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SUMMARY

Recent experimental measurements of the equation of state of perovskites and post-perovskites
in the (Mg,Fe)SiO; and (Mg,Fe,Al)(Fe,AlSi)O; systems over a wide range of iron contents
are used to constrain the effects of Fe and Al on density and bulk modulus of these phases
at deep mantle pressures. The density of Fe-bearing perovskite follows a linear relationship
with Fe-content at a representative mid-mantle depth of 1850 km (80 GPa): pgy (g cm ™) =
5.054(1) + 1.270(3) XF.. The bulk modulus of silicate perovskite is not sensitive to Fe-content
and follows the relationship, Kgy (GPa) = 546(2) + 12(25)Xr.. The velocity heterogeneity
parameter, 9 In V5/0 X, determined by experimental values for the bulk sound speed is
0.10(1), in agreement with theory and the behaviour of other Fe-bearing silicates. Near the
core—mantle boundary, Fe-rich post-perovskite is observed to be more compressible than the
Mg-end-member, in contrast to theoretical predictions. From experimental data, the densities of
perovskite and post-perovskite at 125 GPa (2700 km depth) are p125.p, (g cm ™) = 5.426(11) +
1.38(4) X and p12sppy (g cm’3) = 5.548(1) + 1.41(3) Xg.. The density contrast across the
post-perovskite transition is ~2 per cent, irrespective of Fe-content, but the contrast in bulk
sound speed increases with Fe-content. Al-rich silicates exhibit no significant differences in
density or compressibility relative to Al-free silicates, but may be responsible for seismic
heterogeneities due to differences in the depth and width of the post-perovskite transition.
Observations of increased densities in large low shear velocity provinces and ultra-low-velocity
zones may be consistent with local iron enrichment from Mg#90 to Mg# 78—88 and Mg# <50,
respectively.
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The Earth’s core-mantle boundary region (D) also exhibits

I INTRODUCTION highly-variable localized structure and is therefore also likely to be

Chemical heterogeneity in the deep lower mantle has been con-
strained by geophysical observations and dynamic simulations
(Stixrude & Lithgow-Bertelloni 2012). Thermal variation alone
cannot explain observations of anticorrelated bulk and shear wave
speeds in the deep mantle (e.g. Masters e al. 2000). In addition,
seismic images of large (~1500 km) low shear velocity provinces
(LLSVPs) beneath the Pacific and Africa have features such as
sharp lateral gradients at their edges that are suggestive of com-
positional heterogeneity (McNamara & Zhong 2004, 2005). From
normal mode data, Ishii & Tromp (1999) reported that regions of
high density were associated with low velocities in the two plume
provinces. LLSVPs could represent hot dense piles of composi-
tionally distinct material or buoyant thermal superplumes and these
models would be expected to have different degrees of chemical
heterogeneity and distinct density structures.

chemically heterogeneous (Garnero 2000). Heterogeneities could
possibly form due to accumulations of subducted crust (Dobson
& Brodholt 2005; Hutko ef al. 2006), remnant primordial material
(Labrosse et al. 2007) or core—mantle interaction (Knittle & Jeanloz
1989, 1991). Waveform modelling has led to the identification
of ultra-low velocity zones (ULVZs) just above the core—mantle
boundary (Garnero & Helmberger 1995). These ULVZs tend to
be distributed at the margins of LLSVPs and exhibit strong re-
ductions (>10 percent) in P- and S-wave velocities. ULVZs are
thin and typically localized (~5-40 km thick and ~100 km wide)
with a large increase in density (~10 per cent) compared with sur-
rounding material (Rost & Garnero 2006). These properties could
possibly be signatures of dense melts (Williams & Garnero 1996)
or iron-enriched solid mantle phases (Mao et al. 2006; Wicks
et al. 2010). The role of iron is thus one of the major factors
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to consider in assessing compositional heterogeneity in the lower
mantle.

Determining the behaviour of iron in the lower mantle’s dominant
phase, (Mg,Fe,Al)(Fe,AlSi)O; perovskite, is complex because Fe
can occupy different structural sites with different valence and spin
states, which may differently affect seismic properties (e.g. Caracas
2010a). In addition, Fe has been observed to affect the depth and
breadth of the transition of mantle perovskite to the post-perovskite
structure, with important implications for the phase assemblage near
the core—mantle boundary (Murakami et al. 2004; Oganov & Ono
2004; Mao et al. 2004, 2005). Partitioning of Fe between multiple
Fe-bearing mantle phases is also important to phase transforma-
tions and physical properties (Grocholski et al. 2012). However,
modelling of the effect of Fe on mantle phases has generally been
simplified in studies to date. For example, Trampert ez al. (2001) and
Mattern et al. (2005) constructed lower-mantle mineral models in
which Fe affects the thermoelastic properties of silicate perovskite
only through its effect on the molar volume at ambient pressure,
which is far from thermodynamic stability and so can exhibit con-
siderable scatter among experimental determinations (Kiefer ez al.
2002; Tange et al. 2009). Recent experimental data on Fe-bearing
mantle silicates at mantle pressures has allowed improved modelling
ofthe complexity of Fe-dependence of elastic properties (Nakagawa
etal. 2012).

