhood of F in S%>+2. Since F and 8*+2\fy are
simply connected, the A-cobordism theorem implies that S*i+2\Ty is diffeomorphic to
V x [0,1]. This shows that K is fibred with fibre-surface F.

We now recall the definition and some properties of the homotopy linking number.
Let/: iS«+1 c> S29*2 and g: S9+1 c> S29*1 be two embeddings with disjoint image. Since

g(S9+1) is unknotted in £2«+2, 7rg+1(<S29+2\sr((Sf«+1)) is isomorphic to ng+1(S
9) which is

cych'c of order 2. Consider [f]enq+1(S
2Q+2\g(S'l+1)) and define the homotopy linking

number £P{f; g) to be 0 if/represents the trivial element, 1 otherwise. It can be shown
that JS? is symmetric in /and g.

LEMMA 1-7. (i) Letf,g: S9+1 Q. (S29"*"2 be embeddings with disjoint image, let

A: D«+2 c» S^+2

be an embedding such that A13Da+2 = g and such that A is in general position withf. Let A be
a (2q + 2)-ball in /S24"1"2 engulfing the intersections of A and f such that

A(A) = A(D«+2) n A is a properly embedded (q + 2)-disc,
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120 D A N I E L L I N E S

and A(/) = f(S9+1) n A is a properly embedded (q+ \)-disc.

Consider [8A(f)] as an element of 7rg(dA\dA(A)) ~ 1/2; then £f(f; g) and
represent the same element in 2/2.

(ii) Let F,G: D9+2 c» D2q+S be proper embeddings such that F\8Dq+2 = f, G\dD«+2 = g
and suppose thai, F(D9+2) n G{D*+2) = 0 ; then 3?(f; g) = 0.

Proof, (i) Since q > 3, the sphere pairs (£2«+2; g(S9+1)) and {8A2q+2; 0A(A)) are
unknotted, so that S*+*\g(8<'+1) (resp. dA\5A(A)) has the homotopy type of /S«+x

(resp. Sq). There is a suspension isomorphism 7rg(SA\dA(A)) -> 7rg+1(*S29+2\g'(/S9+1)) which
sends the homotopy class of 8A(f) to the homotopy class of/. This shows that J?(f; g)
and dA(/) correspond to the same element of 1/2.

(ii) The inclusion of S2«+2\g(&+1) in D2q+3\G(Dq+2) gives an exact sequence:

ng+1(D*>+3\G(D«+2)).

Since q > 3, the ball pair (Z)2«+3; (?(Z)«+2)) is unknotted, i , is an isomorphism and 8 is
the zero homomorphism. F represents an element in 7rg+2(D

2«+3\Gr(Z)9+2); *"?2«+2\<7(/Sar+1))
and clearly 8[F] = [/] . This shows that .£?(/; g) = 0.

Let K be a 2g-dimensional knot bounding a free Seifert surface V and let x and y be
elements ofnq+i(V). Since g ^ 4, we can represent x and y by embeddings

V

(cf. [2]). Sets#{x; y) = ^ ( 0 X ; i+o<fiv). This defines a bilinear map

j/:nq+1{V)xng+1(V)-+Z/2

and induces a bilinear form over F2 on the F2-vector space nq+1( V) ® F2, which we still
denote by s4 and call the homotopy Seifert form of V.

A theorem of Whitehead ([14], chapter XII, theorem 3-12) shows that the following
sequence is exact:

0 -> Ha( V)/2Hg( V) 17ra+1( V) i Hq+1( V) -* 0,

where h is the Hurewicz map and y is defined as follows: let t)0: S
9+1 -> SQ represent

the non-trivial element of 7rq+1(S
9), and let / : <S9-> V represent any element a of

Hg(V)/2Hg(V). Set 7j(a) to be the homotopy class of/o3/0.
Let

{ak} k = 1, ...,r be a Z-basis of Hg(V),

and fif be any lift of yff, in nq+1( V). Set ajf = ^(aA). nq+1( V) ® F2 is a F2-vector space of
dimension r + s with basis {<zj?; /?f}. Define a n s x s matrix B with coefficients in F2 by
the formula Bti = s/{fif; fif).Ho simplify the notation we denote by the same symbol
a bilinear form and its matrix with respect to a given basis.

