000029723 001__ 29723
000029723 005__ 20131002114011.0
000029723 0248_ $$aoai:doc.rero.ch:20120904093334-EO$$punifr$$ppostprint$$prero_explore$$zcdu34$$zthesis_urn$$zreport$$zthesis$$zbook$$zcdu51$$zjournal$$zcdu16$$zpreprint$$zcdu1$$zdissertation
000029723 041__ $$aeng
000029723 080__ $$a51
000029723 100__ $$aKlein, Georges$$uDepartment of Mathematics, University of Fribourg, Switzerland
000029723 245__ $$9eng$$aLinear rational finite differences from derivatives of barycentric rational interpolants
000029723 269__ $$c2012-04-04
000029723 520__ $$9eng$$aDerivatives of polynomial interpolants lead in a natural way to approximations of derivatives of the interpolated function, e.g., through finite differences. We extend a study of the approximation of derivatives of linear barycentric rational interpolants and present improved finite difference formulas arising from these interpolants. The formulas contain the classical finite differences as a special case and are more stable for calculating one-sided derivatives as well as derivatives close to boundaries.
000029723 695__ $$9eng$$alinear rational interpolation ; barycentric form ; high order derivatives ; finite differences
000029723 700__ $$aBerrut, Jean-Paul$$uDepartment of Mathematics, University of Fribourg, Switzerland
000029723 773__ $$g2012/50/2/643–656$$tSIAM Journal on Numerical Analysis
000029723 775__ $$gPublished version$$ohttp://dx.doi.org/10.1137/110827156
000029723 8564_ $$fkle_lrf.pdf$$qapplication/pdf$$s226663$$uhttp://doc.rero.ch/record/29723/files/kle_lrf.pdf$$yorder:1$$zpdf
000029723 918__ $$aFaculté des sciences$$bDécanat, Ch. du Musée 6A, 1700 Fribourg$$cMathématiques
000029723 919__ $$aUniversité de Fribourg$$bFribourg$$ddoc.support@rero.ch
000029723 980__ $$aPOSTPRINT$$bUNIFR$$fART_JOURNAL
000029723 990__ $$a20120904093334-EO