Compression studies using X-ray diffraction as a probe provide
many of the existing experimental constraints on elasticity of lower-
mantle materials. In this work, we synthesize experimental equation
of state measurements on perovskites and post-perovskites with a
wide range of compositions and compare with theoretical calcula-
tions to assess the current understanding of the equation of state
of deep mantle silicates. We discuss the dependence of density and
seismic wave velocity on Fe- and Al-content in perovskite and post-
perovskite. We investigate the implications of these chemical effects
for deep lower-mantle heterogeneities.

2 ANALYSIS

A number of recent studies have carried out 300-K equation of
state measurements on perovskite and post-perovskite phases syn-
thesized in the (Mg,Fe)SiO; and (Mg,Fe,Al)(Fe,Al,Si)O;5 systems
(Walter et al. 2004; Guignot et al. 2007; Lundin ef al. 2008; Nishio-
Hamane et al. 2008; Shim ez al. 2008; Nishio-Hamane & Yagi 2009;
Catalli et al. 2010b, 2011; Shieh et al. 2011; Boffa Ballaran et al.
2012; Zhang et al. 2012; Dorfman et al. 2012b, 2013). These stud-
ies used synchrotron X-ray diffraction in the laser-heated diamond
anvil cell (Duffy 2005) to synthesize the high-pressure phases and
to measure their unit cell volumes as a function of pressure. The
compositions studied involve a variety of cation substitutions and
possible cation site occupancies. In particular, a number of these
recent studies have focused on Fe- and Al-rich samples, thereby
allowing compositional trends to be better constrained. The Fe frac-
tion (Xg. = 2 Fe/[Mg + Fe + Al + Si]) over the combined 4 and B
sites of the ABO; stoichiometries ranged from 0 to 0.75. In addition,
compositions with Al,Os contents as high as 25 mole per cent have
been studied (Walter et al. 2004; Shieh et al. 2011; Boffa Ballaran
et al. 2012; Dorfman et al. 2012b).

In most of these studies, the valence state of Fe in synthe-
sized perovskites and post-perovskites was not measured directly.
In-situ Mossbauer spectroscopy and ex-situ electron energy loss
spectroscopy measurements of Fe3* /L Fe ratios in perovskites and
post-perovskites synthesized from Al-free, Fe>*-bearing starting
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materials range from 0.08 to 0.5, with a median value of 0.16 (Mc-
Cammon 1997; Frost & Langenhorst 2002; Li et al. 2004; Jack-
son et al. 2005; Sinmyo et al. 2008; Mao et al. 2011b; Sinmyo
etal. 2011). Al-content is well-known to promote higher Fe’* /% Fe
in perovskite, typically 0.5-0.8 (McCammon 1997; Frost &
Langenhorst 2002; Sinmyo er al. 2011). However, crystallo-
graphic differences observed between perovskites synthesized from
(Mg,Fe’* Al)(Al1,Si)O; and (Mg,Fe**)(Al,Si)Os-bearing composi-
tions may indicate that ferrous iron can be preserved in aluminous
perovskites (Dorfman et al. 2012b). The Fe’* /X Fe ratio in post-
perovskite has been observed to be close to that of the starting
material (Sinmyo ez al. 2011). When discussing ferrous or ferric
iron content in this work, we refer to measured compositions of
starting materials.

In comparison of experimental studies at deep mantle conditions,
a concern involves the consistency of pressure determination and
hydrostatic stress conditions among different works (Fei ez al. 2007;
Dorfman et al. 2012a). The studies under consideration here all used
an internal pressure standard for which the equation of state was
determined with reference to shock compression or other data. Most
of the studies (Lundin et al. 2008; Nishio-Hamane et al. 2008;
Nishio-Hamane & Yagi 2009; Catalli et al. 2010b, 2011; Shieh
et al. 2011; Dorfman ez al. 2013, 2012b) used Au as an internal
pressure standard; for the scales chosen in these studies (Tsuchiya
2003; Dewacele et al. 2004; Fei et al. 2007), errors due to pressure
calibration differences are expected to be minimal (<1.5 GPa). In
other studies, use of KCl, NaCl, MgO or Pt may lead to systematic
differences in pressure determination. At Mbar pressures, the Pt and
NaCl scales were observed to give pressures up to 5-10 GPa lower
than Au (Dorfman et al. 2012a). As a result, studies using these
other calibrants measured perovskite and post-perovskite volumes,
V, systematically lower by up to 1.5 percent. Differences in bulk
modulus, K, due to pressure calibration are negligible with respect
to other uncertainties. Systematic differences may also be observed
in calibrant and sample volumes due to non-hydrostatic stress in
the diamond anvil cell. Most of the studies considered here used
soft media such as Ne and laser annealing, which minimize non-
hydrostatic stress (Dorfman et al. 2012a).