LEMMA 1-8. The matrix of the ¥2-bilinear form s/ with respect to the basis above is

Proof. Suppose that x and y in ng+l( V) are represented by <f>x and <j>y: S
q+1 -> F where

4>x=fx°Vo a n ^ fx'-8" <+ V, <f>v:S
q+1<+ V are embeddings. The Whitehead exact
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On even-dimensional fibred knots obtained by plumbing 121

sequence applied to the space SZq+2\i+(j>v{S(l+1) shows that T\ sends the homology class
carried byfx(S

Q) to the homotopy class of (j>x, therefore

j * ( * ; y) = L(fx(S
9); i+ <f>v(S

9+i)) (mod 2)

where L denotes the ordinary linking number in S2q+Z. I t is then easy to see that
s/(af; af) = Oand^/(af; fif) = -4+(af; /?y) (mod 2). Pushing the representatives of the
homotopy classes in the negative direction of the tubular neighbourhood of V and
applying the same argument shows that s/(fif; a*f) = A_(acy, PL) (mod 2).

Recall that C. T. C. Wall ([13], p. 256) has defined a generalized intersection number
•?'• nq+i(V) xnq+i(V) "*• nq+i(Sa) — 2/2. In exactly the same way one can define a
relative bilinear map J: nq+1(V) Xff?+1(F; 8V) -^ng+1(S

9). These two maps induce
bilinear forms over F2:

F2 -> F2,

; 8V) ® F2 -> F2.

Remark \-§.J and £ can be computed as follows (cf. [7], lemma 1). Represent x and y
in nq+1( V) by embeddings/, g: S9+1 c> V in general position and engulf their intersection
in the interior of a (2^+1)-ball A contained in F such that A(/) =/(*Sf«+1) n A and
A(j?) = g(Sq+1) n A are properly embedded discs; #A(/) is an element of

~ 1/2.

Then J{x\ y) and d&(f) correspond to the same element in Z/2. The procedure for £ is
the same except that y is represented by a properly embedded disc in V.

LEMMA 1-10. The following properties hold:

(i) y(x; y) = J{x\ py) where p: nq+1(V) -» 7Tq+1(V; 8V) is the natural map.
(ii) J = jtf-j4T.
(iii) # is non singular.

Proof, (i) Is evident from Remark 1-9.

(ii) Let x and y be elements of nq( V); we have

(*/-sfT)(x; y) = J2?(*; i+y)-&{y, i+z) = &(x; »+y-t_y).

Let /„.,/„: <S«+1 c» F represent a; and y and let A be a (2q+ l)-ball in V engulfing all
intersections of fx and/ y such that A(/I) =/x(£8+1) n A and A(/u) = fv(8«+1) n A are
properly embedded (q + 1 )-discs. Thicken A to a (2q + 2)-ball A' along the normal bundle
to V and denote by G the cylinder spanning i+fy(S

9+1) and i^fv(S
9+1) in the tubular

neighbourhood of F. By deleting a neighbourhood of an arc joining i+fv{S9+1) to
i-fv(S

9+1) and missing fx(S
9+1) one produces a (g + 2)-disc D such that

Lemma 1-7 shows that SC{x; i+y — i_y) is represented by &(fx) in 7rff(3A'\3A' fl D) and
Remark 1-9 that y(x;y) is represented by A(/j) in 7rQ(0A\dA fl D). Since the two pairs
(dA; BA n #) and (9A'; 8A' n -D) are unknotted the inclusion of 8A\8A oDin 8A'\dA' 0 D
induces an isomorphism between the homotopy groups. This proves that
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122 DANIEL LINES

(iii) Using ([14], chapter VII, theorem 7-12) one sees that7Tk(V; 5F)isisomorphicto
7Tk( V/8 V) for k < q + 1. Therefore there is a relative Whitehead exact sequence

0^Hg(V;8V)/2Ha(V;dV)^7rg+1(V;dV)->Hg+1(V;dV)-+0.

