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A B S T R A C T

A new model for the luminosity distribution in the inner Milky Way is found, using a non-

parametric penalized maximum-likelihood algorithm to deproject a dereddened COBE/

DIRBE L-band map of the inner Galaxy. The model is also constrained by the apparent

magnitude (line-of-sight) distributions of clump giant stars in certain bulge fields. An

important new feature is the inclusion of a spiral arm model in the disc.

Spiral arms make the model appear broader on the sky; thus our bar is more elongated than

in previous eight-fold symmetric models. They also lead to a smoother disc model interior to

the Sun. The bar length is <3.5 kpc, and its axis ratios are 1 : ð0:3–0:4Þ : 0:3, independent of

whether the spiral arm model is four-armed or two-armed. The larger elongation in the plane

makes it possible to reproduce the observed clump giant distributions as well. With only the

surface brightness data, a small model degeneracy is found even for fixed orientation of the

bar, amounting to about ^0.1 uncertainty in the in-plane axial ratio. Including the clump

giant data removes most of this degeneracy and also places additional constraints on the

orientation angle of the bar. We estimate 158 & wbar & 308, with the best models obtained for

208 & wbar & 258.

We use our reference model to predict a microlensing optical depth map towards the bulge,

normalizing its mass by the observed terminal velocity curve. For clump giant sources at

ðl; bÞ ¼ ð38:9, 238:8) we find t26 ; t/1026 ¼ 1:27, within 1.8s of the new MACHO

measurement given by Popowski et al. The value for all sources at ðl; bÞ ¼ ð28:68, 238:35) is

t26 ¼ 1:1, still .3s away from the published MACHO DIA value. The dispersion of these

t26 values within our models is .10 per cent. Because the distribution of sources is well

fitted by the near-infrared model, increasing the predicted optical depths by .20 per cent will

be difficult. Thus the high value of the measured clump giant optical depth argues for a near-

maximal disc in the Milky Way.
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1 I N T R O D U C T I O N

Observations of the Milky Way (MW) show significant systematic

differences between the near-infrared (NIR) surface brightness of

the MW at l . 08 and l , 08 (e.g. Blitz & Spergel 1991; Weiland

et al. 1994; Bissantz et al. 1997). It is widely accepted that these

variations reflect the fact that the MW is a barred spiral galaxy.

Evidence for a barred component of the luminosity density in the

inner MW also comes from starcount observations (e.g. Nikolaev

& Weinberg 1997; Stanek et al. 1997; Hammersley et al. 1999;

Sevenster 1999; López-Corredoira et al. 2000), from gas dynamics

(e.g. Englmaier & Gerhard 1999; Fux 1999; Weiner & Sellwood

1999), and microlensing observations (e.g. Paczynski et al. 1994;

Zhao, Rich & Spergel 1996). Further references can be found in

Gerhard (2001).

The starcount data show significant asymmetries between lines

of sight that are symmetrical with respect to the l ¼ 0 axis; this is

the signature of a bar with its near end at positive Galactic

longitudes. Most importantly, starcount data contain information

about the distances to the surveyed stars. This is complementary to

the all-sky coverage of surface brightness maps, and is valuable for

constraining the line-of-sight (LOS) structure of the bulge even if

available only for a restricted number of fields. In this paper we will

take one step towards combining the information from both kinds

of data, and use the clump giant observations of Stanek et al. (1994,

1997) together with the COBE/DIRBE NIR data to determine a

model for the luminosity distribution in the inner Galaxy. With this

model we can be more confident about the LOS distribution of

microlensing sources, and are thus in a much better position toPE-mail: nicolai.bissantz@unibas.ch
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predict microlensing optical depths for comparison with the recent

determinations from the MACHO group (Alcock et al. 2000a;

Popowski et al. 2000).

Most previous models of the inner MW have been parametric,

and are thus restricted towards certain classes of densities for the

bulge and/or disc. Binney & Gerhard (1996) developed a non-

parametric approach to the deprojection of the COBE/DIRBE data

based on the Richardson–Lucy algorithm, in which by construc-

tion the luminosity models are eight-fold symmetric with respect to

the three main planes of the bar/bulge. Models constructed with

this approach (Binney, Gerhard & Spergel 1997; Bissantz et al.

1997) give a good fit to the COBE/DIRBE L-band data, but predict

less asymmetric LOS distributions towards the fields observed by

Stanek et al. (1994) than observed, by more than 0.1 mag. Eight-

fold symmetry also excludes modelling the spiral arms of the MW

(see, e.g., Englmaier & Gerhard 1999 and Drimmel & Spergel

2001). In the present paper we describe a non-parametric penalized

likelihood approach to infer the luminosity density of the inner

MW from the COBE/DIRBE data which allows us to include a

spiral arm model.

This paper is organized as follows. Section 2 describes our new

deprojection algorithm. In Section 3 we test the method with

known parametric distributions, and analyse the uniqueness of the

deprojected bar shape. In Section 4 we present models for the

luminosity distribution of the MW which are consistent with both

the COBE/DIRBE L-band data and the observed asymmetry in

the distribution of clump giant stars, and give constraints on the

orientation angle of the Galactic bar. In Section 5 we predict the

microlensing optical depths for these models and compare them to

recently published results of the MACHO experiment. We close

with a summary and conclusions in Section 6.

2 M A X I M U M - L I K E L I H O O D D E P R O J E C T I O N

M E T H O D

In this section we describe the technique we have used to construct

models for the luminosity distribution of the MW. It is a non-

parametric technique that maximizes a likelihood function, which

includes penalty terms encouraging smoothness, eight-fold

(triaxial) symmetry and a spiral arm component in the model.

The minimization procedure is iterative, starting from an initial

parametric model. The following subsections describe the initial

parametric models (Section 2.1), the algorithm (Section 2.2), the

choice of optimal penalty parameters (Section 2.3), and the

performance of the algorithm (Section 2.4). The results of using

the algorithm to recover known solutions from artificial data are

described in Section 3.

2.1 Parametric models

We define parametric models for the luminosity distribution of the

MW on a Cartesian grid. The coordinate system has the Galactic

Centre at its origin. The axes are parallel to the main axes of the

bar. In this coordinate system the position of the Sun is

½x ¼ R0 cosðwbarÞ, y ¼ R0 sinðwbarÞ, Z0], where R0 is the distance

of the Sun from the Galactic Centre projected on to the main plane

of the Milky Way, Z0 is the position of the Sun above the xy-plane,

and wbar is the ‘bar angle’, i.e., the angle in the xy-plane between

the major axis of the bar and the projected LOS from the Sun to the

Galactic Centre, such that for positive wbar the near end of the bar is

at positive longitudes. Throughout this paper we will use R0 ¼

8 kpc and Z0 ¼ 14 pc.

Our parametric models contain a double-exponential disc and a

truncated power-law bulge (cf. Binney et al. 1997):

r̂ðxÞ ¼ rdðxÞ þ rbðxÞ; ð1Þ

where

rd ; r0
d £ Rd £ e2R/Rd £

e2jzj/z0

z0

þ a
e2jzj/z1

z1

� �
;

rb ;
r0

b

hza3
m

£
e2a 2/a2

m

ð1þ a/a0Þ
1:8

;

a ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ

y 2

h 2
þ

z 2

z 2

s
; R ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
and x ¼ ðx; y; zÞ:

In some models we also include an additional spiral arm

component. This is taken from Ortiz & Lépine (1993), who

obtained a good fit to the tangent directions seen in infrared star

counts with four logarithmic spirals. See table 1 of Englmaier &

Gerhard (1999) for other tracers of these tangent directions. The

positions of the spiral arms ri(f ) ði ¼ 1; . . .; 4Þ are given by

riðfÞ ¼ 2:33 kpc £ eðf2wbar2fiÞ£tanðxÞ;

where the angle fi ¼ 0;p=2;p; 3p=2 determines the starting angle

of a spiral arm in Galactocentric coordinates with respect to the

major axis of the bar, and x ¼ 138:8 is the pitch angle of the arms

(Ortiz & Lépine 1993). We use this four-armed logarithmic spiral

in the range between an inner radius of 3.5 kpc and an outer radius

of approximately 10 kpc. We do not ensure a smooth transition to

the bar in the parametric model. The spiral arms are modelled with

a Gaussian profile with FWHM usually <300 pc, again after Ortiz

& Lépine, but we have also computed models with <500 pc,

without improving the fit to the data as described below. In our

parametric models we treat this spiral arm model as an

enhancement of the density of our standard disc model, keeping

all the above spiral arm parameters fixed and varying only the

amplitude ds of the density modulations:

r
including spiral
d ¼ rd £

Y4

i¼1

1þ ds £ e2lnð2Þ£Dr2
i /ð0:5£FWHMÞ2

h i
;

where Dri is the (approximate) distance to the nearest point on

spiral arm i. The projected density is matched to the COBE/DIRBE

L-band data and the best-fitting parameters are found with our

implementation of the Marquardt–Levenberg algorithm (Press

et al. 1994), now with ds as an additional fit parameter. These

parametric best-fitting models (as a function of the bar angle wbar)

are used both as initial models and to define a spiral arm bias term

in the penalty function (see below) in the non-parametric

deprojection of the COBE/DIRBE L-band data.