Pressure—volume data were fit to the Birch-Murnaghan equation
(Birch 1947) to allow interpolation of volumes to common refer-
ence pressures. Densities, p, were calculated from volumes using
the known chemical compositions of the samples. The isothermal
bulk modulus, K = —V(dP/dV)r, was obtained at reference pres-
sures from differentiation of the Birch—-Murnaghan equation with
respect to volume (Jackson 1998). The bulk sound velocity was
calculated from K and p: Vg = /K /p. The difference between the
adiabatic and isothermal bulk modulus is small relative to experi-
mental uncertainties and was neglected. The corresponding expres-
sions for the compressional (/p) and shear (V) wave velocities

are Vp = /(K +4G/3)/p and Vs = /G/p, where G is the shear

modulus.

2.1 Perovskite

The pressure range of experimental volume compression data
for (Mg,Fe)SiO; compositions was 0-100 GPa (Lundin et al.
2008; Dorfman et al. 2013) and for (Mg, Fe);Al,Si30,, was
0-150 GPa (Walter et al. 2004; Dorfman et al. 2012b) com-
positions (Fig. 1). (Mg,Fe);Al,Si;0,, is the pyrope—almandine
garnet system which transforms to single-phase perovskites
((Mg,Fe)()_75Al()_25)(Al()_25Si()475)03 above 40-70 GPa (Irifune et al.




912 S.M. Dorfman and T.S. Duffy

10
T T T T T T T
. i
* [ ] Fez
8 . & Al
A Fe¥ Al

AIm100

6_
< o ©® o Fs74
g L e e |
= (]
O
= o oo Ams4
> Ceo o

& <><>

0 20 40 60 80 100 120 140 160

Pressure (GPa)

Figure 1. Volume differences between Fe- or Fe, Al-bearing perovskites and
MgSiO3 perovskite (Lundin ef al. 2008). Fe-bearing perovskite with FeSiO3
(Fs) from 9-74 per cent is shown in circles (Lundin et al. 2008; Dorfman
et al. 2013). Perovskites synthesized from pyrope—almandine (Alm) compo-
sitions with 54 and 100 per cent Alm are displayed with diamonds (Dorfman
et al. 2012b). Ten per cent FeAlO3 composition (Catalli et al. 2011) is shown
in triangles. Curves shown are from Birch-Murnaghan equation of state fits.

1996; Walter et al. 2004; Dorfman et al. 2012b). Relative to the Mg
end-member, (Mg,Fe)SiO; perovskite unit cell volumes increase
approximately linearly with Fe-content independent of pressure. In-
corporation of Al increases the unit cell volume of perovskite more
at low pressure (Yagi e al. 2004; Saikia et al. 2009) than at deep
lower-mantle pressures (Walter et al. 2004; Catalli et al. 2011).
This difference may be the result of a change of mechanism of Al-
incorporation from vacancy to coupled substitution (Brodholt 2000;
Andrault et al. 2007).

To allow direct comparison between different studies, 80 GPa
was chosen as a reference pressure (corresponding to ~1850 km
depth in Earth’s mantle) and the equation of state was used to
calculate the density and bulk modulus at this pressure for each
measured composition. The density of silicate perovskite increases
with Fe-content, and the majority of the experimental data are
well-described by a linear relationship (Fig. 2). For (Mg,Fe)SiO;
perovskites at 80 GPa, the least-squares fit to the densities is
P30 (g cm™3) = 5.054(1) 4+ 1.270(3)X¢.. Recent experimental data
on Fe-rich compositions (Boffa Ballaran et al. 2012; Dorfman
et al. 2012b, 2013) have enabled us to provide tight constraints
on the density trend to much higher iron contents than previously
available.

The density of Al-bearing perovskites for a given Fe-content is
similar or slightly lower than Al-free perovskites. The linear fit to
densities of Fe, Al-bearing compositions is within uncertainty of the
above equation for Fe-bearing, Al-free compositions. The equation
of state of Fe3*, Al-bearing perovskite measured by Nishio-Hamane
et al. (2008) gives density and compressibility in good agreement
with studies on Fe?*-bearing compositions, despite the differences
in chemistry. Fe’*-bearing perovskites with densities ~2 per cent
lower than comparable Fe’*-bearing compositions were observed
by Catalli et al. (2010b) and Boffa Ballaran et al. (2012), possibly
due to Fe-content in the perovskite B-site.