The following diagram of F2 vector spaces clearly commutes:

0 -» Hq(V; 8V) <g> F2 -> nq+1(V; dV) ® F2 -> #a + 1(F; 3F) ® F2 -> 0
| ad^ ' jadLC 4-adJ

0 «- Horn (#9+1( F); F2) +- Horn (nq+l( V); F2) <- Horn (#9( F); F,) «- 0

Since ad J and ad </' are isomorphisms, so is ad £.

2. Classification of free fibred knots

Let K be a 2gi-dimensional free fibred knot with fibre-surface F and infinite cyclic
cover X. F and ^have the same homotopy type and Hq(F) is isomorphic to H^S^+^F)
which is dual to Hq+1(F) (Lemma 1-3).

Definitions. The integer r = rank Hq(F) = rank Hq+1(F) = rank Hq(X) depends on K
only and is called the rank of the free fibred knot K.

Denote by Mr(R) the set of r xr matrices over a ring R. A Seifert triple is a triple of
matrices (A+; A_; B) where A+,A_eMr(l) and BeMr(F2). Such a triple is called
unimodular i£A+ and A _ are unimodular. Two triples (A+; A_;B) and (A'+;A'_; B') are
equivalent if there exist X,ZeGLr(Z) and Y e J^.(F2) such that:

(a) XTA+Z = A'+ and JTr^4_Z = A'_,

... (x Y\T/o 4+w.x: y\ / o A'.\
( 6 M 0 z) \AT B ) ( O 7) = MM* R'J o v e r F 2 -

This is clearly an equivalence relation.
THEOREM 2-1. (Classification theorem). For q $s 4, iAere is o one-to-one correspondence

between:
(i) isotopy classes of (q — l)-connected (2q + l)-submanifolds of /S29"1"2 such that:

Hq(F) is free abelian, K = 8F is non-empty and (q — 2)-connected, K is fibred and F is
a fibre-surface for K;

(ii) isotopy classes of (2q)-dimensional free fibred knots;
(iii) equivalence classes of unimodular Seifert triples.

The correspondence associates to a representative F of the isotopy class in (i): the
isotopy class of 8F for (ii); the equivalence class of the Seifert triple (A+; A_; B) con-
structed as follows: Choose bases {<xk} for Hq(F), {/?,} for Hq+1(F) and lifts fif in nq+1(F)
and set (A+)i} = A+(at; fl,), {A_)ti = A_(at; /?,), Bi} = s/(fif; fif).

We decompose the proof of this theorem in a series of lemmas.

LEMMA 2-2. Let F be the fibre-surface for a free fibred knot in <S29+2 and let {ak}, {fik} and
ia'k}> {fik}' k = 1, ...,rbe two bases of Hq(F) and Hq+1(F) respectively with lifts fi$ and filf
in nq+1(F). Then the associated Seifert triples are equivalent.

Proof. Let X (resp. Z) be the unimodular matrices expressing a'k (resp. fl'k) in terms
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On even-dimensional fibred knots obtained by plumbing 123

of ak (resp. fik). The matrix expressing the basis {a'k
ff 0'k

#} of ng+1(F) ® F2 in terms of

( X Y\I for some YeMr(F2). This shows that

A'± = XTA±Z and rf' = VTs4TJ.

LEMMA 2-3. Two isotopic free surfaces of a free knot have equivalent Seifert triples.

Proof. The isotopy induces isomorphisms between the homology and homotopy
groups of the two surfaces. The Seifert triples computed with respect to corresponding
bases will be the same.

The proof of theorem 3 of [7] applies without change to the following lemma:

LEMMA 2-4. Let K be a free knot and let V and V be two free Seifert surfaces for K with
equivalent Seifert triples, then V and V are isotopic.

LEMMA 2-5. Let Kbea 2q-dimensional free fibred knot, and let F and F' be two fibre-
surfaces for K. Then F and F' are isotopic.

