New directional archaeomagnetic data of burned cave sediments from Switzerland and geomagnetic field variations in Central Europe

K. L. Kapper, F. Donadini, M. Mauvilly, S. Panovska and A. M. Hirt

1 Institute of Geophysics, ETH Zurich, Switzerland. E-mail: klkapper@gmail.com
2 Amt für Archäologie, Fribourg, Switzerland
3 Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0225, USA

Accepted 2014 May 16. Received 2014 May 9; in original form 2013 August 21

SUMMARY
This paper presents new directional archaeomagnetic data from nine Meso-/Neolithic fireplaces, sampled in a cave shelter, at Arconciel, in western Switzerland. Rock magnetic measurements indicate a homogeneous magnetic mineralogy in all fireplaces, with magnetite as the main magnetic carrier. The remanent magnetization is stable and generally shows one characteristic directional component. Nine new directions, which were obtained from Arconciel, are combined with 356 other archaeomagnetic data from a circular area with a radius of 700 km around this site, to obtain a penalized least square spline fit for the past 9000 yr. We found in general good agreement with other local compilations, such as the Balkan curve, the regional SCHA.DIF.8k model and with lake sediments from UK, Fennoscandia and Switzerland. Nevertheless, a time lag of several centuries is observed for a declination maximum between the archaeomagnetic spline fit and the other European data records around 5900 BC. This time lag is also observed in the Swiss lake sediment record; therefore we interpret this shift as a local feature of the Earth’s magnetic field.

Key words: Palaeomagnetic secular variation; Rock and mineral magnetism; Europe.

1 INTRODUCTION
Systematic observations of the geomagnetic field are available for the last two centuries coming from geomagnetic observatory and ship data, as well as satellites for the last 50 yr (e.g. Jackson et al. 2000; Olsen & Stolle 2012). These data have been used to accurately model the main dipole field but also the non-dipole contributions, which show features such as the South Atlantic anomaly (e.g. Pinto Jr et al. 1992, for a review) and the equatorial flux spots (Jackson 2003). The temporal change of the geomagnetic field in direction and intensity is referred to as secular variation. Crucial for any model of secular variation of the past field is high quality palaeomagnetic information, which mainly comes from archaeomagnetic and lake sediment data. Holocene geomagnetic field models such as CALS10k.1b (Korte et al. 2011) or SCHA.DIF.8k (Pavón-Carrasco et al. 2010) mainly rely on lake sediment data for time periods earlier than 1000 BC. Lake sediments cover long time periods, however, their relatively large scatter, which is due to inconsistent lake sediment records, is responsible for strong smoothing of the CALS10k.1b (Korte et al. 2011). They often carry a post-depositional remanent magnetization, which is acquired some time after their deposition when the magnetization is locked in (e.g. Verosub 1997). The lock-in depth is related to sedimentation rate and composition (Blei & von Dobeneck 1999), and is generally considered to be around 10 cm depth (e.g. Roberts & Winklhofer 2004). Therefore, there is a time lag between the age of the sediment and its magnetization, which causes smoothing of the magnetization signal when averaging over time (e.g. Roberts & Winklhofer 2004; Panovska et al. 2012). In contrast, archaeological artefacts have been shown to be faithful recorders of the Holocene geomagnetic field, particularly for the last 3000 yr (cf. Donadini et al. 2010; Pavón-Carrasco et al. 2010). Data coming from burned archaeological structures and burned sediments are temporally better constrained in capturing the geomagnetic field. The thermoremanent magnetization in these materials was acquired during the last burning event. The magnetization of the unburned material is considerably enhanced through burning, because weakly magnetic oxides and hydroxides as well as non-magnetic minerals are transformed into stronger ferrimagnetic phases, for example magnetite or maghemite (Le Borgne 1955; McClean & Kean 1993; Canti & Lindford 2000). More recently, Carrancho et al. (2009) showed that burned Neolithic sediments (fumiers) carry a stable remanent magnetization, related to the burning process. Carrancho & Villalain (2011) quantified the magnetic enhancement on experimental hearths to illustrate the potential of these structures to acquire robust geomagnetic field data. Burned sediments are particularly valuable because they can provide information on field behaviour prior to 1000 BC, where there is a paucity of data.