Additional constraints on effects of Fe- and/or Al-incorporation
on elastic properties of silicate perovskite have been provided
by ab initio calculations (Karki et al. 2001; Kiefer et al. 2002;
Wentzcovitch et al. 2004; Caracas & Cohen 2005; Li et al. 2005;
Stackhouse et al. 2006; Tsuchiya & Tsuchiya 2006; Zhang &
Oganov 2006; Bengtson et al. 2007; Caracas et al. 2010; Caracas
2010a,b; Hsu et al. 2010; Umemoto et al. 2010; Hsu et al. 2011a;
Huang & Pan 2012; Metsue & Tsuchiya 2012; Tsuchiya & Wang
2013). Density functional theory is not limited by experimentally
accessible conditions and can provide values for both bulk and
shear properties but results can depend on the choice of exchange-
correlation functional. For silicates, the general gradient approxima-
tion (GGA) can suffer from underbinding leading to underestimated
elastic constants and overestimated volumes, while the local den-
sity approximation (LDA) tends to produce the reverse situation
(Kiefer et al. 2002). Some density functional theory work has also
included the potential effects of Fe spin transitions on elastic prop-
erties (Bengtson et al. 2007; Caracas et al. 2010; Caracas 2010a,b;
Hsu et al. 2010, 2011a; Huang & Pan 2012; Metsue & Tsuchiya
2012; Tsuchiya & Wang 2013). The most recent of these studies
employ a Hubbard correction (LSDA+-U), thought to produce more
accurate results for iron-bearing minerals at high pressure (Hsu ez al.
2011b; Metsue & Tsuchiya 2012).

Ab initio calculations for MgSiO; perovskite predict densities
that agree with experimental measurements to within 3 per cent
(Fig. 2; Kiefer et al. 2002; Caracas & Cohen 2005; Umemoto ef al.
2010; Metsue & Tsuchiya 2012). For Fe-bearing perovskite, the
increase in p with Fe-content predicted by the LDA method is
similar to experimental measurements but systematically offset to
higher density, consistent with volume underestimated by LDA.
However, the densities calculated for (Mg sFeo5)SiO; and FeSiO;
compositions by Caracas & Cohen (2005) with the GGA method
are significantly lower than experimental measurements.

The bulk modulus obtained from the Birch—-Murnaghan equation
fits to experimental volume data is insensitive to Fe-content or in-
creases weakly (Fig. 2). A linear fit of bulk modulus at 80 GPa to
composition, Kgy (GPa) = 546(2) + 12(25) Xr., exhibits a stiffening
of 244 percent in K from Xg.=0 to 100. These experimental data
are consistent with the slope predicted by theoretical calculations
(Kiefer et al. 2002; Caracas & Cohen 2005; Umemoto et al. 2010;
Metsue & Tsuchiya 2012). Generally, in mantle silicates and ox-
ides at ambient conditions, Mg,Fe-substitution only weakly affects
the bulk modulus (Speziale ez al. 2005). The adiabatic bulk moduli
in the olivine—fayalite, enstatite—ferrosilite, pyrope—almandine and
periclase—wiistite systems show less than a 7 percent difference
between the Fe end-member and the Mg end-member. More limited
data on high-pressure silicates (wadsleyite, ringwoodite) also show
a weak effect of Fe-substitution on bulk modulus (Mao et al. 2011a).
Our results suggest that perovskites behave in a similar manner to
other silicates.

The possible effect of an Fe spin transition on the equation of state
and compressibility of perovskite has attracted much interest (Lin
et al. 2013). Both Fe>*- and Fe**-bearing perovskite samples have
been observed by X-ray emission and Mossbauer spectroscopy tech-
niques to undergo a transition to from high spin to low spin (Badro
et al. 2004; Jackson et al. 2005; Catalli et al. 2010b; McCammon
et al. 2010; Mao et al. 2011b) or intermediate spin (Lin et al. 2008;
McCammon et al. 2008). A spin transition in perovskite has been
observed to be associated with higher K for Fe-bearing perovskite
(Fig. 2; Catalli ef al. 2010b, 2011; Mao et al. 2011b). However,
density functional theory calculations predict that any spin transi-
tion would have a small effect on the density and bulk modulus of
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Figure 2. (a) At 80 GPa and 300 K, density, bulk modulus and seismic wave propagation speeds for perovskites with varying Fe, Al-content determined from
experimental data (Walter ez al. 2004; Murakami et al. 2007b; Lundin et al. 2008; Nishio-Hamane et al. 2008; Shim et al. 2008; Catalli ez al. 2010b, 2011; Mao
et al. 2011b; Boffa Ballaran ef al. 2012; Dorfman et al. 2012b; Murakami et al. 2012; Dorfman et al. 2013). Bold green line fits are shown to Fe“-bearing
compositions. (b) Density functional theory results at 80 GPa and 0 K for (Mg,Fe)SiO3 perovskites from LDA (Kiefer er al. 2002; Umemoto et al. 2010;

Metsue & Tsuchiya 2012) and GGA (Caracas & Cohen 2005).

perovskite (Fig. 2; Umemoto et al. 2010; Hsu et al. 2011a; Metsue
& Tsuchiya 2012).

