Faculté des sciences

Plant interspecific differences in arbuscular mycorrhizal colonization as a result of soil carbon addition

Eschen, René ; Müller-Schärer, Heinz ; Schaffner, Urs

In: Mycorrhiza, 2012, p. -

Soil nutrient availability and colonization by arbuscular mycorrhizal fungi are important and potentially interacting factors shaping vegetation composition and succession. We investigated the effect of carbon (C) addition, aimed at reducing soil nutrient availability, on arbuscular mycorrhizal colonization. Seedlings of 27 plant species with different sets of life-history traits (functional... Plus

Ajouter à la liste personnelle
    Summary
    Soil nutrient availability and colonization by arbuscular mycorrhizal fungi are important and potentially interacting factors shaping vegetation composition and succession. We investigated the effect of carbon (C) addition, aimed at reducing soil nutrient availability, on arbuscular mycorrhizal colonization. Seedlings of 27 plant species with different sets of life-history traits (functional group affiliation, life history strategy and nitrophilic status) were grown in pots filled with soil from a nutrient-rich set-aside field and amended with different amounts of C. Mycorrhizal colonization was progressively reduced along the gradient of increasing C addition in 17 out of 27 species, but not in the remaining species. Grasses had lower colonization levels than forbs and legumes and the decline in AM fungal colonization was more pronounced in legumes than in other forbs and grasses. Mycorrhizal colonization did not differ between annual and perennial species, but decreased more rapidly along the gradient of increasing C addition in plants with high Ellenberg N values than in plants with low Ellenberg N values. Soil C addition not only limits plant growth through a reduction in available nutrients, but also reduces mycorrhizal colonization of plant roots. The effect of C addition on mycorrhizal colonization varies among plant functional groups, with legumes experiencing an overproportional reduction in AM fungal colonization along the gradient of increasing C addition. We therefore propose that for a better understanding of vegetation succession on set-aside fields one may consider the interrelationship between plant growth, soil nutrient availability and mycorrhizal colonization of plant roots.