
Effect of Ketamine on Dendritic Arbor Development and Survival
of Immature GABAergic Neurons In Vitro

Laszlo Vutskits,*,1 Eduardo Gascon,† Edomer Tassonyi,‡ and Jozsef Z. Kiss§

*Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, 1211 Geneva 14, Switzerland;

†Department of Neuroscience, University of Geneva Medical School, 1211 Geneva, Switzerland; ‡Department of Anesthesiology, Pharmacology

and Surgical Intensive Care, University Hospital of Geneva, 1211 Geneva 14, Switzerland; and §Department of Neuroscience,

University of Geneva Medical School, 1211 Geneva, Switzerland

Received February 14, 2006; accepted March 27, 2006

Ketamine, a noncompetitive antagonist of the N-methyl-D-

aspartate type of glutamate receptors, was reported to induce

neuronal cell death when administered to produce anesthesia in

young rodents and monkeys. Subanesthetic doses of ketamine, as

adjuvant to postoperative sedation and pain control, are also

frequently administered to young children. However, the effects of

these low concentrations of ketamine on neuronal development

remain unknown. The present study was designed to evaluate the

effects of increasing concentrations (0.01–40 mg/ml) and durations

(1–96 h) of ketamine exposure on the differentiation and survival

of immature g-aminobutyric acidergic (GABAergic) interneurons

in culture. In line with previous studies (Scallet et al., 2004), we

found that a 1-h-long exposure to ketamine at concentrations � 10

mg/ml was sufficient to trigger cell death. At lower concentrations

of ketamine, cell loss was only observed when this drug was

chronically ( > 48 h) present in the culture medium. Most impor-

tantly, we found that a single episode of 4-h-long treatment with

5 mg/ml ketamine induced long-term alterations in dendritic

growth, including a significant (p < 0.05) reduction in total den-

dritic length and in the number of branching points compared to

control groups. Finally, long-term exposure ( > 24 h) of neurons to

ketamine at concentrations as low as 0.01 mg/ml also severely

impaired dendritic arbor development. These results suggest that,

in addition to its dose-dependent ability to induce cell death, even

very low concentrations of ketamine could interfere with dendritic

arbor development of immature GABAergic neurons and thus

could potentially interfere with the development neural networks.
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Pharmacological blockade of N-methyl-D-aspartate (NMDA)
type of glutamate receptors as well as the activation of c-
aminobutyric acidA (GABAA) receptors during the brain
growth spurt period, including dendritic development and

synaptogenesis, lead to increased apoptotic degeneration of
immature neurons in the developing brain (Ikonomidou
et al., 1999, 2000). Since the majority of currently used anes-
thetics inhibit NMDA receptors and/or increase the inhibitory
tone of the central nervous system (CNS) via the stimulation
of GABAA receptors, they might exert adverse effects on
neuronal development. Indeed, exposure of rat embryos to
halothane in utero was reported to alter dendritic growth of
developing neurons (Uemura et al., 1985), and this was asso-
ciated with learning impairments during the postnatal period
(Levin et al., 1991). In line with these results, a combination
of midazolam–nitrous oxide–isoflurane anesthesia has re-
cently been shown to trigger widespread apoptotic cell death
in the brain of 7-day-old rat pups (Jevtovic-Todorovic et al.,
2003).