Fe’*-bearing  compositions  (MggoFeg;Aly;Sip9)O3  and
(MgooFe)2Sip9)Os may exhibit a high-to-low spin transition
at 55-70 GPa (Catalli et al. 2010b, 2011). The transition was
associated with a loss of spin moment observed by X-ray emis-
sion spectroscopy, a change in Mossbauer parameters, volume
collapse and decrease in compressibility at higher pressures. Other
experiments showed no difference in compressibility between
MgSiO; and (Mg ssFeo15Alp15S1085)O3 perovskites (Nishio-
Hamane et al. 2008), and no discontinuities in the compression of
(Mg soFe] b3 Fed s Sios2Aly36)03 perovskite single crystals (Boffa
Ballaran ef al. 2012). Some differences between these observations
may be explained by site occupancy of Fe and Al (Caracas 2010a).

The spin transition in Fe** is expected to occur only in the Pv
B-site (Hsu et al. 2011a), and site exchange between Fe and Al
may occur only at high temperature.

In another recent experimental study, X-ray emission spectra
for (Mgo.75Fe(25)Si05 perovskite at 80—-135 GPa were typical of
a mixture of high- and low-spin Fe (Mao et al. 2011b). This
Fe**-rich perovskite was observed to be much less compressible
than MgSiO; perovskite (Fig. 2). A possible explanation for ele-
vated values of the bulk modulus seen for some studies in Fig. 2
may be incomplete relaxation of differential stress. The bulk of
the experimental and theoretical data suggest that spin transitions
in either Fe>*- or Fe’*-bearing perovskite are unlikely to cause
observable anomalies in density or bulk modulus in the lower
mantle.
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Experimentally derived values for the bulk sound speed, V3, at 80
GPa are shown in Fig. 2. Theoretical and most experimental studies
report decreasing Vg with Fe-content. The fit to experimental data
is Vg (kms™") = 10.32(5) — 1.0(1) Xr.. The velocity heterogeneity
parameter, 9 In Vg /0 Xr. (Karato & Karki 2001), from experimen-
tal data is 0.10(1), in agreement with theory (0.10, Kiefer et al.
2002) and at the lower end of values reported for other mantle sil-
icates (Speziale et al. 2005). A slightly greater decrease in Vg is
observed for Fe, Al-rich compositions, but the difference is within
the uncertainty. While some studies (Catalli et al. 2010b; Mao et al.
2011b) have suggested spin transitions as a possible explanation for
anticorrelation of bulk and shear velocities in the deep mantle, the
trends observed in most of the experimental data for Fe-bearing Pv
do not support this (Fig. 2).

Ab initio theoretical studies (Kiefer et al. 2002; Caracas & Cohen
2005) predict the effect of Fe incorporation on both bulk and shear
moduli of perovskite, allowing the seismic velocities Vp and Vs
to be determined, but involve inherent approximations. The con-
sistency between theory and experiment in bulk sound speed for
(Mg,Fe)SiO; perovskite (Fig. 2) confirms the reliability of theoret-
ical calculations of sound velocities at deep mantle pressures. This
establishes more confidence in the application of theoretical values
for not only Vg, but also Vp and Vs.

2.2 Post-perovskite

Volume compression data for (Mg,Fe)SiO; post-perovskite have
been reported from X-ray diffraction experiments at 110-155 GPa
in several studies (Fig. 3; Shieh et al. 2006; Guignot et al. 2007,
Shim et al. 2008; Nishio-Hamane & Yagi 2009; Zhang et al. 2012;
Dorfman et al. 2013). For (Mg,Fe,Al)(Fe,Al,Si)O; post-perovskites,
data were measured from 95 to 175 GPa by Nishio-Hamane & Yagi
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Figure 3. Volume differences between Fe- or Fe, Al-bearing post-
perovskites and MgSiO3 perovskite (Guignot et al. 2007). Fe-bearing post-
perovskite with FeSiO3z (Fs) from 10-74 percent are shown in circles
(Nishio-Hamane & Yagi 2009; Zhang et al. 2012; Dorfman et al. 2013).
Post-perovskites synthesized from pyrope—almandine (Alm) composition
with 54 per cent Alm are displayed with diamonds (Shieh ez al. 2011). Fif-
teen per cent FeAlO3 composition (Nishio-Hamane & Yagi 2009) is shown
in triangles. Curves shown are from Birch-Murnaghan equation of state fits.

(2009), Catalli ef al. (2010a), Shieh ez al. (2011) and Dorfman et al.
(2012b). Following a similar procedure, these data were fit to equa-
tions of state to determine p and K and interpolated to a common
reference pressure for comparison. In addition, equation of state
data for perovskite compositions were extrapolated (for Fe, Al-rich
perovskite, interpolated) to compare density and compressibility of
these two phases. The reference pressure, 125 GPa, is near the post-
perovskite transition pressure for MgSiO; (Murakami et al. 2004)
and corresponds to ~2700 km depth, near the D" discontinuity.