In this study, we present directional data from nine ancient fireplaces excavated at the Arconciel/La Souche shelter to reconstruct the geomagnetic field. The data cover a time period from approximately 4500–6800 cal. BC. Common rock magnetic measurements
were performed to investigate the magnetic mineralogy and grain sizes of the studied samples, as well as the stability of their natural remanent magnetization. We take advantage of the stratification of burned sediments to construct an age model using the available 14C dates. We combine this new data with high-quality data from the Geomagia50 v.2 database (Donadini et al. 2006; Korhonen et al. 2008) and recently published archaeomagnetic data from northern Italy (Kapper et al. 2014), in order to establish a penalized least squares spline fit (Constable & Parker 1988; Panovska et al. 2012). This new data compilation is compared to global and regional models, to other archaeomagnetic data from the Balkan region (Tema & Kondopoulou 2011), and to lake sediment records.

2 Site Presentation and Field Work

2.1 Formation of the rock shelter

The Arconciel/La Souche rock shelter (ARC; latitude 46.76° N and longitude 7.11° E) is situated about 4 km south of the city of Fribourg (Switzerland), on the right bank of a large meander in the Sarine river (Fig. 1). The shelter is located at the base of a sandstone cliff, just above the prehistoric water level. The shelter is 5–6 m deep and about 50 m long. Between 2003 and 2012, the northwestern area of the shelter, corresponding to about 40 m2, was excavated during 10 field campaigns. The excavations revealed deposits ranging between 4 and 6 m in thickness, depending on the amount of erosion from the roof of the shelter. These deposits were 14C-dated and cover ages between 7000 and 4900 BC. This time period corresponds to the entire late Mesolithic and the beginning of the Neolithic. The layers include a large number of anthropogenic artefacts, and the continuity of the deposits and the abundance of hearths indicate frequent use of the shelter for domestic purposes. The finding of the pintadera, a prehistoric stamp (Mauvilly et al. 2008a), suggests that the culture had contact or exchange with the Mediterranean region.

![Figure 1. Map showing the location of the excavation site of Arconciel (ARC), Fribourg (Switzerland). The location of Lake Baldegg (BAL) is also indicated. CH, Switzerland; F, France; I, Italy; A, Austria; D, Germany.](image)

Fig. 2(a) shows a schematic picture of the shelter, which is characterized by six archaeological units. These units are defined by the type of archaeological material and sediment found in the unit, and chronostratigraphic information. Further, each unit consists of various layers, showing a clear stratigraphic succession. The variety of archaeological artefacts shows the evolution of the cultures living in the area surrounding the ARC shelter during this period. For example, trapezoidal armature, a lithic tool, evolved from a very thin and narrow shape to larger ones, which define the boundary between Units VI and V. These were then succeeded by more advanced armatures made by inverse plain retouche technique (Nielsen 2009), which marks the transition from Unit IV to III at ARC shelter. The evolution of the debitage, that is, small flakes removed during lithic production, is a further indicator of a change in lithic manufacturing techniques. For example, bladelets became long and more regular at the boundary between Units III and IV and agree with the above mentioned armature change (Mauvilly et al. 2008a). Based on the sedimentological and the archaeological analyses the occupation of the shelter between 6750 and 6530 BC (Unit VI) was sometimes hampered by flooding events of the Sarine river. Starting from Unit V (6600 BC) the periods of abandonment become more sporadic and the shelter appears to be frequented on a regular basis. The rather fast sedimentation rate occurring during this period probably lead to a reduced living space, and so around 5800 BC (Unit III) the visits to the shelter appear to decrease systematically.