Ketamine is a widely used pediatric anesthetic, and renewed
interest has recently focused on the use of this agent for the
treatment of acute and chronic pain in both pediatric and
adult populations (Elia and Tramer, 2005; Himmelseher and
Durieux, 2005). Ketamine not only primarily blocks NMDA-
mediated neurotransmission by binding noncompetitively to
the phencyclidine-binding site of the NMDA receptor (Oye
et al., 1992) but also interacts with adenosinergic, mono-
aminergic, cholinergic, and opioid receptor–mediated signal-
ing pathways (Adams, 1998; Mazar et al., 2005). Similar to the
blockade of the NMDA receptor by specific pharmacological
agents, exposure of the developing rat brain to ketamine was
reported to increase neuronal apoptosis (Hayashi et al., 2002;
Ikonomidou et al., 1999; Young et al., 2005). Ketamine also
induces neurodegeneration in the adult brain after subcutane-
ous injections (Olney et al., 1989), and it might potentiate
cerebrocortical damage induced by nitrous oxide (Jevtovic-
Todorovic et al., 2000). Recent observations indicate that
relatively mild exposure to ketamine can also trigger apoptotic
neurodegeneration in the developing mouse brain (Young et al.,
2005). This issue is of particular interest, since ketamine at
subanesthetic concentrations is increasingly used as an adju-
vant to multimodal pain therapy and sedation in pediatric
anesthesia practice (Lin and Durieux, 2005).
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Neuronal apoptosis is not the only parameter to be consid-
ered in evaluating potential adverse effects of ketamine or other
anesthetics on neuronal development. It is now well established
that interference with the finely tuned molecular mechanisms,
guiding the formation of neuronal dendritic arbors in the
developing brain, can lead to persistent dysfunctions of the
CNS (Webb et al., 2001). Dendrites represent the primary sites
of synaptic contacts in developing neurons, and we have
recently shown that exposure of developing GABAergic neurons
to low concentrations of propofol, while not affecting sur-
vival, alters significantly dendritic development of these cells
(Vutskits et al., 2005).

Based on previous experimental studies characterizing blood
levels of ketamine associated with neurotoxicity in perinatal rat
pups (Scallet et al., 2004) as well as on plasma levels of this
drug necessary to induce anesthesia in humans (Malinovsky
et al., 1996; Weber et al., 2004), the present study was designed
to assess the effects of ketamine on neuronal dendritic arbor
development using our previously described cell culture model,
where isolated neuroblasts from the postnatal subventricular
zone (SVZ) survive and differentiate into GABAergic inter-
neurons (Gascon et al., 2005).

MATERIALS AND METHODS

Cell culture and reagents. After obtaining approval from the Animal Care

Committee of the University Medical Center, cell cultures were prepared from

newborn (postnatal day 0) Sprague-Dawley rats. Animals were sacrificed by

decapitation, and the brain was carefully removed and transferred into an ice-

cold Hank’s magnesium- and calcium-free solution. Two coronal cuts were

then made to expose the anterior horn of the lateral ventricles, and the SVZ was

microdissected. The small tissue pieces obtained were dissociated mechan-

ically and digested with trypsin (Invitrogen Life Technologies, Paisley, United

Kingdom) for 15 min at 37�C. The trypsin reaction was stopped with 1 ml of

cold fetal calf serum, and cells were recovered after 10 min of centrifugation at

300 3 g. To eliminate cell debris, the pellet was resuspended into 1 ml of

phosphate-based saline (PBS) and layered onto a 22% Percoll (Amersham

Pharmacia, Little Chalfont, United Kingdom) in PBS and centrifuged 10 min at

500 3 g. Cells were washed three times with culture medium before plating

onto polyornithine (Sigma, St Louis, MO)–coated coverslips in 35 mm petri

dishes (Falcon, Plymouth, United Kingdom). Seeding density was 5000 cells/

cm2. Cells were cultured in neurobasal medium (Invitrogen Life Technologies)

supplemented with 2% B27 (Invitrogen Life Technologies), 200mM L-

glutamine (Invitrogen Life Technologies), and 1mM Na pyruvate (Sigma).

Under these conditions, cells readily survived and developed as GABAergic

neurons for up to 12 days in culture.

To test the effects of ketamine on neuronal survival and development,

cultures were exposed to ketamine (Ketalar, Parke-Davis, Berlin, Germany)

and the NMDA receptor antagonist MK 801 (100lM; Tocris, Bristol, United

Kingdom). The amount and the duration of ketamine treatment are indicated in

detail in each experiment. Briefly, for each experimental protocol, cells were

kept in the above-mentioned culture medium for 24 h following seeding,

allowing attachment to the polyornithine substrate. Ketamine as well as MK

801 were then administered into the culture medium for a defined period as

indicated in the ‘‘Results’’ section and corresponding figures. To remove drugs

from the culture medium, cultures (control and treated) were washed three

times with warm (37�C) Neurobasal medium and then continued to be cultured

in the presence of Neurobasal medium before analysis according to experi-

mental protocols.