At 125 GPa, p is also observed to increase linearly with
Fe-content in post-perovskites (Fig. 4). Post-perovskite densi-
ties are fit to the following relationship: pi25,p, (g cm™3) =
5.548(1) + 1.41(3) Xg.. At this pressure, the perovskite phase is
less dense, but the effect of Fe-content is similar: o5, (g cm™)
= 5.426(11) + 1.38(4) Xr.. The density difference across the post-
perovskite transition, A p, was measured to be 1.5 percent (+0.1—
0.7 per cent) at 125 GPa for both MgSiO; (Komabayashi e al. 2008)
and Alm54 compositions (Shieh ez al. 2011; Dorfman et al. 2012b).
A comparable difference of 2.2 percent is observed between the
linear fits of the densities of perovskite and post-perovskite across
the (Mg,Fe)SiOs; join at 125 GPa (Fig. 4).

Theoretical calculations have also explored the behaviour of
(Mg,Fe,Al)(Fe,ALSi)O; post-perovskite at deep lower-mantle con-
ditions (litaka et al. 2004; Caracas & Cohen 2005; Stackhouse
et al. 2005; Wookey et al. 2005; Stackhouse et al. 2006; Tsuchiya
& Tsuchiya 2006; Zhang & Oganov 2006; Caracas & Cohen 2007,
2008; Caracas 2010a,b; Hsu et al. 2012; Yu et al. 2012). These
predictions have used LDA and GGA methods, and more recently,
Hubbard U corrections to better model the electronic spin state
of Fe. Calculated densities for the perovskite and post-perovskite
phases at 125-136 GPa are in good agreement with experimen-
tal measurements at 125 GPa, though they yield a lower density
contrast between the two phases for Fe-rich compositions: Ap
is 1.4 percent for MgSiO; but only 0.5-1.1 percent for FeSiO;
(Caracas & Cohen 2005; Wookey et al. 2005; Stackhouse et al.
2006). The slope of increase in p 55 with X, from LDA calculations
is in better agreement with experimental data than GGA, which un-
derestimates the effect of Fe. No significant difference was predicted
between the densities of Fe?* - and Fe**+-bearing post-perovskite (Yu
etal 2012).

The bulk modulus of the post-perovskite phase was found to be
more compressible with higher Fe-content (Zhang et al. 2012, Fig. 4)
and this can be described by: K55 ,p, (GPa) = 665(3) — 81(16) X.
In contrast, data for the perovskite phase at this pressure show
no significant change in bulk modulus with Fe-content. The fit
to Kj»sp, for perovskites is 692(7) GPa + 30(52) GPa x Xg.
Experimental trends thus show increasing contrast in Vg between
Pv and pPv with Fe-content (Fig. 4). From Xg. = 0 to 40, the con-
trast in bulk sound speed between perovskite and post-perovskite
phases more than doubles, from 3.1 to 6.4 percent. This increase
in contrast in Vg p, — Vg ppy is not reported in theoretical stud-
ies, which predict only a slight effect of Fe-content on K5 ,p,
(Fig. 4).

Volume compression data observed by Shieh ef al. (2011) for
((Mg,Fe)o.75Alg25)(Alg25Si 75)O3 post-perovskites suggest a strong
increase in bulk modulus for more Fe-rich post-perovskite, but addi-
tional data are needed to confirm this (Shieh et al. 2011). Although
data for Fe#74 post-perovskite observed by Dorfman et al. (2013)
are insufficient to determine bulk modulus, they also indicate higher
volumes than predicted by the trend in Zhang et al. (2012). Possible
mechanisms for an increase in bulk modulus for compositions with
Fe#>40 could include a spin transition (e.g. Lin ez al. 2008) or a
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Figure 4. (a) At 125 GPa and 300 K, density, bulk modulus and seismic wave propagation speeds for perovskites and post-perovskites with varying Fe,
Al-content determined from experimental data (Mao et al. 2006; Shieh et al. 2006; Guignot ef al. 2007; Murakami et al. 2007b, 2007a; Lundin et al. 2008;
Shim et al. 2008; Nishio-Hamane & Yagi 2009; Catalli ef al. 2010a; Mao et al. 2011b; Shieh er al. 2011; Boffa Ballaran ef al. 2012; Dorfman et al. 2012b;
Zhang et al. 2012; Dorfman ef al. 2013). Colors of symbols have same meanings as in Fig. 2. Bold green line fits are shown to Fe?*-bearing compositions
(solid = perovskite, dashed = post-perovskite). (b) Density functional theory results at 125 GPa and 0 K for (Mg,Fe)SiO3 perovskites and post-perovskites
from LDA (Kiefer et al. 2002; Yu et al. 2012) and GGA (Caracas & Cohen 2005, 2008). Perovskite calculations are shown in solid black. Post-perovskite
results are dotted and shown in green for Fe?*-bearing compositions, while dotted red represent Fe’*-bearing compositions.

modification of the post-perovskite structure in Fe-rich composi-
tions (Yamanaka et al. 2010).