2.2 The algorithm

Our approach is non-parametric: the idea is to maximize a

likelihood function which includes penalty terms encouraging

smoothness, eight-fold symmetry and a spiral structure close to the

imposed four-armed pattern. Thus also the bar by itself is not

forced to obey eight-fold symmetry, but will be nearly triaxially

symmetric as far as allowed by the data and the other constraints.

For the technical realization, the model density is defined on a

Cartesian grid. Stepsizes are identical in x and y. The stepsize in z is

smaller than for x and y, because we expect the most rapid spatial
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change of the density along z. The ‘standard’ grid consists of

60 £ 60 £ 41 points covering a box of ð25 # x # 5 kpcÞ £ ð25 #

y # 5 kpcÞ £ ð21:5 # z # 1:5 kpcÞ in x, y, z. The size of the box is

chosen so as to emphasize the bar region; outside its boundaries the

parametric model is left unchanged. This leads to a discontinuity in

the density at the grid boundary; for example, averaged over the

high-density region jzj # 450 pc around the grid boundary, the rms

discontinuity is ,1 per cent. The likelihood maximization is done

using a conjugate gradient method.

The likelihood function L maximized by the algorithm is

L½lnðrÞ� ¼ 2 1
2
£ x2

SB þ l £ D 2½lnðrÞ� þ o £ x2
8 þ s £ x2

spiral

n o
;

ð2Þ

where the individual penalty terms are now described in more

detail, and l, o and s are the penalty parameters.

(1) Surface brightness term:

x2
SB ¼

all SBðm;nÞ

X
½lnPðm; nÞ2 SBðm; nÞ�2; ð3Þ

where P(m, n) is the projection of the density r along the LOS at

the sky position (lm, bn) of the corresponding COBE/DIRBE

surface brightness data point SB(m, n) (natural log of flux in

MJy sr21). Only the parts of the LOS that are in the model grid are

taken into account in the projection. We therefore rescale the

observed surface brightness for each LOS by multiplying it with

the ratio of the surface density in the box to the total surface

density, calculated for the initial parametric model. SB(m, n)

denotes this box-corrected surface brightness. Outliers, i.e., data

points with a very large distance to the projection of the initial

density r0: ½lnPðm; nÞ2 SBðm; nÞ�2 $ 10Þ; are ignored in the sum

equation (3).

(2) Smoothness:

D 2½lnðrÞ� ¼
ab[rr;
ff;zz

X
wab

Interior
pointsði;j;kÞ

X
D2

ab½lnðrÞ� £ w
ab
ði;j;kÞ:

This penalty term encourages smoothness of the density

distribution by minimizing the total second derivative. All partial

second derivatives are taken into account, and are symbolized by

their ‘coordinate direction’ ab. For example, ab ¼ xy stands for

› 2/›x›y. All second derivatives are evaluated only at interior grid

points not on any boundary of the box. Because the stepsize sz in

the density grid is smaller than the stepsizes sx ¼ sy, the six

‘coordinate direction’-terms are given weights wab. These are

wxx ¼ wyy ¼ wxy ¼ 1, wxz ¼ wyz ¼ sx=sz

ÿ �2
and wzz ¼ sx=sz

ÿ �4
.

The functions Dab are first-order approximations for the second

derivatives along the ‘coordinate direction’ ab; for example,

Dxx ¼ lnðriþ1; j;kÞ2 2 £ lnðri;j;kÞ þ lnðri21;j;kÞ;

Dxy ¼ lnðriþ1;jþ1;kÞ2 lnðri21;jþ1;kÞ
� �
2 lnðriþ1;j21;kÞ2 lnðri21;j21;kÞ
� �

:

We expect significant differences in the expected second

derivatives between different parts of the grid. For example, high

rates of change of the density are expected at small Galactocentric

radii. Therefore we give each grid point and ‘coordinate direction’

ab additional individual weights w
ab
ði;j;kÞ. We have tried two

different approaches for these individual weights. Using the

density r̂ of the initial non-parametric model, we have used

wxx
ði;j;kÞ ¼ lnðr̂Þi;j;k/ 1

4
£ ½lnðr̂Þiþ1;j;k 2 lnðr̂Þi21;j;k�

2

and

w
xy
ði;j;kÞ ¼ lnðr̂Þi;j;k/ 1

4
£ lnðr̂Þiþ1;j;k 2 lnðr̂Þi21;j;k

� ���
� lnðr̂Þi;jþ1;k 2 lnðr̂Þi;j21;kÞ
� ���;

or, in the second approach, w
ab
ði;j;kÞ ¼ D2

ab½lnðr̂Þ�. We have found no

significant differences between models based the two approaches.

Therefore we do not expect a significant influence of the exact

definition of these weights on our results.

We have also tried a smoothing term defined on a cylindrical

grid, using r(r, f, z) and a smoothness penalty term

D 2½lnðrÞ� ¼
ab[rr;
ff;zz

X
wab

Interior
pointsði;j;kÞ

X
{D2

ab½lnðrcÞ� £ GabðrÞ £ w
ab
ði;j;kÞ}:

Here GabðrÞ ; 1 for ab ¼ rr ^ ab ¼ zz and GffðrÞ ¼ r/rmax. In

tests comparing the two different smoothing penalty terms we have

found that the Cartesian smoothing needs somewhat better initial

models to give good final results, while the cylindrical smoothing

introduces some bias towards round models. However, the main

results described in the sections to follow have been checked by

doing the calculations with both approaches and were found to be

identical. Our results therefore do not depend on the precise

smoothing approach and in the following, the Cartesian smoothing

will generally be used.

To close the discussion of the smoothness penalty term, we

remark on a technical detail. The algorithm to maximize the

likelihood function evaluates the gradient ›L/›½lnðrijkÞ�. This

gradient is modified slightly in the case of a Cartesian smoothness

penalty term: terms that couple a point to its neighbours of second

order (i.e., not their nearest neighbours) are then omitted. We find

that without this change the isodensity contours in the outer parts of

the final models become rectangular, because the Cartesian

smoothness term favours straight contours parallel to the

coordinate axes.

(3) Eight-fold symmetry: Triaxial symmetry with respect to

three principal planes of the bar (see Fig. 1) is an essential

requirement for being able to obtain a three-dimensional

luminosity distribution from the COBE/DIRBE surface brightness

map (Binney & Gerhard 1996). Bars in external galaxies are

observed to be approximately but not strictly eight-fold symmetric

(e.g. Sellwood & Wilkinson 1993); in our deprojection we

therefore aim to find a luminosity distribution that is as nearly

eight-fold symmetric as is compatible with the data and the

smoothness constraint. This is done by discouraging deviations

from eight-fold symmetry through the penalty term

x2
8 ¼

i;j;k

X
pairs

X
½lnðri0;j0 ;k0 Þ2 lnðri00 ;j00;k00 Þ�

2:

Here the inner sum is taken over all distinct pairs of grid points

constructed from the eight mirror-symmetric points of grid point

(i, j, k), which should have identical luminosity density if the

distribution were fully eight-fold symmetric.

(4) Spiral structure term: Generally there is not enough

information in the COBE/DIRBE surface brightness data to

determine the luminosity distribution in the Galactic spiral arms.

Essentially the only information about the spiral arms in these data
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is an enhanced surface brightness in the arm tangent directions (see

also Drimmel & Spergel 2001). Deriving a sensible model

therefore requires using additional, external information on the arm

pattern. For most of our models we assume that the Galactic spiral

arms in the NIR are described approximately by the four-armed

pattern that seems to be most consistent with observations of H II

regions, gas, young stars, and NIR starcounts (see Ortiz & Lépine

1993 and the summary in Englmaier & Gerhard 1999). We leave

open the question whether the old population of the Galactic disc

follows this four-armed or rather a two-armed pattern. In practice,

we discourage deviations from the disc part of the initial

parametric model r̂ that is also used to start the iterations, which

includes the Ortiz–Lépine spiral arm model (Section 2.1). The

penalty term is

x2
spiral ¼

k:jzðkÞj#zs

X
i;j

X
½wðkÞ þ lnðr̂i;j;kÞ2 lnðri;j;kÞ�

2; ð4Þ

with

wðkÞ ¼ ln

P
k;all i;jri;j;kP
k;all i;jr̂i;j;k

 !
:

The outer sum in equation (4) is computed over all planes parallel

to the main plane of the MW with indices k for which jzðkÞj # zs

with zs ¼ 300 pc, and the inner sum is taken over all points within

the current plane, i.e., the model is biased only towards the initial

model near the disc plane. The weights w(k ) guarantee that the

model is encouraged to resemble r̂ only in shape, but not in

normalization. In fact, the normalization ratios w(k ) are usually

somewhat different for every iteration step. We have tested that

restricting the spiral structure penalty term to R $ 3:5 kpc did not

change our models significantly.

2.3 Optimal penalty parameters from test models

Having specified the likelihood function (2), we now need to

determine the penalty parameters l, o, s which set the relative

importance of the different penalty function terms. These can be

found approximately using known test models by requiring that all

terms in the penalty function should be of the same order of

magnitude. Otherwise one of the imposed constraints would be

given too high or too low weight in the resulting model. Because

non-parametric models do differ from the test models employed in

this determination, we found it necessary to vary the resulting

penalty function parameters within an order of magnitude or so,

based on a (subjective) by-eye assessment of the final model.