Proof. Unfortunately the argument given in ([7], lemma 4) breaks down if the
intersection forms of F and F' are degenerate. One must instead consider the homology
and homotopy Blanchfield pairings of K (cf. [3]):

< ; >: Hq(t) xHa+1(X) -

These pairings can be computed using the surfaces F and F' (cf. [3], § 11): If (A +; A _; B)
and (A'+; A'_; B') are the corresponding Seifert triples, then: (t- \)(tA+-A_)-x and
(t-1) {tA'+-A'_)~l are matrix representatives of <; >;

-*?*)-1 and («-

are matrix representatives of [;].
These pairings depend on K only. Viewing Hk(X) k = q,q+la&& free abelian group

and ng+1(X) ® F2 as a finite dimensional F2-vector space we see that there must exist
unimodular matrices -X" and Z and a F2-matrix Y such that:

(t-l)Z-1(tA+-A_)-lX~T = (t-l)(tA'+-A'_)-1 over Q[t; t^

^'T)-1 over F,(0/F8[«;

Set A(<) = det(tA+-A_). These equations are in fact valid over I[t; t'1]/^) and
F2[<; «-x]/(A2) respectively. Since A is a monic polynomial, we can apply the arguments
of [(9], proposition 2) to conclude that (A+; A_; B) and (A'+; A'_; B') are equivalent
Seifert triples. Lemma 2-4 shows that F and F' are isotopic.

To prove the realization part of the theorem we need some of the information given
in the following lemma, the full content of which will be used in the next section.

LEMMA 2-6. Let V be a free surface for a 2q-dimensional knot and let k be an integer. Then
for all (M*; v#)enq(V; dV) X7rg+1(F; dV) there are proper embeddings

fu:(L*;dD<>)c>(V;dV) and f
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124 DANIEL LINES

Inessential discs

Fig. 1

and an embedding g: D2q+1 c» V such that-.fJ^D9) andfv(D
9+1) intersect in V in exactly k

points, f^D9) andf^D9) are contained ing(D29+1), 8 V n g(D2Q+1) is a tubular neighbourhood
ofUBD*) Vfv(8D9+i) (cf. Fig. 1).

Proof. Since q > 4 and (V; 8 V) is a (q— l)-connected pair, we may represent u and v
by proper embeddings/^ and/^ intersecting in a finite number of points (say I). Con-
struct I— 1 properly embedded g-dimensional discs that intersect each f'v{D9+l) in 1
oriented point in V and compress to 8V (cf. Fig. 1). Tube these discs together and to
fuiD9) inside 8V to produce a properly embedded disc still representing u. Apply the
Whitney trick to reduce the geometric intersection number to 1. Let/£ and/J denote
the new embeddings and let Tu and Tv be their tubular neighbourhoods. Tu U Tv is an
embedded (2q + l)-disc with corners. Construct again k — 1 g-dimensional discs inter-
secting/^ in one oriented point inside Tv which compress to 8 V and tube them together;
choose two arcs with the same end points connecting these discs tofu^D9) one of which
is in 8 V and the other in Tu u Tv. The union of these two arcs bounds a 2-disc which can
be fattened to a (2q+ l)-dimensional disc A. The union of A and Tu U Tv is again a
(2q + l)-disc inside which Whitney trick can be applied to get the desired result.

LEMMA 2-7. For each Seifert triple (A+; A_; B) and each q ^ 4 there exists a free Seifert
surface V in S20*2 which realizes (A+; A_; B).

Proof. (By induction on the dimension d of the matrices). For d = 0, V is a (2q+ 1)-
dimensional disc. If d ^ 1 let Vo be a free Seifert surface realizing (^1^., A°_; B°) where X°
denotes the upper left d xd corner of the matrix X. Set

, yt - yJ 2+

A_ =
JB°

c d

ba

e

Let{ai}(resp.{/ffi})beabasisof^(F0) (resp.F
Since

J:Hg(V0)xHQ+1(V0;8V0)^Z

and J': Hq(V0; 8V0) xHq+1(V0) -> Z

o))^ = 1,..., d, with lifts fif e nQ+,(V0).
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On even-dimensional fibred knots obtained by plumbing 125

are unimodular and f: nq+1(V0) ® F2 xnq+1(V0; 8V0) ® F2 -+ F2 is non-singular (Lemma
1-10), there exist ueHq(V0; 8V0) and v# enq+1{V0; 8V0) such tha t