A large decrease in shear modulus with Fe-content in post-
perovskite was observed in a nuclear resonant inelastic X-ray scat-
tering experiment by Mao et al. (2006). Based on measured partial
phonon density of states of Fe and volume compression data, this
experiment determined velocities Vp and Vs of an (Mg ¢Fe( 4)SiOs
pPv lower than those of MgSiO; pPv by 11 and 38 per cent, respec-
tively (Fig. 4). However, this technique is sensitive to the extrap-
olation from the partial phonon density of states which may lead
to underestimation of velocities (Sturhahn & Jackson 2007). This

has been the only experimental determination of bulk elastic wave
velocities of an Fe-bearing silicate at deep mantle pressures.

Theoretical studies do not predict any stiffening of the bulk mod-
ulus or large decrease in elastic wave velocities at high Fe-content.
A spin transition in post-perovskite was not predicted to occur at
Earth-relevant pressures (Caracas & Cohen 2008). Overall, given
the higher required experimental pressures and more limited data,
it is perhaps not surprising that the observed variation in pPv prop-
erties with Fe-content is more uncertain and less consistent with
theory. Further compression experiments on Fe-rich pPv are needed
at deep lower-mantle pressures.
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3 IMPLICATIONS FOR MANTLE
HETEROGENEITIES

The volume or density is the property most precisely constrained
by the experiments discussed above and is the driver of thermo-
chemical convection in the mantle. The style of convection will de-
pend on the relative contributions of chemical and thermal anoma-
lies (Davaille 1999; Deschamps & Tackley 2008). A fundamental
question is whether dense chemical heterogeneities are entrained
in mantle convection or sequestered at the core—mantle boundary.
To remain at the core—mantle boundary, chemical heterogeneities
must be enriched enough in heavy elements (Fe) to offset thermal
buoyancy. Assuming thermal and chemical effects are independent
(Anderson & Hama 1999), for a hot, dense heterogeneity with neu-
tral buoyancy, the thermal and chemical effects are equal:

ap

— AT =
o 9 Xre

AXpe. M

Using the experimental results discussed above, we can calcu-
late the Fe-enrichment necessary to balance thermal anomalies.
The variation of thermal expansivity, «, with pressure and tem-
perature for MgSiO; was estimated from density functional theory
calculations (Wentzcovitch et al. 2004) yielding ap = 7.63 x 1073
g cm—3/K for MgSiO; perovskite at 80 GPa and 2000 K. The differ-
ence in density due to temperature relative to that of end-member
MgSiO; perovskite at 2000 K and 80 GPa was calculated for tem-
perature anomalies of 200, 500 and 800 K (Fig. 5a). Based on the
effect of Fe-content on density at this pressure (Fig. 2), a chemical
heterogeneity with Mg# (Mg/(Mg+Fe)) = 87 would be neutrally
buoyant in a Mg# 90 mantle if it is also 500 K hotter than the sur-
rounding rock (Fig. 5b). This is consistent with long-term stability
of dense heterogeneities in the deep mantle estimated by probabilis-
tic tomography to be enriched in Fe by 2 percent and warmer by
300 K (Trampert et al. 2004).

Based on current experimental data, the density contrast be-
tween perovskite and post-perovskite phases appears to be insen-
sitive to temperature (Komabayashi er al. 2008) and Fe-content.
Komabayashi et al. (2008) observed that the 1.5 percent density
contrast across the post-perovskite transition would be equivalent
to the contrast due to a 1300 K difference in temperature. The
2.2 per cent density contrast shown by our (Mg,Fe)SiO; perovskite
and post-perovskite data set may imply an even greater impact of
the post-perovskite transition on buoyancy (equivalent to a 1900 K
thermal difference). This density contrast could also be produced in
either silicate phase at 125 GPa by a A Xg. of 9 Mg# (Mg# 81, rel-
ative to Mg#90, see Fig. 4). However, both Fe and Al contents have
strong effects on the pressure and width of the post-perovskite tran-
sition, so the depth at which this density difference is observed and
its sharpness will depend on composition. In Fe-rich compositions,
a broad post-perovskite transition has been observed with a mix-
ture of very Fe-rich post-perovskite and Fe-poor perovskite (Mao
et al. 2004, 2005; Dorfman et al. 2013). A two-phase loop with
difference in Fe-content between post-perovskite and perovskite
X, ppv — Xre, py as high as 0.6 (Dorfman et al. 2013) would have
a high contrast in properties between these two phases at the base
of the lower mantle: Ap between adjacent perovskite and post-
perovskite grains could be up to ~0.8 g cm™3, or 13 per cent. This
contrast could have important implications for the rheology of the
D" phase assemblage (Ammann et al. 2010).