The special properties of the spiral arm bias term require an

additional modification of this simple scheme. The spiral structure

is confined to the vicinity of the Galactic plane, and there it is

neither very smooth on the scale of a few grid cells, nor is it eight-

fold symmetric. On the other hand, it penalizes deviations from

some model r̂, which has a similar effect like a regularization term.

After some experimentation we found that a good solution is to

change the eight-fold symmetry parameter to 20 per cent of its

original value in the main plane of the MW and let it linearly rise

with distance jzj from the plane to its overall value. Similarly, the

smoothness penalty parameter is set to only 1 per cent of its

maximum value in the main plane, but rises very fast /½1 2 ð1 2

jzj=1:5 kpcÞ10� with distance from the central plane.

For part of the problem (data, smoothness, and eight-fold

symmetry) we have tested the above choice of penalty parameters

with a second approach. We selected two parametric models

without spiral structure, that differed by about the same amount

that we expect our initial models in deprojections of the

COBE/DIRBE L-band data to differ from the ‘true’ model. From

one of these models we generated artificial data by projecting it on

to the sky and adding Gaussian noise with s ¼ 0:076 mag. This is

the remaining rms NIR colour variation found by Spergel,

Malhotra & Blitz (1995) for this dereddened COBE/DIRBE L-band

data set. We then deprojected these data using the second

parametric model as initial model and repeated the deprojections

for a grid of points in (l, o) space. For all deprojected models we

computed the rms difference between data and projection of the

model on to the sky, and the rms difference in the natural

logarithm between the ‘true’ model and the deprojected model

on the density grid. For computational reasons we could do this

only for a coarser density grid. The resulting optimal penalty

parameters l, o, when rescaled to the original grid, agree with

the values obtained by the ‘equal penalty terms’ method to within

1–2 orders of magnitude.

2.4 Performance and limitation of the algorithm

We have tested this algorithm with noisy artificial data and initial

conditions derived from a variety of test models. Quantitative

results will be given in the next section, which studies ambiguities

in the deprojection of Galactic bar and disc models from surface

brightness data, under the assumptions made. Here we discuss only

a few qualitative points.

It is clear that information about the ‘true’ model used to

generate the artificial data is increasingly hard to recover as the

noise level approaches the magnitude of the signal that

differentiates between different models on the sky. On the other

hand, we have found that some noise is helpful as a ‘catalyst’ to

induce changes in the model.

The initial models given to the algorithm differed from the ‘true’

model by various amounts. We find that the initial model must not

be too far from the ‘true’ model. This is hard to quantify by a

distance criterion. However, the effects that occur if the initial

model is not suitable are easily visible in cuts through the density

grid, and it is therefore possible to reject such models.

Figure 1. The eight-fold symmetry term in the penalty function encourages

symmetry of the density function with respect to the mirror planes shown in

this figure. Coordinate directions are in the bar frame.

x

y

z
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If the initial model is suitable, convergence to a luminosity

distribution that fits the surface brightness map under the assumed

smoothness, symmetry and spiral structure constraints typically

takes 20–30 iterations. Otherwise the progress of the iterations

becomes very slow at some point, and the model may be caught

near something like a secondary minimum. In such cases, an

iteration step that would be required to improve the surface

brightness fit is often not undertaken, because it would move the

model too far away from eight-fold symmetry. Some secondary

minima of the likelihood function correspond to nearly perfectly

eight-fold symmetric models which have, however, physically

unreasonable density distributions. The probability that the

algorithm ends up with such a model increases with the distance

between the initial model and the ‘true’ model.

Introducing a smoothness term in a complicated x 2 fitting

problem often lessens the importance of such secondary minima.

Here the additional problem is that a third constraint, eight-fold

symmetry, must be introduced to restrict the range of possible

solutions (for fixed bar angle, the requirement of eight-fold

symmetry restricts the solution to a small subset of the very large

set of luminosity distributions which all project to the same surface

brightness distribution; see Binney & Gerhard 1996). It is easy to

see then that secondary minima based on a balance between data

and symmetry terms can appear in spite of the smoothing.

If the requirement of eight-fold symmetry is imposed only

weakly, a characteristic artefact appears in many models which we

have termed Finger-to-Sun (FTS) effect. This consists of excess

luminosity features in the nearby disc pointing towards the

observer. These arise because the deprojection algorithm

preferentially changes grid cells near the observer. The reason

for this is that grid cells near the observer appear larger on the sky,

and therefore contribute to many more surface brightness pixels

than distant grid cells do. Consequently, for a model that is off from

the ‘true’ model underlying the data by a fixed fraction of the

density in all grid cells, the total gradient ›x2
SB/›ðln rijkÞ is much

larger for grid cells near the observer (the actual value contributed

to the surface brightness of a given pixel is independent of the LOS

distance of the contributing grid cells). Therefore, without

smoothing and symmetry penalty terms, the luminosity model

would be changed mainly near the observer, resulting in the

described FTS effects.

3 H OW W E L L - D E T E R M I N E D I S T H E

D E P R O J E C T I O N O F T H E B A R ?

As a test application of our algorithm, we investigate in this section

possible degeneracies in the deprojection of a bar model for fixed

bar angle, keeping wbar ¼ 208 throughout this section. More

precisely, we ask what is the range of bar luminosity distributions

that is compatible with given surface brightness data similar in

quality to the COBE data which we will use in Section 5 for

investigating the luminosity structure of the inner Galaxy. We find

that there exists a sequence of parametric models with different bar

elongations in the Galactic plane and correspondingly different

density concentrations, that look very similar on the sky. Then we

use the non-parametric algorithm to estimate the width of the

‘valley’ of acceptable models around the sequence of degenerate

parametric models. Finally, we show that observations such as the

apparent magnitude distributions of clump giant stars by Stanek

et al. (1997) contain sufficient distance information to break this

degeneracy, which incidentally is different from the well-known

degeneracy in the bar angle wbar (Binney et al. 1997; Zhao 2000).

We first generate artificial data by projecting a parametric model

on to the sky. This model (denoted s1p) is defined by equation (1),

with bar parameters h ¼ 0:5, z ¼ 0:6, am ¼ 1:8 kpc and disc

parameters z0 ¼ 208 pc, Rd ¼ 2:44 kpc, and does not have spiral

arms. We add Gaussian noise to these data, similar in amplitude to

that expected for the COBE/DIRBE L-band data used later, for

which sSB ¼ 0:076 mag (Spergel et al. 1995); see Section 4.1 for a

discussion). The parametric model is a best-fitting model for the

COBE/DIRBE L-band data for wbar ¼ 208.

Next, we fit other parametric models to these model surface

brightness data. In these models we hold fixed the bar elongation h.

To decide whether a model is a valid match to the data, we define

two criteria: (i) the average square deviations of the projected

model from the artificial data in magnitudes (hereafter model

RMS) must not be worse by more than 20 per cent in the bar region

jlj , 368 ^ jbj , 118 than for the ‘true’ model, and (ii) there must

not be major parts of this region where a systematic error larger

than the approximate average statistical error occurs in the residual

map.

With these criteria, we find a sequence of parametric models that

are indistinguishable on the sky, i.e., for which systematic

deviations between model and data are smaller than the noise in the

data. Fig. 2 compares model s1p with another parametric model

s2p, which is on this sequence. Model s2p has bar parameters

h ¼ 0:603, z ¼ 0:68, am ¼ 1:5 kpc, significantly different from

model s1p, but looks very similar on the sky. Models on this

sequence are characterized by a degeneracy between the input bar

elongation in the xy-plane, h (see equation 1), and the central

concentration of the model. This is parametrized as the half-

mass radius r0.5, defined as the elliptical radius r0:5 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ ðy 2=h 2Þ þ ðz 2=z 2Þ

p
that contains half of the mass of the

bar/bulge inside an elliptical radius of 3.5 kpc.

In Fig. 3 the sequence of parametric models is depicted in the

r0:5 2 h plane as the filled hexagons connected by the full line. The

parametric model at the lower right end of this sequence is just still

a valid model as defined above. For models with even smaller h the

deviations from the artificial data rise rapidly. Fig. 4 shows the

model RMS on the sky, for parametric models both on the sequence

and on its extensions to higher and lower h, where the latter fail to

Figure 2. Two parametric models on the degenerate sequence for

wbar ¼ 208. Note how similar models s1p (upper panel) and s2p (lower

panel) appear to the observer.
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pass our criterion for a valid model. On the high-h extension of the

sequence, the model RMS rises fairly slowly, but these models

have regions with too large systematic deviations from the

projected data, which increase with increasing h. From Fig. 3,

parametric models thus have an uncertainty in their model

parameters of ^0.1 in h and ^20 per cent in r0.5 for given data on

the sky.