Immunocytochemistry. Cells were fixed with cold (4�C) paraformalde-

hyde 4% in phosphate buffer (pH 7.4). Then, they were rinsed three times in

PBS and incubated overnight at 4�C with the primary antibody diluted in

PBS 0.5% containing bovine serum albumin (BSA) (0.3%), and Triton X-100.

The mouse monoclonal antibody directed against b-tubulin isotype III

(Sigma, 1:400 dilution) was used to identify neurons. Bound antibodies were

revealed with rhodamine- or fluorescein-conjugated sheep anti-mouse IgG

(Boehringer, Mannheim, Germany; dilution 1:40 for rhodamine and 1:80 for

fluorescein) diluted in PBS containing 0.5% BSA. Immunostained cultures

were examined with an Axiophot fluorescence microscope (Carl Zeiss,

Oberkochen, Germany).

TUNEL assay. Apoptotic cells were revealed using the TUNEL assay.

Briefly, cultures were rinsed with PBS and incubated for 15 min with the

TUNEL buffer (Tris 30mM, Na cacodylate 140mM, and cobalt chlorid 1mM).

Then, the enzyme terminal transferase (Roche, Mannheim, Germany) 0.3 U/ll

and the labeled dUTP 6lM were applied for 90 min at room temperature. The

reaction was stopped with 23 SSC (sodium citrate buffer) and cultures washed

again with PBS. 7#-Fluorescein dUTP (Roche, Mannheim, Germany) was

chosen as a label. The fluorescent labeling allowed quantifying apoptotic cells

under a fluorescent microscope (Axiophot, Carl Zeiss, Jena, Germany). For

colocalization with cell-specific markers, cultures were subjected to immuno-

histochemistry prior to the TUNEL assay.

Cell counts, statistical analysis, image acquisition, and processing. Cul-

tures were examined using an Axiophot fluorescence microscope (Carl Zeiss).

Cells were counted with the help of a square grid placed into the ocular of the

microscope. Using a 340 objective, the grid area represented 0.16 mm2. On

each coverslip, 30 samples (¼ square grids) were randomly taken and then

samples pooled (i.e., total surface measured per coverslip was 4.8 mm2). Data

are expressed as the number of neurons/mm2 ± SEM and reflect the results

obtained form at least three independent experiments.

For quantitative analysis of dendritic arbors, cells were stained with the

monoclonal GABA antibody and photographed. Before the analysis, brightness

and contrast were optimized with Adobe Photoshop program (Adobe Systems

Incorporated, San Jose, California). The following parameters of dendritic

shape and extent were then determined: number of primary dendrites (PDs),

length of dendrites, and the number of dendritic branches. Total dendritic length

(TDL) was measured drawing all visible processes with Scion software (Scion

Corporation, free download at http://www.scioncorp.com/frames/fr_download_

now.htm). The remaining parameters were manually scored on the image.

Processes shorter than 5 lm were excluded from the analysis. Values were

expressed as means ± SEMs and analyzed for statistical significance. Differ-

ences between groups were first discriminated by one-way ANOVA and then

the unpaired t test was performed, where t was corrected for multiple

comparisons against the untreated group using the Bonferroni test. *p < 0.05

compared with the untreated control group.

RESULTS

Dose- and Exposure Time–Dependent Effects of Ketamine on
GABAergic Neuronal Survival