= xf

and

By Lemma 2-6 we can represent u and «# by proper embeddings fu: D9 c» 70,
/„: Z)«+1 <v 70, such t h a t / u and/,, intersect in z+ - z _ points. Let gu: D* <+ S^+2\V0 be an
embedding such tha t 8V0 n ^(-D9) = g^D9) = fu{8D"). Thicken gru(Z)«) to a ^-handle of
dimension 2q+l meeting 70 in a tubular neighbourhood of/u(SD«) and denote by V the
union of Fo and this handle. Note tha t i±: Fo -^ «2«+2\F0 extend to maps t±: 7 ' -> -S2«+2\ 7 ' .
We can find an embedding gv: Ds+ 1 c> 52«+ 2\7' such tha t :

8V' ngv(D«+1) =

L(SU; i+pt) = 2/i1",

m_at\ 8V) = Xf1",

JS?(i_/!f; St) = bt,

L(8U; i+Sv) = z+,

where 8U = gu(D«) U/U(X>«), <S, = ^(ZW+1) U/C(Z>«+1).

Consider a tubular neighbourhood T,, of <SB in AS23"1"2: TC is a trivial (q + l)-disc bundle
over 89+1 and i+|/B(Z>9+1) is a section of the associated sphere bundle overfv(D

9+1). The
extensions of this section to a section over 8V are in one-to-one correspondence with
elements of nq+1(S

9) ~ 2/2. Consider the section corresponding to e e F2; the orthogonal
complement to this section gives a (q + l)-handle attached to V. Let 7 be the union of
V and this handle. Lemma 1-10 shows that 7 has Seifert triple (A+; A_; B).

The proof of Theorem 2-1 is straightforward from the preceding lemmas.
Using Theorem 2-1, it is easy to classify free fibred (2g)-dimensional knots of rank 1.

LEMMA 2-8. There are exactly 4 types of free fibred knots of rank 1, corresponding to the
equivalence classes of Seifert triples

(1; l ; 0 ) ~ ( - l ; - l ; 0 )

(1; 1 ; 1 ) ~ ( - 1 ; - 1 ; 1 )

(1; - l ; 0 ) ~ ( - l ; l ; 0 )

(1; - 1 ; 1 ) ~ ( - 1 ; 1 ; 1 ) .

Definition. In analogy with [10], §2, we call these knots Hopf knots and their fibre-
surfaces Hopf bands.

3. Plumbing

Let Y be a disjoint union of copies of <S« xZ* and /S'-1 x ^ 1 and let/: Y c» 8D^+X

be an embedding.
Let K) and K2 be two free fibred knots bounding fibre-surfaces Fx and F2 in <S2a+2.

Divide 8^+2 into two hemispheres B1 and B2 intersecting in a {2q+ l)-dimensional
sphere S. Let ty: D^+1 c+ S be an embedding and suppose that:
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126
(i) FtS=Bt (.-=1,2),

V / 1 '' 2 1

(iii) 8Ft n \Jr(D2Q+1) = F2n

8F2 n ^•(Z)2«+1) = F10

DANIEL LINES

= ftof(Y)

(iv) the orientations of Fx and F2 match on

Fig. 2

Fig. 2 illustrates the situation. This construction is reminiscent of the generalized
plumbing for classical knots considered in [11], § 2.

LEMMA 3-1. F1 (J F2 is a manifold with corners.

Proof. Consider a collar C of ^(Z)2«+1) in F2: Gl = Ft U C is clearly a manifold with
corners. There is an embedding <f>: Y x[0,1] c, F2 such that <f>(Y x{0}) =f(Y);F2 cut
along <j>(Y x(0,1)) is a manifold with corners consisting of two components one of
which is i^(Z)29+1), denote by (?2 the other component. Fx U F2 can be viewed asG1\jG2

sewn along <f>(Y x{l}) and is therefore a manifold with corners.
Denote by F} • F2 the submanifold of S^+z obtained by smoothing the corners of

Fj u F2 (^i D F2 depends of course on ̂ , / a n d the decomposition of-S2*"1"2).