We now consider non-parametric models obtained with the

deprojection algorithm described in Section 2. First, we start the

algorithm from initial models on the parametric sequence,

resulting in models s1 and s2 from the initial s1p and s2p. For

the non-parametric models we estimate h by measuring the

elongations of the surface density contours of the bar, determined

from a projection of the model density along the z-axis, but

excluding the region jzj # 225 pc to reduce the impact of the

strong axisymmetric disc. This is a good approximation, because

the bulges in these models are near-ellipsoidal. We measure the

half-mass radius r0.5 from the density distribution of the bar/bulge

only, obtained by subtracting the disc density of the parametric

initial model given to the algorithm, from the density distribution

of the final non-parametric model. We have checked by visual

inspection that the resulting bulge densities are reasonable. Fig. 3

shows that models s1p and s2p lie very close to s1 and s2. The

similarity of initial and final models is also obvious from a

comparison of cuts through the densities. We conclude from this

exercise that the deprojection algorithm does not introduce any

significant bias in the final model, e.g., in the resulting value of h.

We will next discuss non-parametric models started from

parametric models off the degenerate sequence, in order to

investigate how broad the valley of acceptable models surrounding

the sequence is. Several such models ðs3–s10Þ are shown in the

r0:5 –h plane of Fig. 3, as stars for the respective initial parametric

models, and as hexagons and crosses for the final non-parametric

density distributions after around 50 iterations. Clearly, the

algorithm evolves these models to the vicinity of the parametric

sequence. Whether these non-parametric models are acceptable

cannot be decided only on the basis of the model RMS on the sky,

however. For in a non-parametric model, substantial grid cell to

grid cell noise can be introduced in order to improve the match to

the data, which beyond a certain point is clearly unphysical.

Therefore some measure of smoothness must be introduced in

judging a model’s validity.

We measure the smoothness S of some model M as the sum of

the absolute differences in logarithmic density, between M and a

smoothed version of M. S will be small for smooth M and large for

noisy M. In determining S we sum only over grid cells with

jzj # 750 pc, to avoid contributions from fluctuations in regions of

the density grid where the density is very small. We smooth a

model as follows, working with logarithmic model densities. (i) We

resample each z-plane of the model on a cylindrical grid of 30

linearly spaced points in r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
out to r ¼ 7 kpc, and 60

points in azimuth f. (ii) We smooth the model over five points, first

in the f-coordinate, then in r, and finally in z, using second-order

polynomials (Savitzky–Golay filters; see Press et al. 1994). In this

way, azimuthal gradients in the central parts of the model are not

smoothed away. (iii) We re-interpolate to the original Cartesian

grid. (iv) In models with spiral arms, this procedure must be

modified because the spiral arms imply density changes on small

scales. For example, on a circle at a galactocentric radius of 5 kpc,

the distance between adjacent points in f in our smoothing

algorithm is <500 pc; therefore the smoothing length is of the

same order as the spiral arm FWHM. Thus, before actually

smoothing the model, we subtract from the density at every grid

point the density of the spiral arm contribution in the initial

parametric model, rescaled in each xy-plane separately. The

rescaling factor for each xy-plane is determined by requiring that in

Figure 4. RMS SB residuals, xSB, in magnitudes, for parametric models on

the degenerate sequence, plotted as a function of in-plane axial ratio h

(equivalent to varying r0.5). Diamonds indicate models on the sequence, and

stars models on the extensions of the sequence.

Figure 3. Parametric and non-parametric luminosity models for surface

brightness data obtained from projecting model s1p under wbar ¼ 208 and

adding noise. All models are plotted in a plane according to their half-mass

radius r0.5 and bar elongation h. The full line delineates the sequence of

degenerate parametric models which project to indistinguishable SB data.

These models are indicated by the filled hexagons along this line. The

dashed lines connect parametric models (stars) on the extensions of this

sequence towards high and low h. These models are not acceptable, because

they either show too large systematic devations from the data, or have

quality grade F . 3 (see equation 5). Models s1–s10 are obtained from

non-parametric, iterative deprojections of the model SB data. Of these, s1,

s2 were started from parametric models (s1p, s2p) along the sequence.

Their proximity to the original (s1p, s2p) demonstrates the absence of

significant bias in the algorithm. The other non-parametric models were

started off the sequence (stars at one end of the short lines denote the initial

configurations) and are separated in the figure into acceptable final models

(filled hexagons, F # 3Þ, marginally acceptable models ð3 , F # 4, large

‘X’), and inacceptable models ðF . 4, small ‘x’).
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this plane the rescaled mass of the initial model is the same as that

of the (non-parametric) model that we actually smooth. Having

subtracted the rescaled spiral model, we smooth the remaining

luminosity distribution as in (ii), and then add the subtracted spiral

density back to the smoothed density. This spiral arm preservation

procedure is restricted to model planes with jzj # 450 pc, because

the initial spiral models only extend to this height. The procedure

ensures that the spiral arm component does not contribute to the

final difference between M and the smoothed version of M, i.e., to

S.

Fig. 5 shows the final non-parametric models considered in this

section in a plane of model RMS xSB and smoothness S. The best

non-parametric models have S . 4000, parametric models have

typically S . 3000, and models with S * 7000 are not smooth

enough to be acceptable. We illustrate this in Fig. 6, which shows

cuts through model s4c (which has S < 9400Þ at z ¼ 75 pc and

model s10b (with S < 5400Þ, also at z ¼ 75 pc.

We can now define a criterion to decide whether a non-

parametric model is an acceptable representation of the SB data. To

this end we introduce the quality grade

F ¼
xSB

0:076 mag

� �2

þ
S

S0

� �2

; ð5Þ

where S0 is a measure of S for the ‘best’ non-parametric models we

find. We use the average S0 ¼ 4827 of the three non-parametric

models s9(a), s9(b) and s10(a) printed in bold in Fig. 5. F is smaller

for models that fit the data better and that are smoother. The

maximum value of F for an acceptable model is somewhat

subjective; we decided for F # 3. This results in xSB & 0:11 mag

for a model with S , S0 and S & 6800 for a model with

xSB , 0:076 mag. Models which violate the latter criterion are not

smooth enough to be viable (see Fig. 6).

We have used the F-criterion to separate the final non-parametric

models s3–s10 in Fig. 3 into valid and non-valid models. Filled

hexagons indicate acceptable models ðF # 3Þ, large ‘X’ margin-

ally acceptable models with 3 , F # 4, and small ‘x’ unaccep-

table models with F . 4 (of the three models computed with

different l, the one with lowest F is always shown). The hexagons

thus mark the width of the valley of acceptable models associated

with the sequence. This width, set by the model RMS and

smoothness, translates to an uncertainty in the structural

parameters of a non-parametric model of <^0.1 kpc in the half-

mass radius r0.5 and <^0.05 in the bar elongation h. These are

smaller than the uncertainties due to the existence of the degenerate

sequence itself.

Having quantified the uncertainties due to the extent and width

of the degenerate sequence, we now show that these uncertainties

can be much reduced if additional distance information is used,

such as is available in the apparent magnitude distributions of

clump giant stars. Stanek et al. (1994, 1997) have observed clump

giant distributions in a number of fields towards the bulge. In Fig. 7

we plot such distributions for three models on the parametric

sequence and one at the edge of the valley of acceptable models

around it. The relevant quantity is rr 3, which has one extra power

of r over that from the volume effect, due to the conversion of

distance to magnitudes. The predicted distributions are different

for the models on the sequence. Depending on the errors in the

observations, it is thus possible to discriminate between these

models through their clump giant distributions. The clump giant

distributions of models s3p and s1p are very similar; however,

these models can be discriminated on the basis of their projected

surface brightness maps, using, e.g. the F-criterion. Model s3p is

not an acceptable model for the data generated from s1p. The

experiments conducted in this section make it likely that using the

goodness-of-fit F and the clump giant constraints together breaks

the degeneracy in bar/bulge models that exists for fixed wbar.

4 D E P R O J E C T I O N O F T H E I N N E R G A L A X Y

In this section we apply the algorithm to the COBE/DIRBE data,

using the dust-corrected L-band map of Spergel et al. (1995). These

authors took the 240-mm COBE/DIRBE map as a tracer for the

distribution of dust to correct the COBE/DIRBE near-infrared

(NIR) J-, K-, L- and M-band data for dust absorption. They

simultaneously fitted parametric models for the dust and stars, and

with these models they computed dereddened NIR surface

brightness maps. The K-band emission near l < 2:2mm is

dominated by starlight, and is only moderately affected by dust.

In the L-band, near l < 3:5mm, emission by hot dust and

interstellar gas may be slightly more important, but dust extinction

is reduced by about a factor of 2 in magnitudes as compared to the

K band. Because in some inner Galaxy regions extinction is

significant even in the K band, we have decided to use the L-band

data in this paper.