To study the effect of ketamine on neuronal differentiation,
we took advantage of our previously described culture model
that allows tracking quantitatively dendritic arbor development
of GABAergic neuronal precursors (Gascon et al., 2005;
Vutskits et al., 2005). These cells were shown to express both
GABA and NMDA receptors in vivo (Carleton et al., 2003),
and accordingly, we found that application of GABA as well as
glutamate into the culture medium initiated calcium responses
in these neurons in vitro (data not shown). As ketamine was
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reported to trigger apoptosis in the immature brain in vivo
(Ikonomidou et al., 1999; Young et al., 2005), we first
determined the concentration range in which ketamine may
induce death of cultured interneurons. We tested the effects of
ketamine under two conditions: after a single short-term (1–
8 h) treatment and after the continuous presence of ketamine
for 24–96 h. In a first series of experiments, cultures at 1 day
in vitro were exposed to ketamine for 1 h in concentrations
ranging from 0.01 to 40 lg/ml (for experimental setup see Fig.
1A). No cell loss was observed at any of these concentrations
when cell survival was assessed immediately after this
treatment (Fig. 1B). As seen in Figure 1C, in control cultures,
neurons survive and start to differentiate under serum-free
conditions. In contrast, we observed a marked cell loss as early
as 24 h following treatment in cultures where cells were
exposed to ketamine at concentrations of � 10 lg/ml, and this
was further accentuated by the end of the 48th h postexposure
(Figs. 1D–1E). Immunocytochemical colocalization of tubulin-
b-III–positive pycnotic neurons with the apoptotic marker
TUNEL revealed that the nature of this cell death is apoptosis
(Fig. 1E, right upper window). Quantitative assessment of cell
survival showed a significant decrease (p < 0.05) in the number
of surviving neurons by the end of the 24th h following a 1-h-
long ketamine treatment at concentrations � 10 lg/ml, and this
cell loss further increased by the end of the second day
(Fig. 1G). Thus, a single short-term exposure to 10 lg/ml of
ketamine is able to induce delayed apoptotic death of immature
neurons. In contrast, exposure of cultures to ketamine at
concentrations � 5 lg/ml up to 8 h did not trigger apoptosis
of GABAergic neurons (not shown). Since one major action of
ketamine is the blockade of the NMDA-type glutamate re-
ceptors, we also examined cell survival in the presence of the
noncompetititve NMDA receptor blocker MK 801 (100lM).
The presence of MK 801 up to 8 h in the culture medium did
not induce cell death (Figs. 1F–1G).

We next explored the effects of long-term ketamine admin-
istration on cell survival and found that ketamine at concen-
trations as low as 1 lg/ml induced neuronal cell loss when
chronically (> 48 h) present in the culture medium (Fig. 2).
Similarly, chronic application (> 24 h) of MK 801 (100lM) led
to a significant decrease (p < 0.05) in the number of neurons
(Fig. 2), suggesting that NMDA-dependent mechanisms are
involved in this process.

Ketamine at Nonapoptotic Concentrations Can Impair
Dendritic Arbor Development of GABAergic Neurons

The relationship between the dendritic morphology of
a neuron and its function is well established (Yuste and Tank,
1996), and increasing evidence suggests that even subtle al-
terations of dendritic arbor development can lead to permanent
CNS dysfunction (Webb et al., 2001). We thus examined
whether exposure to ketamine at non–cell death-inducing
concentrations can alter dendritic growth and arborization

pattern of developing GABAergic neurons. To assess the effect
of short-term ketamine treatment on dendritic development,
cultures were grown for 24 h in serum-free medium and then
exposed to ketamine at concentrations ranging from 1 to 5 lg/ml

FIG. 1. Short-term (1 h) exposure to ketamine at concentrations of � 10

lg/ml triggers apoptosis of developing GABA-positive neurons. (A) Experi-

mental protocol. (B) Twenty-four hours after seeding, isolated neuroblasts

exhibit an immature morphology under serum-free conditions. (C) Neuroblasts

survive and start to differentiate in control cultures. (D) Twenty-four hours

following ketamine (10 lg/ml for 1 h) exposure, the number of surviving

neurons decreases. (E) The number of neurons further decreases by the 48th h

following ketamine treatment. Right upper window: colocalization of tubulin-

b-III–positive neurons (left) with the TUNEL labeling (right) revealed that the

nature of this cell death is apoptosis. (F) Short-term treatment with the

noncompetitive NMDA antagonist MK 801 (100lM) does not affect neuronal

survival and differentiation. (G) Quantitative analysis of cell survival following