Definition. Ft D F2 is said to be obtained by plumbing together Fx and F2.

PROPOSITION 3-2. If K^ and Kt are free fibred knots with fibre-surfaces Fr and Fz,
K = 8^ D F2) is a free fibred knot with fibre-surface F1 a Fz. If (A%; At; Bi)i= 1,2
are Seifert triples for Fit Ft n F2 admits the Seiferl triple (A+; A_\ B) where either:

I*) A -

or ( ) A -A+-
1+ °

A -A - -

A -A - -

Al

0

for some integral matrices C+, G_ and some F2-matrix D.
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On even-dimensional fibred knots obtained by plumbing 127

Proof. Van Kampen and Mayer-Vietoris arguments show that K is (q — 2)-connected;
F = Fj^o F2ia clearly {q= l)-connected and

IIk(F) ~ H^FJ 0 Hk(F2) (k=l,q+l),
na+i(F) — nq+i(Fi) ® ^9+1(̂ 2) (using Whitehead's exact sequence).

So we may choose for F the bases corresponding to the direct sum decomposition and
represent these by embeddings in the relevant F{. Suppose that i+: F -> S^+^F pushes
all points of ^r{D^+1) into Bv The Seifert triple has the form given in (*) since i+(Fj) is
separated from F2 by a small push-off of the sphere S. Similarly if i+ pushes (̂Z)29"1"1)
into B2, (**) holds. Since det.4± = det A\ d e t ^ i , Proposition 1-6 shows that K is a
fibred knot with fibre-surface F.

Definition. A (2^)-dimensional knot K is said to be obtained by plumbing if there is a
sequence of (2q+ l)-manifolds Fo, Flt..., Fs embedded in S^+2 such that Fo = Z>2«+1,
8Fa = K and Fi+1 is obtained by plumbing together Ft and a Hopf band.

Remark. Kis& free fibred knot by Proposition 3-2.

Definition. A Seifert triple (T+; T_; B) is called triangular if T+ (resp. T_) is uni-
modular and upper (resp. lower) triangular.

LEMMA 3-3. Any triangular triple (T+; T_\ B) is equivalent to (T+; T_; B) where B is
upper triangular.

Proof. Since T+ and T_ are triangular and have + 1 in their diagonal, one can change
by row and colum operations B to an upper triangular matrix B without affecting
T+ and T_.

THEOREM 3-4. A free fibred knot is obtained by plumbing if and only if it admits a
triangular Seifert triple.

Proof. Let K be obtained by plumbing. We prove the theorem by induction on the
rank r of K. If r = 1, K is a Hopf knot. Let F' be the fibre-surface obtained by plumbing
together the r first Hopf bands. By induction F' admits a triangular triple (T+ ;T_;B')
Proposition 3*2 shows that plumbing a Hopf band of type (e+; e_; b) together with F'
produces a free Seifert surface with triple (A+; A_; B), where

A+ =

+ J

A =
T_

0

or A+ =

L xi

• T+

... xr

0

0

T_

0 ... 0

Vr
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128 D A N I E L L I N E S

In the second case perform column operations using e+ to annihilate (x1... xr) and row
operations using e_ to annihilate (yx... yT)T; this changes A+ (resp. A_) to an upper
(resp. lower) triangular matrix, so that (A+; A_\ B) is equivalent to a triangular triple.

Conversely suppose that K admits a triangular triple (T+; T_; B). We may assume
that B is upper triangular (Lemma 3-3) and we perform an induction on the dimension d
of the matrices. If d = 1, choose the Hopf band corresponding to the triple. If
d ^ 2 (T+; T_; B) is of the form

n

0 ... 0

xx

xa
T_ =

Vd

0

B =
B'

0 0

By induction there is a Seifert surface obtained by plumbing Hopf bands admitting
the triangular triple (T'+; T'_; B') with respect to some bases {a^}, {/?J and lifts flf,
i = 1,. ..,rf. Lemma 2-6 and the same argument as in theproofofLemma 2-7 show that
there are proper embeddings /„: Z>9 u F', fv: X>9+1 c> F' intersecting in e+ — el points
representing homotopy classes u# and v# such that