After dereddening, Spergel et al. (1995) found a mean dispersion

s < 0:076 mag in colour between the K- and L-band maps. If we

could assume identical Gaussian noise in both maps, 0:076/
ffiffiffi
2
p

mag

would be a straightforward value to use for the SB error in the L

band, sSB. However, the dominant sources of noise are probably

systematic errors in the dust correction, correlated over several

pixels and between the NIR maps, especially near the Galactic

equator. In this case the true errors in the data would be larger. We

therefore take a more conservative approach and use

sSB < 0:076 mag. In the non-parametric deprojections of the

NIR data described below we have therefore tailored the

Figure 5. Non-parametric luminosity models s3–s10 obtained from model

SB data with the algorithm described in Section 2. The parametric models

s1p from which the data were generated, and s2p on the degenerate

sequence, are also shown. The models are characterized by their

smoothness S (smaller S means smoother), and by their rms difference

xSB with respect to the SB data on the sky, in magnitudes. Most models have

been calculated with three values of the parameter l; the last symbol ‘a’,‘b’

or ‘c’ in the non-parametric model name (for example, s4a) indicates l,

decreasing from ‘a’ to ‘c’ in multiplicative steps of 10. Model names

printed in bold denote acceptable models, i.e., have quality grade F # 3

(see equation 5).
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Figure 7. Predicted number of clump giant stars in three fields observed by Stanek et al. (1997), versus relative distance modulus in magnitudes, for parametric

models s1p (upper left), s2p (upper right), s3p (lower left), and the parametric model with bar elongation 0.41 also along the degenerate sequence in Fig. 3

(lower right). From the differences in height and location of the peaks in these distributions, it is possible to discriminate between models on the sequence.

However, a comparison of the two panels on the left shows that some models off the sequence can mimic the clump giant distributions of models on the

sequence. Such models have to be discriminated by their goodness-of-fit for the surface brightness data.

Figure 6. A comparison of cuts through two models with significantly different smoothness S at z ¼ 75 pc. Left: Model s4c ðS < 9400Þ Right: Model s10b

(with S < 5400Þ. We consider model s4c not smooth enough to be acceptable.
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smoothness penalty function parameters such that we get models

with rms noise of this order.

The models that we obtain from deprojecting the COBE/DIRBE

L-band data will then be verified a posteriori by comparing with the

apparent-magnitude distributions for clump giant stars, measured

by Stanek et al. (1994, 1997) along certain lines-of-sight towards

the Galactic bulge. Clump giants have nearly identical absolute

magnitudes, with a small dispersion of , 0:2–0:3 mag, and it is

therefore possible to derive their distance distribution (in a

statistical sense) from their observed magnitude distribution.

Stanek et al. (1997) analysed colour–magnitude diagrams (CMDs)

in several OGLE fields, including Baade’s window and two nearly

symmetric fields at ðl; bÞ < ð248:9;238:4Þ and (258:5, 2 38:4).

They determined extinction-insensitive magnitudes VV2I ¼

V 2 2:6 £ ðV 2 IÞ; and plotted histograms of the number of stars

as a function of magnitude using DVV2I ¼ 0:057-mag bins for the

stars in the part of the CMD dominated by bulge red clump stars.

The red clump distributions along these lines of sight peak at

different distances; using a bootstrap technique, Stanek et al.

(1994) determined a relative distance modulus of 0:37 ^

0:025 mag between the lines of sight at l < 58 and l < 258, and

0:15 ^ 0:02 mag between Baade’s window and the field at

l ¼ 24:98. These asymmetries provide independent evidence for

a non-axisymmetric luminosity distribution in the inner few kpc of

the MW, but will be used here to check the three-dimensional

luminosity distribution of our models for the L-band flux data.

In Sections 4.1 and 4.2 we deproject the data with and without

inclusion of spiral structure in the model, using a bar angle wbar ¼

208 in both cases. This will demonstrate that inclusion of spiral

structure leads to a better model for the COBE/DIRBE L-band data,

and results in a more elongated shape for the barred bulge. In

Section 4.3 we constrain the acceptable range of bar angle from a

set of models with different wbar, together with the clump giant

data.

In all cases, the non-parametric density estimation procedure

begins with fitting a parametric model to the data. This is used in

the non-parametric deprojection in three ways: (i) as a starting

model of the iterations, (ii) to correct for the limited size of the

model density grid, and (iii) in models that include spiral structure,

to define the spiral structure penalty function term.

4.1 Models with bar but without spiral arms

To find a model for the COBE/DIRBE L-band data without spiral

arms, we start the iterations from the parametric model given by

Binney et al. (1997), and set the spiral structure penalty term in the

likelihood function to zero. Fig. 8 shows the surface brightness

map of this non-parametric model compared with the COBE/

DIRBE L-band data. It fits the COBE data well; the iterations were

stopped when the model RMS reached 0.073 mag. On the left-hand

side of Fig. 9 we show two cuts through this model, in the upper

panel a cut in the xy-(main) plane, and in the lower panel a cut

parallel to the xz-plane, at y < 85 pc. In the xy map we can see

overdensities that point from the observer (at x < 7:5 kpc and

Figure 8. Surface brightness maps of the model without spiral arms (upper panel), and our reference model 20A including spiral arms (lower panel). Full

contours show the model surface brightness, dashed contours the COBE/DIRBE L-band data. Contour levels are in magnitudes with some arbitrary offset,

common to both panels. Both surface brightness maps are very similar, and fit the COBE/DIRBE L-band data with very similar x 2. The underlying models are

non-parametric on a grid of 5 £ 5 £ 1:5 kpc3, and are continued by the initial parametric models outside of this grid for the projection on to the sky.
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y < 2:7 kpc) towards the tangential points of the spiral arms, at

approximately l ¼ ^308 and l ¼ 2508 (see also Drimmel &

Spergel 2001).

Can we find a model of the MW without spiral arms which fits

the COBE/DIRBE L-band data as well as this model, and does not

have such features? To try to eliminate these overdensities, we have

computed models with larger penalty parameters for deviations

from eight-fold symmetry and/or smoothness. However, we have

only found models which either contain similar features in the

directions to the spiral arm tangent points and achieve a ‘good’

model RMS < 0:07 mag, or models which are smooth and nearly

eight-fold symmetric without such features, but which then fit the

data badly (model RMS * 0:2 magÞ. Smooth models which fit the

data well without these features do not seem to exist. This suggests

that a spiral arm component is implied by the data, i.e., the

luminosity in these features is real, but the shift towards the

observer is due to the FTS effect discussed in Section 2.4.

We mention that a similar effect was observed by Binney et al.

(1997) in their Richardson–Lucy (RL) models. They used the same

data of Spergel et al. (1995), and in their models found symmetric

density enhancements at 2–3 kpc down the minor axis of the bar.

They suggested that these features might be caused by spiral arms

being symmetrized by the RL algorithm, which forces the models to

be eight-fold symmetric. In contrast to the RL models, our

deprojection algorithm favours changes to the model density near

the observer, and so in the model discussed here the spiral arm

overdensities are placed near the observer. The projected bar

elongation in our model without spiral arms is 0.56 ðjzj . 225 pcÞ,

comparable to that in the model of Binney et al. (1997).

4.2 Models with bar and spiral arms

We have seen that models for the MW L-band luminosity density

develop overdensities near the observer, towards the tangential

directions of Galactic spiral arms, when started from triaxially

symmetric initial distributions. Thus we now proceed with a non-

parametric density estimation of the data by a model which

includes spiral arms. We show that the inclusion of spiral structure

not only improves the model for the COBE/DIRBE L-band data,

but also results in a better match to the LOS distributions of clump

giants towards certain bulge fields. We also show that the derived

structure of the bulge/bar does not depend significantly on whether

the assumed spiral model is two- or four-armed.

First, we fit a parametric model to the COBE/DIRBE L-band

data, continuing to assume a bar angle wbar ¼ 208. This model has

the following bulge parameters (see Section 2.1): h ¼ 0:31,

z ¼ 0:38, am ¼ 2:8 kpc, a0 ¼ 0:1 kpc, r0
b ¼ 1180 CLU, bar angle

wbar ¼ 208; disc parameters: Rd ¼ 2:2 kpc, a ¼ 0:65, z0 ¼

0:19 kpc; z1 ¼ 0:042 kpc, r0
d ¼ 0:54 CLU= kpc3; and spiral arm

amplitude: ds ¼ 0:90, for the four-armed logarithmic spiral arm

model similar to that of Ortiz & Lépine (1993). Here CLU are

COBE luminosity units as in Binney et al. (1997).

Starting the algorithm from this configuration and including the

spiral structure penalty term, we find a best non-parametric density

model. This model was selected from a number of calculations run

to fine-tune the penalty function parameters, optimizing both the

RMS and the model smoothness. This model, stopped at

RMS < 0:079 mag, is one of our best if not the best model, and

will be used as reference model ‘20A’ in what follows, deferring

Figure 9. Comparison of the models with and without spiral structure: in the main plane of the MW (upper panels), and in a plane parallel to the major and

minor axes of the bar at the first grid point y < 85 pc (lower panels). Both models are for bar angle 208. Contours are in logarithmic density (in CLU/ kpc3), and

printed in the plot. Left: The model without spiral structure, obtained from a (parametric) triaxially symmetric initial bar model. This model shows deviations

from eight-fold symmetry in the xy-map. These overdensities approximately point from the observer (at x < 7:5 kpc and y < 2:7 kpcÞ towards the tangential

points of the spiral arms. Right: Our reference model 20A including spiral arms. Both the (parametric) initial model and the penalty function in this non-

parametric density estimation contain a spiral structure term.
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the discussion of the acceptable range of wbar to Section 4.3 below.