a short-term (1 h) exposure of developing neurons to ketamine and MK

801(100lM). In photomicrographs (B–F), cells were stained with the neuron-

specific marker tubulin-b-III antibody. Correction bar (B–F): 200 lm. In (G),

results are presented as mean ± SEM; n ¼ 3 independent experiments for each

time point and each treatment expressed. Values are expressed as the number of

neurons/mm2. *p < 0.05 compared with the untreated control group.
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for 1–8 h. Cells were then washed extensively to remove
ketamine, and serum-free medium was added again for an
additional 24–96 h (for experimental setup see Fig. 3A).
Corresponding sister cultures were then fixed and analyzed at
0, 48, and 96 h. To quantify the impact of ketamine treatment,
we measured three parameters: (1) TDL; (2) the number of
PDs, defined as those arising from the cell body; and (3) the
number of branching points (BPs).

As seen in Figure 3, 24 h after seeding (time 0), all neurons
in culture exhibited a rather immature morphology with short
dendritic processes. In control, placebo-treated groups, neurons
progressively differentiated and developed a highly complex
arborization pattern by time (Fig. 3B). Quantitative analyses
revealed an approximately 10-fold increase in TDL during the
first 5 days in culture, and this was accompanied by a significant
(p < 0.05) augmentation of arbor complexity in terms of PD
and BP (Fig. 4). The 1-h-long treatment with ketamine up to
concentrations of 5 lg/ml did not affect any aspects of
subsequent dendritic development (not shown). In contrast,
a 4-h-long exposure of neurons to ketamine at a concentration
of 5 lg/ml led to reduced dendritic growth and arbor
complexity compared to placebo-treated groups or cultures
exposed to lower doses of this agent (Figs. 3–4). In this group,
a significant (p < 0.05) impairment in subsequent dendritic
growth and arborization could be detected as early as 48 h
following ketamine exposure, and this difference was further
accentuated by the end of the 96th h in culture (Fig. 4). Figure 5
shows the impact of an 8-h-long ketamine treatment on various
aspects of ulterior dendritic growth in culture. We found
a significant difference (p < 0.05) in TDL in cultures exposed
to 2 lg/ml of ketamine as early as 48 h following treatment, and
this difference was further accentuated by the end of the 96th h.
Additionally, while the number of PDs did not differ between
groups 96 h following ketamine treatment (2 lg/ml), we found

a significant (p < 0.05) decrease at this time point in both TDL
and arborization pattern, expressed as the number of branch
point, compared to controls (Fig. 5). Taken together, these
results suggest that even a single short episode of ketamine
treatment at non–cell death-inducing concentrations can lead to
persistent changes in dendritic development.

We also investigated the effect of long-term ketamine
treatment as well as the impact of NMDA receptor blockade
on dendritic arbor development of GABAergic neurons at
concentrations ranging from 0.01 to 1 lg/ml. We found that
dendritic development of GABAergic neurons was severely
impaired following chronic exposure even to low concentra-
tions (0.1–0.01 lg/ml) of ketamine (Figs. 6–7). Following the
first 24 h in the presence of ketamine (0.01–1 lg/ml), no
difference could be detected between control and ketamine-
treated cultures in any aspects of dendritic development
analyzed (Fig. 7). In contrast, by the end of the second day,
both TDL and the number of branch points were significantly
decreased in cultures treated with ketamine at concentrations
between 0.1 and 1 lg/ml. Importantly, analysis at later time
points (72 and 96 h) revealed that continuous administration of
ketamine in doses as low as 0.01 lg/ml has a significant
deleterious effects on dendritic development (Fig. 7). Taken
together, these data indicate that very low doses of ketamine
are sufficient, when chronically applied, to reduce dendritic
arbor expansion of immature developing GABAergic neurons.

DISCUSSION

Given the widespread use of ketamine in pediatric anesthesia
practice, an important question is whether administration of
this drug can exert potential adverse effects on the developing
CNS. Indeed, increasing evidence suggests that anesthetic as
well as subanesthetic doses of ketamine can trigger apoptotic
neuronal death in the immature brain (Ikonomidou et al., 1999;
Scallet et al., 2004; Young et al., 2005). Here we show that
a short-term exposure of developing GABAergic neurons to
low concentrations (5 lg/ml) of ketamine, which do not
interfere with cell survival, results in altered dendritic growth
of these cells. We also demonstrate that chronic administration
of ketamine at concentrations as low as 0.01 lg/ml, while not
affecting survival, severely alters dendritic development. These
results suggest that, in addition to its ability to trigger apoptosis
of immature neurons, ketamine may interfere with the funda-
mental mechanisms that govern dendritic arbor development of
immature neurons.

