000029723 001__ 29723
000029723 005__ 20150420164414.0
000029723 0248_ \$\$aoai:doc.rero.ch:20120904093334-EO\$\$punifr\$\$ppostprint\$\$prero_explore\$\$particle\$\$zthesis_urn\$\$zreport\$\$zthesis\$\$zbook\$\$zcdu51\$\$zjournal\$\$zcdu16\$\$zpreprint\$\$zcdu1\$\$zdissertation\$\$zcdu34
000029723 041__ \$\$aeng
000029723 080__ \$\$a51
000029723 100__ \$\$aKlein, Georges\$\$uDepartment of Mathematics, University of Fribourg, Switzerland
000029723 245__ \$\$9eng\$\$aLinear rational finite differences from derivatives of barycentric rational interpolants
000029723 269__ \$\$c2012-04-04
000029723 520__ \$\$9eng\$\$aDerivatives of polynomial interpolants lead in a natural way to approximations of derivatives of the interpolated function, e.g., through finite differences. We extend a study of the approximation of derivatives of linear barycentric rational interpolants and present improved finite difference formulas arising from these interpolants. The formulas contain the classical finite differences as a special case and are more stable for calculating one-sided derivatives as well as derivatives close to boundaries.
000029723 695__ \$\$9eng\$\$alinear rational interpolation ; barycentric form ; high order derivatives ; finite differences
000029723 700__ \$\$aBerrut, Jean-Paul\$\$uDepartment of Mathematics, University of Fribourg, Switzerland
000029723 773__ \$\$g2012/50/2/643–656\$\$tSIAM Journal on Numerical Analysis
000029723 775__ \$\$gPublished version\$\$ohttp://dx.doi.org/10.1137/110827156
000029723 8564_ \$\$fkle_lrf.pdf\$\$qapplication/pdf\$\$s226663\$\$uhttp://doc.rero.ch/record/29723/files/kle_lrf.pdf\$\$yorder:1\$\$zpdf
000029723 918__ \$\$aFaculté des sciences\$\$bDécanat, Ch. du Musée 6A, 1700 Fribourg\$\$cMathématiques
000029723 919__ \$\$aUniversité de Fribourg\$\$bFribourg\$\$ddoc.support@rero.ch
000029723 980__ \$\$aPOSTPRINT\$\$bUNIFR\$\$fART_JOURNAL
000029723 990__ \$\$a20120904093334-EO