The RMS for this model is similar to that for the model without

spiral arms; the difference is not significant. Correspondingly, both

models look very similar on the sky and match the data well; see

Fig. 8. The main difference is in the three-dimensional structure:

Fig. 9 shows cuts through both models. In the model with spiral

arms, these arms provide most of the non-axisymmetric density.

Some residual luminosity is still required towards some of the arm

tangent points, but deviations from point-symmetry in the Galactic

plane near the Sun ðx $ 3 kpc, jyj # 5 kpcÞ are reduced by a factor

of .4.5 (NB: the spiral arms remain nearly point-symmetric

during the iterations).

The quality of the model fit to the COBE/DIRBE L-band data,

especially for the non-axisymmetric bar/bulge, is visualized by the

asymmetry maps shown in Fig. 10. These maps show the difference

between the logarithmic fluxes at positive and negative longitudes,

SBðjlj; bÞ2 SBð2jlj; bÞ for both our reference model 20A and the

COBE/DIRBE L-band data. Generally, the model is smoother than

the data, but it reproduces the main bar-related features of the

observed map well. Note the good recovery of the regions with

clear bar signature around ðl; bÞ < ð88;^58Þ, and the change of sign

of the asymmetry near the Galactic Centre. Here the far side of the

bar appears brighter, a signature of a bar with its near end at

positive longitudes (Blitz & Spergel 1991). The most obvious

differences between both maps are in a strong feature at ðl; bÞ <
ð148; 08Þ in the observed map, which may be local, and in the

contours near zero asymmetry, which are most affected by noise.

Fig. 11 shows the density of model 20A projected along the

z-axis for jzj . 225 pc. The density near the main plane of the MW

is excluded to avoid modifying the bar contours by the strong,

nearly axially symmetric inner disc component. In model 20A the

bar is more elongated than in the model without spiral arms. This is

because for the relative geometry of the arms, the bar, and the

position of the Sun, the spiral arms make the model appear broader

in longitude on the sky, and for fixed observed asymmetry this

allows the bar to be more elongated in the plane. The projection

also stresses the true extent of the bar, which is .3.5 kpc. The

measured projected bar elongation in the xy-plane is . 10 : 3–4.

The contrast in the total face-on surface density between ðx; yÞ ¼

ð2:5 kpc; 0Þ and ðx; yÞ ¼ ð0; 2:5 kpcÞ is a factor of .1.6. A fit to the

disc profile in the radial range between 3.5 and 5.5 kpc gives an

exponential radial scalelength of 2.1 kpc.

We now compare the three-dimensional structure of the model to

the observations of Stanek et al. (1994, 1997). These authors

Figure 10. Asymmetry maps for the COBE/DIRBE L-band data and for the reference spiral model. The COBE data were smoothed with a Savitzky–Golay

filter (Press et al. 1994, setting their M ¼ 5Þ to reduce noise. Contours show the asymmetry in magnitudes between positive and negative longitudes. Dashed

contours indicate negative values. Positive values indicate that the MW is brighter at positive longitudes. Contour spacing is 0.1 mag, and the bold contour is at

0 mag (no left–right asymmetry). In the plot for the model a dotted contour is drawn additionally at 20.05 mag.

Spiral arms, bar shape and bulge microlensing in the Milky Way 601

q 2002 RAS, MNRAS 330, 591–608



determined the LOS distributions of clump giant stars for a number

of fields towards the bulge/bar. Because these stars are of nearly

identical absolute magnitude within a small dispersion, measuring

their brightness distribution at a certain position on the sky

provides a profile of their density along the respective LOS. The

apparent magnitude of the peak of the distribution locates the

highest density point along the LOS. The difference in the apparent

magnitude of the peak between various bulge fields, especially

between the fields at l < 258:5 and l < 248:9, reflects the shape of

the non-axisymmetric bar/bulge density distribution. These data

therefore provide an independent and strong test for the

COBE/DIRBE density models. Note that the clump giant density

maxima along the LOS are insensitive to a possible radial gradient

in the ratio of clump giant stars to L-band luminosity.

For the comparison we fold the model LOS density distributions

with a Gaussian exp 2ðDmag2/2s 2Þ, to simulate the intrinsic

dispersion of clump giant absolute magnitudes. In the literature,

values 0:1 & s & 0:3 mag have been proposed (Stanek et al. 1997;

Stanek & Garnavich 1998; Paczynski & Stanek 1998). See fig. 3 of

Perryman et al. (1997) for an impression of the sharpness of the

clump in V, and Udalski (2000) for an analysis of the metallicity

dependence on the mean I-band brightness. We have explored a

number of different values for s between 0.2 and 0.4 mag, and

finally decided for s ¼ 0:3 mag, because with this value our

models reproduce best the observations. For each model we need to

select two additional parameters, the normalization of the model

density and a shift in magnitudes. These represent the (unknown)

conversion factor between model density units and the number

density of clump giant stars, and the absolute magnitudes of clump

giants. For model 20Awe determine these two parameters such that

they fit best the observations at l < 58:5 (field M7) and l < 248:9

(field M5).

Fig. 12 shows that the LOS distributions of model 20A compare

well with the clump giant observations of Stanek et al. Fitting

Gaussians to the upper parts of the model curves yields an

asymmetry of 0.44 mag between the lines of sight at l ¼ 248:9 and

l ¼ 58:5, even somewhat larger than observed. Also the relative

peak heights and approximate widths of the model distributions

agree with the data within ,10 per cent. These are less of a

constraint on the bulge shape, however, because they are influenced

by other parameters like the density concentration of the bulge and

the clump width s. We remark that the choice of model

normalization factor such that the main difference is in the peak

height of Baade’s window distribution is arbitrary; we could also

have decided to make a near-perfect fit to Baade’s window

distribution and a 10 per cent error in the peak heights of the other

two distributions, i.e., the model is slightly more centrally

concentrated than the clump giant distribution.

The measured asymmetry in the new model is significantly

larger than in the eightfold-symmetric RL models of Binney et al.

(1997) and Bissantz et al. (1997). These models have a maximal

asymmetry <0.27 mag, and generally #0.2 mag, compared to the

Stanek et al. (1994) result of 0:37 ^ 0:025 mag. As Fig. 13 shows,

it is also significantly larger than the asymmetry in the model

without spiral arms from Section 4.1, which is not a good fit to the

clump giant data. In Fig. 13, the magnitude scale for the different

models has been chosen so that they all match the observed

distribution in field M7. The smaller asymmetry of the model

without spiral arms thus becomes apparent as deviations in the

peak positions in BW and, in particular, field M5. The spiral model

20A has a greater asymmetry in the peak positions for these fields

because the elongation of its bar is larger, as discussed above.

Fig. 13 also shows a model ‘20B’, which was obtained by

deprojecting the COBE data with a modified broad spiral arm

model of FWHM 500 pc, and a model ‘20S’, which is a smoothed

version of the standard model with bar angle 208. For the

smoothing we have used the algorithm described in Section 3 in the

form that preserves the spiral arms. Model 20S shows that small-

scale structure in the luminosity model does not influence the

model clump giant distributions in these bulge fields significantly.

Model 20B is actually a better fit to the amplitudes of the observed

distributions than our reference model 20A. However, it does not fit

the L-band data as well (see Section 4.3 below).

So far we have considered luminosity models in which the spiral

arm component, if present, has a four-armed structure. This is

based mainly on observations of gas tracers (see Vallée 1995 and

Englmaier & Gerhard 1999). However, it is unclear whether the

MW has two or four stellar spiral arms. In the L-band data the

tangent point at l < 508 is not visible. This may point to a two-

armed structure; however, this tangent point is also weak in CO,

possibly due to the geometry of the LOS through this arm (Dame,

private communication). Drimmel & Spergel (2001) argue that the

Sagittarius-Carina arm is – at least – weaker than the other arms.

Therefore we now ask whether our results on the structure of the

bar/bulge depend on the assumption of a four-armed spiral model.

We have generated two non-parametric models of the COBE/

DIRBE L-band data in which a two-armed parametric model was

used both for the starting model and the spiral arm penalty term.

The bar angle is still assumed to be 208. In the first model, the arms

start near the major axis of the bar, and the pitch angle is half that

used in the four-armed model above. In the second, we omit the

Sagittarius-Carina arm and its counter-arm, the arms start near the

minor axis of the bar, and the pitch angle is the same as in the four-

armed model. Compared with the four-armed model 20A, both

two-armed models found by the algorithm show only minor

Figure 11. Projection of our model 20A on to the xy-plane. To avoid

modifying the bar contours by the strong, nearly axially symmetric disc

component, only the density at jzj . 225 pc was integrated. The length of

the bar is .3.5 kpc and its elongation is . 10 : 3–4. Contours are in

logarithmic surface density, with relative contour values indicated on the

plot.
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differences. They fit the COBE/DIRBE L-band data equally well as

model 20A; the asymmetry in the clump giant LOS distribution

peak positions differs by & 0.03 mag, the peak heights differ by

& 12 per cent, and the elongation of the bar/bulge differs by & 4

per cent. It appears therefore that the Scutum-Crux arm is most

important for the deprojection of the bar. Thus the assumption of a

four-armed spiral model does not significantly bias the results

obtained for the structure of the bar/bulge.