As a complement to in vivo experimentation, in vitro models
are useful tools to draw the attention to the potential adverse
effects of pharmacologic agents during development. Here, we
used a recently described in vitro model where isolated and
purified neuronal precursors from the newborn rat SVZ were
cultured at a low seeding density and differentiated into
GABAergic neurons (Gascon et al., 2005). A major advantage

FIG. 2. Effect of continuous exposure to ketamine and MK 801 on

neuronal survival. Twenty-four hours after seeding (time 0), ketamine (0.01, 0.1

and 1 lg/ml) and MK 801 (100lM) were added to the culture medium, and

neuronal survival was assessed in corresponding sister cultures every 24 h up to

4 days. Results are presented as mean ± SEM; n ¼ 3 independent experiments

for each time point and each treatment expressed. Values are expressed as the

number of neurons/mm2. *p < 0.05 compared with the untreated control group.
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of this model is that, in addition to assessment of cell death, it
also allows observing and quantifying the effects of anesthetics
on dendritic growth and branching. As proper development of
dendrites is essential for the establishment of neuronal circuitry
(Chen and Ghosh, 2005) and dendritic morphology plays
a critical role in synaptic integration and information process-
ing (Jan and Jan, 2003; Miller and Kaplan, 2003), assessment
of morphofunctional parameters describing dendritic arbor
development is of utmost importance in terms of evaluating
anesthesia-related neurotoxicity.

It is now well established that even subtle alterations of the
neuronal dendritic tree can lead to persistent dysfunctions of
the CNS without inducing apparent cell loss (Webb et al.,
2001). The results presented here suggest that non–cell death-
inducing concentrations of ketamine might still impair CNS
development by interfering with dendritic growth. We applied
this drug to the culture medium at a wide concentration range

(0.01–40 lg/ml) including concentrations corresponding to
reported plasma levels in previous animal as well as human
studies (Malinovsky et al., 1996; Scallet et al., 2004; Weber
et al., 2004). Using this approach, we found that even very low
concentrations of ketamine (0.01 lg/ml) can induce substan-
tially reduced dendritic growth, when this agent is present
continuously in the culture medium. Given that ketamine at low
subanesthetic doses is increasingly used for extended time
periods as an adjuvant to postoperative sedation and pain
control (Albanese et al., 2004; Himmelseher and Durieux,
2005), these in vitro findings could be of potential interest for
further animal experiments.

One major mechanisms of action of ketamine is the blockade
of the NMDA type of glutamate receptors. In agreement with
previous observations (Ikonomidou et al., 1999), we found that
prolonged exposure to the NMDA receptor antagonist MK 801
increased apoptosis of GABAergic neurons. When applied

FIG. 3. Effects of short-term (4 h) ketamine and MK 801 treatment on subsequent dendritic development. (A) Experimental protocol. (B) Representative

examples of dendritic growth in control, (C) ketamine- (1 lg/ml), (D) ketamine- (5 lg/ml), and (E) MK 801 (100lM)–treated neurons. Note the substantially

reduced dendritic arborization after treatment with ketamine at 5 lg/ml. Cells were stained with the neuron-specific marker tubulin-b-III antibody. Correction bar

(B–D): 80 lm.
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continuously, the effect of MK 801 was quite similar to the
effect of ketamine at a concentration of 1 lg/ml. The obser-
vation that long-term exposure to lower doses of ketamine
(� 0.1 lg/ml) does not induce cell death could be explained
by a partial blockade of the NMDA receptor. In the developing
human brain, NMDA receptor activity and expression increase

FIG. 4. Quantitative assessment of dendritic development after a 4-h-long

ketamine and MK 801 exposure. For experimental protocol, see Figure 3A.