The effect of Fe-incorporation on density of perovskite and post-
perovskite can be used to determine composition of heterogeneities.
Recent studies have suggested that observed lower-mantle densi-
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Figure 5. (a) Effect of 200, 500 and 800 K thermal anomalies on density
of perovskite from Wentzcovitch et al. (2004). (b) From density data for
Fe-rich and Fe, Al-rich perovskites, amount of Fe-enrichment necessary to
balance buoyancy due to temperature.

ties (Ricolleau er al. 2009) and shear wave velocities (Murakami
et al. 2012) are consistent with a Si-enriched composition, at least
93 per cent perovskite. Assuming a perovskitic lower mantle, den-
sity contrasts may be dominated by differences in Fe-content in
perovskite or post-perovskite. Based on the trend in Fig. 2, an
LLSVP with density up to 2—5 per cent greater than a Mg/(Mg+Fe)
90 per cent bulk mantle would be consistent with Mg/(Mg-+Fe) of
as low as 78—88 per cent in perovskite. A ULVZ at the core—mantle
boundary 10 per cent denser than Mg#90 post-perovskite could be
composed of Mg#50 post-perovskite. Based on theoretical (Wookey
et al. 2005; Stackhouse et al. 2006; Caracas & Cohen 2008) and
experimental (Mao et al. 2006) constraints on Vp, Mg#50 post-
perovskite would propagate P waves ~6-20 percent slower than
Mg#90 post-perovskite, similar to the 4-19 percent Vp reduction
observed by Rost & Garnero (2006). A FeSiO; post-perovskite
would be 22 per cent denser than Mg#90. If regions are observed
with greater density than this (e.g. Rost & Garnero 2006), they



must be both richer in Fe and poorer in Si, that is, enriched in
denser (Mg,Fe)O or Fe metal.

For compositions with more (Mg,Fe)O or other Si- or Al-rich
phases, we must also consider the effects of these phases on chem-
ical partitioning and phase equilibria. Ricolleau et al. (2009) ob-
served that the partitioning of Fe between (Mg,Fe)O and silicate
phases has a negligible effect on the density of the mantle. Similar
modelling with our data set shows that varying the partitioning co-
efficient, Kp, of Fe between perovskite and magnesiowdistite over
the range of experimental values (e.g. Auzende et al. 2008; Sakai
et al. 2009) results in density differences of 0.1 per cent. Exchange
of Fe with (Mg,Fe)O may have more important effects on the depth
and sharpness of the post-perovskite transition (Grocholski et al.
2012). In the (Mg,Fe)SiO; system, Fe-incorporation was observed
to produce a shallower and broader phase transition (e.g. Dorfman
et al. 2013), but partitioning of Fe into the oxide phase sharp-
ens the transition. Al incorporation has been observed to deepen
and broaden the post-perovskite transition such that Al-rich post-
perovskite would not be observed in the lower mantle (Tateno et al.
2005; Dorfman et al. 2012b). Stabilization of perovskite in Fe,
Al-rich heterogeneities could possibly produce anticorrelated Vg
and Vs due to the 3—7 per cent higher Vg observed in perovskite rela-
tive to post-perovskite of the same composition (at 125 GPa, Fig. 4).
However, in compositions with sufficiently high Si, Al-content such
as MORB, the presence of separate Si- and Al-bearing phases
erased this effect on the post-perovskite transition (Grocholski
etal. 2012).

In summary, experimental and theoretical data are compiled to de-
termine the effects of Fe and/or Al incorporation on the elastic prop-
erties of (Mg,Fe,Al)(Fe,Al,Si)O; perovskite and post-perovskite at
representative mantle depths. Using recent volume compression
data on perovskites with up to 75 per cent FeSiO;, we provide con-
straints on the density, bulk modulus and bulk sound speed of Fe-
bearing perovskites. Experimental compression data for perovskite
are in good agreement with density functional theory calculations,
showing a weak increase in the bulk modulus with Fe-content. For
post-perovskite, experimental studies have observed a decrease in
bulk modulus with Fe-content, in contrast to theory. Electronic spin
transitions and differences in valence state of Fe in perovskite and
post-perovskite phases are not expected to produce observable dif-
ferences in seismic velocities in the lower mantle. Across the post-
perovskite transition, the experimental data show a density increase
of ~2 percent and an increasing contrast in bulk compressibility
with Fe-content. The density contrast across the phase transition is
comparable to the contrast due to decreasing Mg# by 9 or decreasing
temperature by 1900 K. Al may increase the density of Fe-bearing
perovskite by allowing paired substitution for Mg and Si, but can
stabilize perovskite over post-perovskite.
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