Higher frequencies of BCRP+ cardiac resident cells in ischaemic human myocardium

Emmert, Maximilian Y. ; Emmert, Lorenz S. ; Martens, Andreas ; Ismail, Issam ; Schmidt-Richter, Ingrid ; Gawol, Anke ; Seifert, Burkhardt ; Haverich, Axel ; Martin, Ulrich ; Gruh, Ina

In: European Heart Journal, 2013, vol. 34, no. 36, p. 2830-2838

Add to personal list
    Summary
    Aims Several cardiac resident progenitor cell types have been reported for the adult mammalian heart. Here we characterize their frequencies and distribution pattern in non-ischaemic human myocardial tissue and after ischaemic events. Methods and results We obtained 55 biopsy samples from human atria and ventricles and used immunohistological analysis to investigate two cardiac cell types, characterized by the expression of breast cancer resistance protein (BCRP)/ABCG2 [for side population (SP) cells] or c-kit. Highest frequencies of BCRP+ cells were detected in the ischaemic right atria with a median of 5.40% (range: 2.48-11.1%) vs. 4.40% (1.79-7.75%) in the non-ischaemic right atria (P = 0.47). Significantly higher amounts were identified in ischaemic compared with non-ischaemic ventricles, viz. 5.44% (3.24-9.30%) vs. 0.74% (0-5.23%) (P = 0.016). Few numbers of BCRP+ cells co-expressed the cardiac markers titin, sarcomeric α-actinin, or Nkx2.5; no co-expression of BCRP and progenitor cell marker Sca-1 or pluripotency markers Oct-3/4, SSEA-3, and SSEA-4 was detected. C-kit+ cells displayed higher frequencies in ischaemic (ratio: 1:25 000 ± 2500 of cell counts) vs. non-ischaemic myocardium (1:105 000 ± 43 000). Breast cancer resistance protein+/c-kit+ cells were not identified. Following in vitro differentiation, BCRP+ cells isolated from human heart biopsy samples (n = 6) showed expression of cardiac troponin T and α-myosin heavy-chain, but no full differentiation into functional beating cardiomyocytes was observed. Conclusion We were able to demonstrate that BCRP+/CD31− cells are more abundant in the heart than their c-kit+ counterparts. In the non-ischaemic hearts, they are preferentially located in the atria. Following ischaemia, their numbers are elevated significantly. Our data might provide a valuable snapshot at potential progenitor cells after acute ischaemia in vivo, and mapping of these easily accessible cells may influence future cell therapeutic strategies