Neither exposure to ketamine up to concentrations of 2 lg/ml nor to MK 801

(100lM) resulted in decreased dendritic growth, as expressed by the TDL (A),

number of PDs (B), and number of BPs (C). In contrast, this short-term

exposure of developing neurons to ketamine at a concentration of 5 lg/ml

altered all three of these parameters. Results are presented as mean ± SEM;

n ¼ 3 independent experiments (three culture dish per experiment, 30 neurons

per culture dish) for each time point and each treatment expressed. *p < 0.05

compared with the untreated control group.

FIG. 5. Quantitative assessment of dendritic development after an 8-h-long

exposure to ketamine and MK 801. (A) Experimental protocol. (B) TDL and

(C) the number of number of BPs but not that of PDs (D) were significantly

altered by the end of the 96th h following an 8-h-long treatment with ketamine

at a concentration of 2 lg/ml. In contrast, ketamine at 1 lg/ml and MK 801

(100lM) had no such effect. Results are presented as mean ± SEM; n ¼ 3

independent experiments (three culture dish per experiment, 30 neurons per

culture dish) for each time point and each treatment expressed. *p < 0.05

compared with the untreated control group.
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in the early infant period, whereas a-amino-3-hydroxy-5-
methyl-4-isoxazole-4-propionate and kainate receptors are ele-
vated during midgestation and decrease thereafter (Panigrahy
et al., 2000). Increasing evidence suggests that signaling
through the NMDA receptor complex is important for the
maturation and plasticity of developing CNS (Waters and
Machaalani, 2004). Pharmacological blockade of NMDA
receptors has been shown to reduce dendritic growth rates in
the Xenopus tectum (Rajan and Cline, 1998), and similar results
were obtained in the rodent supraoptic nucleus (Chevaleyre
et al., 2002) and in spinal motoneurons (Kalb, 1994). In
addition to participating in dendritic sculpting, NMDA recep-
tors also have a direct role in neuronal proliferation (Gould
et al., 1994) and migration (Komuro and Rakic, 1993). Parallel
to its important physiological role in CNS development, both

excessive stimulation and chronic blockade of the NMDA
receptor complex have been shown to induce widespread neu-
ronal cell death in the immature brain (Ikonomidou et al., 1999;
Portera-Cailliau et al., 1997). In this context, ketamine and
other anesthetics, able to modify the highly orchestrated equi-
librium of NMDA receptor signaling (Waters and Machaalani,
2004), are potential candidates to hinder normal neuronal de-
velopment when administered during the brain growth spurt
period.

While ketamine is considered to exert its effect primarily
through the noncompetitive blockade of the NMDA receptor,
we found substantial differences, depending on the experimen-
tal protocol, between this anesthetic and the noncompetitive
NMDA receptor antagonist MK 801 on neuronal differentia-
tion and survival. The fact that a 1-h-long treatment with

FIG. 6. Effect of long-term ketamine and MK 801 treatment on dendritic development. Twenty-four hours after seeding (time 0), ketamine was applied to

the culture medium and left there for up to 96 h. Representative examples of dendritic arbor expansion in (A) control, (B) ketamine- (1 lg/ml), (C) ketamine-

(0.1 lg/ml), (D) ketamine- (0.01 lg/ml), and (E) MK 801 (100lM)–treated neurons. Cells were stained with the neuron-specific marker tubulin-b-III antibody.

Correction bar (A–D): 85 lm.
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ketamine, but not with MK 801, exposure was sufficient to
trigger an important apoptosis of GABAergic neurons raises
the possibility that, at high-dose regimens, ketamine-induced
neurotoxicity is, at least partially, independent of NMDA
receptor blockade. These data were further confirmed by
experiments showing that exposure of cultures to MK 801 up
to 4 h affect neither survival nor differentiation of developing