We end this section by a short summary of its main results. The

first is that inclusion of spiral structure improves the model of the

COBE/DIRBE L-band data in the sense of removing unphysical

structures in the disc plane. Second, in models including spiral

structure the bar is more elongated as compared to triaxially

symmetric models and, third, this more elongated bar gives a better

representation of the observed apparent magnitude distributions of

clump giant stars in several bulge fields.

4.3 Constraining the bar angle

In the previous section we have described model 20A for bar angle

wbar ¼ 208 as our reference model. We will now construct similar

models for a variety of bar angles, and use them to constrain the

possible range of wbar. This will also make clear why we selected

model 20A. We will compare these models in three different ways.

In the first (and weakest) test we use the quality of fit of the COBE

data for the best-fitting parametric models used as starting models

Figure 13. Comparison of observed clump giant LOS distributions with several models, all for wbar ¼ 208: the model without spiral arms of Section 4.1 (full

curve), our reference model 20A with spiral arms (dot-dashed), a similar model with broad spiral arms (20B, dotted), and a smoothed version of the reference

model (20S, thick dot-dashed).

Figure 12. Line-of-sight distributions of clump giants in the directions of three fields observed by Stanek et al. (1994, 1997), with symbols as given in the figure

legend. The abscissa is their VV2I. For field M7 the observed counts were averaged over two CCD frames of equal angular size; for field M5 one CCD frame

and for Baade’s window six frames were used. The curves show our best-fitting model including spiral arms. For the model, two constants were adjusted by eye

as follows: (i) The model distributions were shifted along the abscissa such that the l ¼ 58:5 and l ¼ 248:9 peaks match best the locations of the observed peaks.

(ii) The normalization of the model curves was determined such as to approximately match the normalization of the observed distributions in the fields M5

ðl < 248:9Þ and M7 ðl < 58:5Þ. The resulting shift and normalization are then applied to all model distributions simultaneously. All model distributions are

convolved with an assumed width of the clump giant intrinsic luminosity distribution of 0.3 mag.
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in the non-parametric deprojections. In the second test we compare

the non-parametric models themselves, using the F-criterion of

Section 3 which measures a combination of quality of fit to the data

and model smoothness. Finally, the third test uses the distribution

of clump giant apparent magnitudes along the LOS measured by

Stanek et al. (1994, 1997).

We have non-parametrically estimated the COBE data for bar

angles wbar ¼ 108; 158; 208; 258; 308; 358; 448, using the standard

four-armed spiral model, and additionally for wbar ¼ 208 using a

model with broad spiral arms of FWHM 500 pc. In each case we

started the iterations from a corresponding parametric best-fitting

model.

First, we analyse these parametric initial models, and find that

they fit best the part of the sky dominated by the central bulge/bar,

around jlj < 88, b < ^58, when the bar angle is 208 # wbar # 308.

For other bar angles the models show systematic deviations from

the COBE/DIRBE L-band data in these regions in (l, b), symmetric

to the Galactic equator.

Second, we compare the non-parametric models using the

F-criterion (goodness of fit combined with smoothness), as

introduced in Section 3. Their smoothness parameters S and model

RMS are shown in Fig. 14. Models in the lower left corner give the

best fit to the surface brightness and have the highest degree of

smoothness. Acceptable models ðF # 3Þ are the standard model

20A ðwbar ¼ 208Þ, and the wbar ¼ 258 model. The wbar ¼ 208 model

with broad spiral arms is marginally acceptable ð3 , F # 4Þ. The

other models are not satisfactory: they are either too unsmooth or

do not fit the SB data well. We illustrate the trade-off between

goodness of fit and smoothness in these cases with two models for

wbar ¼ 358 and wbar ¼ 448, obtained with different smoothness

penalty parameters l. One of these is clearly not smooth, and the

other is smooth but fits the COBE data poorly. We conclude that bar

angles 208 # wbar # 258 are preferred.

Finally, we compare the predicted clump giant LOS distributions

of these models with observations by Stanek et al. (1994, 1997) in

Fig. 15. The intrinsic dispersion of clump giant absolute

magnitudes is again set to s ¼ 0:3 mag (see Section 4.2). The

remaining free parameters of the models, that is the normalization

and the magnitude shift, are fixed by optimizing the model fit to the

observations in field M7. These parameters are then identical for all

fields.

Fig. 15 shows that several models fit the observed clump giant

LOS distributions nearly equally well. None of the models fits the

observations in field G11 [at ðl; bÞ < ð88:2;248:4Þ�, probably since

these data are strongly influenced by the underlying broad

population of stars (the power-law part in the luminosity function

fitted by Stanek et al. 1994, 1997). The models with wbar ¼ 108 and

wbar ¼ 448 provide inferior fits to the data. The wbar ¼ 108 model

has wrong peak positions, heights, and widths for fields TP8 [at

ðl; bÞ < ð20:18;28:08Þ� and M5, and in Baade’s window the peak

width is too large. The wbar ¼ 448 model shows wrong peak

positions in Baade’s window and field M5, and a deficit in

asymmetry between Baade’s window/field M5 and field M7 (for

this model the fit can be improved slightly by using a very high

intrinsic dispersion s * 0:4 mag. However, this is far above

published values; see Section 4.2). The other models with 158 &

wbar & 308 cannot be distinguished on the basis of the present data.

In summary, a bar angle 208 # wbar # 258 is consistent with all

three tests. The clump giant data are consistent with a wider range,

158 # wbar # 308; however, for wbar ¼ 158 and wbar ¼ 308 we have

not been able to find models passing the F-criterion (goodness of fit

combined with smoothness). The 208 model 20A stands out by its

smoothness.

5 M I C R O L E N S I N G

We will now provide predictions for the microlensing optical depth

for our NIR models. The required conversion factor from

luminosity density to mass density can be found from fitting the

observed terminal velocity curve with a model for the gas flow in

the gravitational potential of the bar and disc, assuming spatially

constant L-band mass-to-light ratio M/LL (Bissantz et al. 1997;

Englmaier & Gerhard 1999). In a forthcoming paper (Bissantz,

Englmaier & Gerhard, in preparation) we will describe SPH

simulations of the gas dynamics in the potentials of the new

luminosity models presented in the present work. The value of

M/LL derived from the terminal curve depends somewhat on the

precise model parameters, for example, the pattern speed. For the

best SPH model it is M/LL ¼ 3:9 £ 108 M(/CLU, and between the

various models it varies in the range ð3:7 2 4:1Þ £ 108 M(/CLU,

i.e., by ^5 per cent. In the following we will use

M/LL ¼ 3:9 £ 108 M(/CLU.

With this value, the optical depth towards Baade’s window (BW)

ðl ¼ 18; b ¼ 238:9Þ for our reference model 20A is t26 ¼ 0:95 for

the full sample of source stars, using b ¼ 21 in the parametriza-

tion of Kiraga & Paczynski (1994) in accounting for a magnitude

cut-off. For clump giant sources only it is t26 ¼ 1:39 in BW

ðb ¼ 0Þ. In Fig. 16 we present optical depth maps for both cases,

predicted from model 20A, over the entire inner Galaxy region. At

constant mass normalization, the range in luminosity density

through BW predicted by models 15, 20B and 30 corresponds to an

uncertainty in t of about 10 per cent.

Figure 14. Smoothness parameter S and model RMS xSB for non-

parametric models with spiral arms of the COBE/DIRBE L-band data, for

bar angles 108 # wbar # 448. Models in the lower left of the diagram both

provide a good fit to the surface brightness and are the smoothest. Those

printed in the diagram in bold face are acceptable models in the sense of

F # 3; cf. Section 3. Model 20B for bar angle 208 and with broad spiral

arms is the only ‘marginally acceptable’ model ð3 , F # 4Þ. Thus bar

angles 208 # wbar # 258 are preferred.
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Figure 15. Clump giant distributions for models with different bar angles. For each model, the normalization and shift in the magnitude scale are determined

such that the model fits best the data in field M7. The best fit is found for bar angles wbar < 158–308.
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The MACHO group has published revised values for the optical

depth near Baade’s window based on their new bulge microlensing

data. They give an optical depth for all sources, based on 99 events

from 3 years of data, of t26 ¼ 2:43þ0:39
20:38 averaged over eight fields

centred at l ¼ 28:68, b ¼ 238:35 (Alcock et al. 2000a). From 52

microlensing events with clump giant sources in 5 years of data,

Popowski et al. (2000) give t26 ¼ 2:0 ^ 0:4 at a mean position

l ¼ 38:9, b ¼ 238:8. The corresponding values predicted from

model 20A are t26 ¼ 1:10 at l ¼ 28:68, and b ¼ 238:35 ðb ¼ 21Þ,

and t26 ¼ 1:27 for clump giant sources at l ¼ 38:9, and b ¼ 238:8

ðb ¼ 0Þ. Fig. 17 shows profiles of optical depth along galactic

latitude at the mean longitudes of the MACHO observations. The

curve for l ¼ 28:68 shows the optical depth for all sources, and that

for l ¼ 38:9 the optical depth for clump giant sources only, for

comparison with the observational results. Both curves illustrate

the steep dependence of t on Galactic latitude.