J(cti;

J'(hu#; fit) = yit

Furthermore, by Lemma 2-6 the image of these embeddings is contained in a (2g+ 1)-
disc A embedded in F' meeting dF' in a tubular neighbourhood of/u(&D«) and/r(3Z)9+1).
Thicken A on the negative side of F' to get a (2q + 2)-ball B; inside this ball attstch a
^-handle and a (q+ l)-handle as described in the proof of Lemma 2-7. The new surface
F admits (T+; T_; B) as a Seifert triple. The union of A and the two attached handles
forms a Hopf band of type (e+; e_; b0) which is plumbed together with F'. The classifi-
cation theorem shows that dF is isotopic to K.

Examples of spherical free fibred knots not obtained by plumbing

LEMMA 3-5. Let p be a prime, n a positive integer and et = ± 1 for i = 1,2. To any
solution of r

(*)

there correspond Seifert triples that are not equivalent to any triangular triple.

Proof. Let a be a solution of (*) and let a and ft be integers such that a™ = ex 4- apn,
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On even-dimensional fibred knots obtained by plumbing 129

a + l

0

0

-l)nap

P

a + l

o
0

P ^

' • • . P

0 a+l

a

0

P

o
o

p

0

P

0 a

and let B be any F2-matrix. det A+ — ev det A_ = e2 and det (A+ — A_) = 1. If
(A+; A_; B) were equivalent to a triangular triple (T+; T_; B') there would exist uni-
modular matrices X and Z such that XT(A+ -tA_)Z = T+- tT_ over Z[<]. Project this
equality to ¥p[t] and denote by a the ideal of ¥p[t] generated by the 1-minors of
A+-tA_; we have a = ((a+ l ) - t a ) . On the other hand, since T+ and T_ have + 1 on
their diagonal entries, a should contain 1 — t or 1 + t (or both). The only possibility is
that 2a + 1 = 0 (p) which contradicts (*).

Examples of solutions of(*)

Set n = 3, p = 7, ex = - 1, e2 = + 1; a = 18 is a solution of (*) with a = 20, /? = 17.
For n = p-l,e1 = e2= 1, the following values are taken from [1], p. 68 ([a0, ax, ...,

a
P-ii denotes I ^ r

and

p = l: a =[2,4,6,3,0,2] and a = [4,2,0,3,6,4]

p = 1 3 ; a =[3,11,6,9, 7, 2,4,4,8,8,1,5]

a = [9,1,6,3,5,10,8,8,4,4,1,11,7].

THEOREM 3-6. For any q > 4 <Aere ea;is< spherical (2q)-dimensional free fibred knots of
arbitrarily high rank that are not obtained by plumbing.

Proof. Consider Seifert triples obtained by taking block sums of the matrices
described in Lemma 3-5 and realize them by free fibred knots.

4. Applications to spinning

In this section we consider odd-dimensional knots as defined in [10]. Recall that one
can give the following definition for the spinning of a knot (cf. [4]):

Let K be a (not necessarily spherical) (2q - l)-dimensional knot and Bo be a (2q + 1 )-
dimensional ball in S^1 such that Bo n K is a (2q - l)-ball and the pair (Bo; B0()K)iB
unknotted. Set B = S^+^Bo, and fi = K\B0.

PSP IOO
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130 D A N I E L L I N E S

Definition. The spinning of K is the (2g)-dimensional knot

<r(K) = (dp xD*)ua(fi xdD*)

in the sphere S2**2 = (8B xD2) u (B xdD2).
Let F be a Seifert surface for K, and suppose that the pair (Bo; Bo n V) is diffeo-

morphic to the pair (D^+1; H) where D^+x denotes the unit disc in R2«+1 and

£ 0, a ^ = 0}.