neurons. One plausible explanation of these observations would
be that, in addition to the NMDA receptor blockade, ketamine
also interacts with a multitude of signaling pathways medi-
ating neurotransmission in the CNS (Adams, 1998). Indeed,
ketamine induces release of dopamine, serotonin, and nor-
adrenaline in the brain (Kari et al., 1978; Tso et al., 2004),
and recent experimental evidences indicate that this anes-
thetic also interferes with the reuptake of these amines from
the extracellular space by inhibiting monoamine transporters
(Nishimura et al., 1998; Tso et al., 2004). It is of interest that
excessive accumulation of monoamines has been reported to
trigger extensive neurodegeneration in rodents (Bozzi and
Borrelli, 2006), and blockade of the serotonin transporter has
been shown to reduce the complexity of dendritic arbor
architecture of hippocampal pyramidal neurons (McKittrick
et al., 2000). Ketamine also induces the release of adenosine
from nerve terminals (Mazar et al., 2005), and there is now
evidence that adenosine A2A receptors play a permissive role
in the metabotropic glutamate receptor–mediated potentiation
of NMDA signaling (Tebano et al., 2005). It is thus possible
that, in the presence of higher concentrations of ketamine,
additive or synergistic effects between these molecular mecha-
nisms and signaling pathways could rapidly initiate dendritic
remodeling and/or apoptosis. Alternatively, large doses of
ketamine could exert a nonspecific neurotoxic effect.

The functional relevance of our in vitro data remains to be
determined. Anesthesia-induced neurotoxicity is a highly de-
bated and controversial issue (Anand and Soriano, 2004; Olney
et al., 2004; Todd, 2004). Data presented in this study suggest
that clinical and subclinical concentrations of ketamine could
interfere with dendritic development and thus might lead to
long-term impairment of higher-order CNS functions (Webb
et al., 2001). However, it is important to note that extrapolation
of these in vitro results, obtained at the single-cell level, to
clinical practice requires caution. An essential next step in
addressing this issue will be to determine how neuronal
dendritic arbor development is influenced by ketamine expo-
sure in a more complex and physiological environment, using
organotypic slice cultures and in vivo animal experiments.
Also, while the importance of in vitro and in vivo experiments
to study drug safety and efficacy in developing rodents is well
established, one cannot fully exclude the possibility of in-
terspecies differences in terms of drug effects (Berde and
Cairns, 2000). Indeed, anesthesia-inducing doses of ketamine
in rodents appear to be several folds higher those than in
humans (Malinovsky et al., 1996; Scallet et al., 2004; Weber
et al., 2004). Additionally, except one recent study measuring
ketamine blood levels in rats (Scallet et al., 2004), to our
knowledge, there is no study available evaluating ketamine
pharmacokinetics as well as blood brain partition coefficient in
rodents or higher primates. As it would be practically and
ethically impossible to establish a dose-response curve of
ketamine-induced neurotoxicity in human infants, such experi-
ments should be performed to further elucidate this question.

FIG. 7. Quantitative analysis of dendritic development after long-term

ketamine and MK 801 treatment. Continuous exposure to low concentrations of

ketamine (0.01–1 lg/ml) and MK 801 (100lM) resulted in most cases after 48 h

in an altered dendritic development, as expressed by the TDL (A), the number

of PDs (B), and the number of BPs (C). Results are presented as mean ± SEM;

n ¼ 3 independent experiments (three culture dish per experiment, 30 neurons

per culture dish) for each time point and each treatment expressed. *p < 0.05

compared with the untreated control group.
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Observational studies following neonatal and pediatric
surgery provide some indirect information about the effect of
anesthesia and analgesia on neurological outcome, but the
numerous confounding variables of these observations make it
difficult to truly assess the effect of exposure to anesthesia
(Soriano et al., 2005). To our knowledge, there are currently no
studies evaluating the effect of ketamine on short- and long-
term neuropsychological outcomes in infants and children. In
contrast, recent double-blinded, placebo-controlled data sug-
gest that ketamine impairs learning of spatial and verbal
information when administered to healthy adult subjects
(Rowland et al., 2005). As dendrites are important morpho-
logical substrates underlying such cognitive dysfunctions, the
present results demonstrating the effects of ketamine on
dendritic arbor development should give further arguments to
promote clinical research on this topic. Despite the difficulty to
conduct clinical trials in the neonatal and pediatric populations,
these future studies would be necessary to bridge the gap
between experimental neuroscience and clinical medicine
(Todd, 2004).
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