The optical depth in the new NIR models is about 10 per cent

higher than for the eight-fold symmetric RL models of Bissantz

et al. (1997). This near agreement between two independent non-

parametric models for the COBE/DIRBE data is gratifying. What

difference there is mostly comes from the 10 per cent higher

luminosity-to-mass conversion ðM/LLÞ for the new model. The

effects of the structural differences in the new model appear to

compensate. On the one hand, there are more lens stars in the new

model where the LOS to Baade’s window crosses the spiral arms,

increasing t. On the other hand, because the total surface density

along this LOS is approximately constant (since specified by the

DIRBE SB), the density in the inner bulge is lower than in the

models of Bissantz et al. (1997). This decreases the average

distance to the sources, and hence t.

Compared to the observed optical depths, the predictions of the

new model are still low. For clump giant sources only, the model is

consistent with the preliminary new value (Popowski et al. 2000)

t26 ¼ 2:0 ^ 0:4 to within 1.8s. One assumption we have made is

that the microlensed source stars are distributed similar to the

luminous matter in the Galaxy. This is confirmed by the good

agreement of the clump giant distributions predicted from the NIR

model with those measured by Stanek et al. (1994, 1997). Further

evidence that the lensed stars do not contain a significant

component far behind the Galactic Centre (e.g., in the Sagittarius

dwarf) comes from the CMD in fig. 2 of Popowski et al. (2000).

With the distribution of source stars known, the predicted optical

depth can be modified significantly only if the distribution of lenses

is substantially different from that of the sources, i.e., if mass does

not follow NIR light.

Associated uncertainties in the NIR model prediction were

discussed by Bissantz et al. (1997). There appear to be two main

causes for concern. (i) The corrections by Spergel et al. (1995) for

dust absorption might conceivably have caused us to overestimate

the luminosity in the Galactic plane. In this case, there could be

room for some lensing dark mass in front of the bulge fields. (ii)

Independently, the L-band mass-to-light ratio might vary with

position in the inner Galaxy. Both would have the effect of

modifying the mass distribution of the inner Galaxy but, as

discussed by Bissantz et al., the effect of this on the optical depth is

limited to ,20 per cent because of the constraints from the

terminal velocity curve. Together with the 10 per cent spread in the

model optical depth discussed above, this implies an uncertainty in

the predicted clump giant value of order 0.3, i.e., there is no strong

discrepancy with the clump giant measurement of Popowski et al.

(2000).

However, the high optical depth of t26 ¼ 2:43þ0:39
20:38 for all

sources measured from difference imaging analysis (DIA) (Alcock

et al. 2000a) is 3.5s away from the predicted value of model 20A

ðt26 ¼ 1:10Þ, and even after allowing for a 30 per cent uncertainty

in the predicted optical depth is still more than 2.5s discrepant.

From the measured optical depth, Alcock et al. deduced 3:23þ0:52
20:50

for bulge sources only, assuming a 25 per cent contribution from

disc sources. Binney, Bissantz & Gerhard (2000) have shown such

high optical depths cannot plausibly be reconciled with the

Galactic rotation curve and the mass density near the Sun. To

Figure 16. Microlensing optical depth map of our reference model

including spiral arms. The model is for bar angle 208. The upper map shows

the optical depth for all sources, and the lower map for clump giant sources

only. The mean positions of the newly published MACHO results are

indicated in each map.

Figure 17. Microlensing optical depth of our reference model at the

longitudes of the newly published MACHO results, plotted as function of

galactic latitude. The observations are indicated in the figure. The upper

curve shows the optical depth for clump giant sources, the lower curve for

all sources. Both curves are for the galactic longitude of the published

observations for the respective group of sources.
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underline their argument, to increase the optical depth from t26 ¼

1:10 to t26 ¼ 2:43 for the same distribution of sources and b ¼

21 would require an additional surface mass density even at near-

optimal distance, .4 kpc, of some 1540 M( pc22, comparable to

the luminous mass density already present in the NIR mass model

(3636 M( pc22). This may suggest a problem in the interpretation

of the DIA measurement, for example, in the correction for

amplification bias.

We end this section by commenting on the microlensing

contribution of the MW’s dark halo. The NIR models with the

quoted M/LL reproduce the Galactic terminal velocity curve out to

* 5 kpc without inclusion of a dark halo (Bissantz, Englmaier &

Gerhard, in preparation). If the LSR circular speed is vc ¼

220 km s21 (consistent with R0 ¼ 8 kpc;, Backer & Sramek 1999;

Reid et al. 1999), some dark matter is required between 5 kpc and

the solar radius, but most of this will be at high latitudes, while the

LOS to Baade’s window, for example, is within one disc

scaleheight z0 in this range of Galactocentric radii. Decreasing

the amount of luminous mass in the inner Galaxy in favour of dark

matter also does not help even if the dark matter microlenses; this

case is included in the ,20 per cent uncertainty discussed above.

Moreover, from the LMC microlensing results (Alcock et al.

2000b) we know that at most a small fraction of this dark matter

would actually microlense, so that this would probably decrease

the predicted optical depth towards the bulge.

6 S U M M A RY A N D C O N C L U S I O N S

We have developed a penalized maximum-likelihood algorithm

that enables us to non-parametrically estimate luminosity densities

from surface brightness data. In testing this algorithm with

artificial data, we found a degeneracy in the bar shape for fixed bar

angle, which essentially comes from noise in the data. This implies

the existence of a sequence of parametric and non-parametric

models that within a given noise level in the data can not be

distinguished. For the noise level typical of the COBE/DIRBE data,

this sequence corresponds to an uncertainty of the in-plane bar

elongation h of ^0.1 and a corresponding variation in the half-

mass radius r0.5 of the bar/bulge of ^20 per cent. However, we

show that the degeneracy between models on this sequence can be

broken by comparing them with the LOS distributions of clump

giant stars.

We have non-parametrically estimated luminosity distributions

for the COBE data, including a model for spiral structure in the

disc. This is done in two steps. First we fit a parametric model to

the data, and then we improve this with the non-parametric

algorithm. The initial model contains a spiral arm term proposed

by Ortiz & Lépine (1993), which is also used as a prior in a penalty

term that is added to the likelihood function in subsequent

iterations. Models with spiral arms do not have the unrealistic

finger-to-Sun features that are commonly seen in models with an

axisymmetric disc, and at the same time fit the surface brightness

maps equally well.

We have considered a sequence of models with varying bar

angles 108 # wbar # 448. We evaluate these using both a criterion

measuring a combination of the goodness-of-fit to the COBE data

and the intrinsic smoothness of the luminosity distribution, and the

degree to which they account for the asymmetry in the clump giant

LOS distributions from Stanek et al. (1994, 1997). In this way we

find a preferred range 158 & wbar & 308, with the best models

found for 208 & wbar & 258. In our reference wbar ¼ 208 model, the

length of the bar is <3.5 kpc, and its axis ratios are 10 : ð3–4Þ : 3.

The in-plane elongation is larger than in previous eight-fold

symmetric luminosity distributions, because spiral arms make the

model appear broader on the sky, thereby requiring a more

elongated bar for fixed surface brightness data. The more elongated

bar in turn increases the asymmetry in the peak distances of the

model’s clump giant LOS distributions in the fields observed by

Stanek et al. (1994, 1997), enabling the new model to reproduce

these observations well.

Analysing a model with two spiral arms instead of the four-

armed structure of Ortiz & Lépine (1993), we have concluded that

our results regarding the structure of the bar/bulge structure and the

fit to the clump giant LOS observations do not depend significantly

on the assumed spiral arm model, as long as the spiral arm tangent

points as seen from the Sun are similar.

The microlensing optical depth in Baade’s window for our

reference model is t26 < 0:95 for all sources and t26 < 1:39 for

clump giant sources only, when the NIR mass-to-light ratio is

assumed to be constant and is determined by fitting to the Galactic

terminal velocity curve (maximal disc model; Bissantz, Englmaier

& Gerhard, in preparation). For clump giant sources at ðl; bÞ ¼

ð38:9;238:8Þ we find t26 ; t/1026 ¼ 1:27, within 1.8s of the new

MACHO measurement t26 ¼ 2:0 ^ 0:4 given by Popowski et al.

(2000). The value for all sources at ðl; bÞ ¼ ð28:68;238:35Þ is

t26 ¼ 1:1, still .3s away from the published MACHO DIA value

t26 ¼ 2:43þ0:39
20:38. The dispersion of these t26 values within our

models is .10 per cent. Because the NIR model is a good

representation for the distribution of microlensing sources, the

predicted values can be modified significantly only if the

distribution of lenses is different from that of the sources. This,

however, is constrained because of the good fit of the predicted

model terminal curve to the Galactic terminal curve. As we have

previously estimated (Bissantz et al. 1997), this makes it difficult to

increase the predicted optical depths by .20 per cent. Thus the

MW disc and bulge must have near-maximal mass-to-light ratio to

explain even the clump giant value for the optical depth. As Binney

et al. (2000) have argued, optical depths as high as the DIA value

are difficult to obtain by any model that is constrained by the

Galactic rotation curve and local disc density.
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