Set V = F n £ and A = F n 35; then

<r(V) =

is a Seifert surface for <r(K) in

THEOREM 4-1. ZeJ Kbea simple (2q -1 )-dimensional knot, and suppose that q > 4.
(i) <r(^) ts a/ree (2q)-dimensional knot;
(ii) i/ F t« a simple Seifert surface for K with associated Seifert matrix A,o~(V) is a free

Seifert surface for cr(K) with associated Seifert triple (A; (— I)v+1AT; 0);
(iii) K is fibred with fibre-surf ace F if and only if a(K) is a free fibred knot with fibre-

surface cr(F);
(iv) {/ K is obtained by plumbing, so is cr{K).

Proof. We refer to [10] for the properties of odd-dimensional knots we use.
(i) Let V be a simple Seifert surface for K. Sk(V) = 0 for &=# q and Hq(V) is free

abelian. I t is easy to see that er( F) is (q — l)-connected and that

Hg(cr(V)) ~ Hq(V) ® H0(Si) ~ HJJ),

Ha+1(cr(V)) ~ Hg(V) ® H^) rs Hq(V).

This shows that o~(V) is a free Seifert surface for o~(K).
(ii) Let (yj (i = 1,..., r) be a basis of Hq( V); we may represent yi by an embedding

&: £« c,. F'. The embeddings

and 6y: 5« xS1 q. F'

represent a basis of Hq(cr(V)) (resp. ^j+i(
Let Q be a singular (g+ l)-chain in B such that dCt = ^(/S9); the algebraic inter-

section number of Ct and i+$j(SQ) is 5̂23+2(71; *+7̂ )- The singular chain

Ct x{l} c B xdD2 ^

intersects algebraically i+6y(5« xS1) also in £523+1(7*; i+7j) points. As ^(/S9) bounds
Ct x{l}, this shows that with respect to these bases A+ = A. Similarly,

since ^S2«+I(7T ! »-7y) = ( -
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On even-dimensional fibred knots obtained by plumbing 131

To compute the homotopy linking form, consider the submanifold V= V x D2 of
the (2q + 3)-dimensional ball B xD2. The normal bundle to V in B xD2 is trivial, so
that i+: a( V) c> S^*2 extends to a map i+: V c+ B xD2. V has the homotopy type of V,
so that nq(V) ~ Hq(V) and Hq+1(V) = 0. Consider the two exact sequences:

0 -> 7Ta(a(V))/27Tq{cx{V)) -> nq+1(<r(V)) -> #9+1(<r(F)) -> 0

(*) K _ i*i_ 4- _
0 - > nq( V)/2nq( V) - > nq+1( V) — ^ Hq+1( V) = 0 - > 0,

where ij and i2 are induced by the inclusion of &( V) in V. As ix: Hq(cr( V)) -> Hq( V) is an
isomorphism, so is ix: irq(cr(V)) ->7rg(F), and it is easy to see using (*) that any
ueHg+1(cr(V)) admits a lift u#enq+1(<r(V)) such that i2(u

#) = 0. For j = 1, ...,r, let
by. 8q+1 c» #23+2 be an embedding such that h([bj]) = bj and i2(ft̂ ) = 0; bj extends to a
map Ff D<>+2-> V, and since q ^ 4 we may assume that Ff is an embedding. By
Lemma 1-7; s/{[lk]; [6,]) = ^s^+1{bk; i+b,) = 0 since Fk(D«+2) n f+J?J(2>'+2) = 0 .

(iii) K is fibred if and only if A is unimodular ([10], lemma 1-1); (A; ( - 1)«+MT; 0)
is a unimodular triple if and only if <r (If) is fibred with fibre-surface a (F) (Proposition
1-6).

(iv) If K is obtained by plumbing, K admits a unimodular lower (or upper)
triangular Seifert matrix (cf. [10], proposition 2-4). This shows that (A;( — 1)9+1 AT; 0)
is a triangular triple and that cr(K) is obtained by plumbing.

Remark. Part (ii) of this theorem is the analogue for Seifert triples of the result of
C. Kearton[4] concerning the Blanchfield pairing of a simple spun knot.

I would like to thank C. Kearton and M. A. Armstrong for their help and encourage-
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of the University of Durham for their hospitality and the Science and Engineering
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