The archaeological excavation uncovered about 60 fireplaces (FA) in total, which can be easily distinguished from each other thanks to the presence of sand layers between the structures. The large number of undisturbed structures associated with these layers makes the shelter an ideal location to study the geomagnetic field evolution during the Meso-Neolithic in Switzerland. Fireplaces that were investigated at ARC are shown in Fig. 2(a). A photo, which illustrates the stratigraphic succession of fireplaces FA40 to FA32A is shown in Fig. 2(b). In this succession samples were collected horizontally. Fig. 2(c) shows fireplace FA32A, which was sampled vertically. The function and use of these layers and hearths, and their connection to the behaviour of the cultures using them, is presently under investigation by the archaeologists at the Amt für Archäologie, Fribourg (Switzerland). The inclination of the layers did not occur after their deposition, but is related to the use of the fireplaces. In the upper Units II and III fireplaces are better visible within the stratigraphy because they show a well rubefied sediment section. The fireplaces consist either of ash or burned soil (silt and sand). The larger fire pits, which were used over a long period of time (e.g. FA32), consist of a succession of different layers (carbonaceous, ash and burned soil). In particular, FA32 consists of a sequence of three individual fireplaces: FA32-1, FA32-2 and FA32-5. The chance of partial reheating of these successions of fireplaces is assumed to be rather low, because temperature decreases very rapidly with depth. For example, Carrancho & Villalain (2011) showed that temperatures in the centre of an experimental fire do not exceed 245°C in 3–4 cm depth. Fireplaces located in the lower part of the shelter (Units IV and V) mainly consist of ash. The diametre of the fire pits can measure up to several metres and can be grouped into essentially two main shapes: flat-type and basin-type. One distinctive feature of this site is the thickness of the ash layers in Unit IV, which can often reach 10–15 cm over a surface of 4 m2. The layers are well preserved in general, but animals may have disturbed the site in a few places. It is presumed that the ashes were used to level the ground, particularly after the last use of the basin-type hearths.
Figure 2. (a) Schematic picture of the excavated stratigraphy that shows the nine investigated fireplaces, which are marked with white boxes. (b) Stratigraphic succession from FA24 to FA40. Coloured dots represent the positions of the samples taken horizontally from a vertical cross section. (a) and (b) The NW–SE profile. (c) Example of sampling at fireplace FA32A as viewed from above. White squares show the positions of the vertically taken block samples, white circles show cylindrical samples taken with the hand corer. Numbers shown in (b) and (c) denote samples taken of each fireplace.
2.2 Sampling and sample preparation

A total of 130 samples were collected from nine fireplaces during five field campaigns. We obtained either cylindrical samples with a hand corer, which were pushed into plastic cubes with a volume of 3.9 cm3 and an inner diameter of 1.6 cm, or block samples, which were covered with plaster on site and then consolidated and cut into cubes (2 cm edge length) in the laboratory. A magnetic and a sun compass were used to orient the samples.

2.3 Chronology

Radiocarbon ages were obtained from charcoal, seeds, charred wood and burned bones from Units II to VI, in order to study and refine the chronology of the periods of use and abandonment of the shelter (Table 1). They were dated at the Ion Beam Laboratory at ETH Zurich (Switzerland) and at the Angstrom Laboratory in Uppsala (Sweden). Three out of four dating attempts on bones were unsuccessful, but seeds and charred wood yielded precise results. To constrain the age sequence, the stratigraphic information was integrated within an age model using Oxcal v4.1.7 (Bronk Ramsey 2009) and the IntCal09 calibration curve (Reimer et al. 2009, Fig. 3, Table 1). We used 14 radiocarbon dates for age model; ages from the same layers were combined (FA32A, FA06 and FA15).

Sedimentation rates were estimated from the age model assuming a linear sedimentation rate for each unit and the thickness of the units. Unit II has the smallest sedimentation rate of 0.19 mm yr$^{-1}$, followed by larger rates for Unit III (2.00 mm yr$^{-1}$), Unit IV (1.38 mm yr$^{-1}$) and Unit V (2.50 mm yr$^{-1}$). The fastest rate was calculated for Unit VI with 8.46 mm yr$^{-1}$. The low sedimentation rate of Unit II may be explained by fewer occupations, and therefore also fewer deposits from the roof. Despite the large number of dated charcoal samples, four sampled hearths (FA31, FA32-1, FA32-2, FA32-5) have no associated absolute age. The ages of these hearths were estimated based on their position in the stratigraphy and the ages inferred from the age model (Table 1).

3 MEASUREMENTS AND METHODS

3.1 Rock magnetic measurements

A variety of rock magnetic experiments were carried out at the Laboratory for Natural Magnetism of the ETH Zurich (Switzerland) to identify the magnetic mineralogy, thermal stability and grain sizes of the studied samples. These include thermomagnetic curves, acquisition of an isothermal remnant magnetization (IRM) and thermal demagnetization of a cross-component IRM (Lowrie 1990), hysteresis curves (cf. Day et al. 1977; Dunlop 2002), and analysis of first-order reversal curves (FORC; Roberts et al. 2000). Viscosity tests were made to further assess the stability of the remanent magnetization, and the anisotropy of magnetic susceptibility (AMS) was determined to examine any possible compaction effect on the magnetic remanence. Thermomagnetic curves were measured using AGICO KLY-2 or MFK 1-FA susceptibility bridges with a CS-2 and CS-4 heating system, respectively, by heating up to 700°C and subsequently cooling back to room temperature. Heating and cooling rate was 1°C min$^{-1}$, and measurements were made either in air or argon atmosphere. IRM in a backfield was measured on a Princeton Measurement Corporation Micromag 3900 vibrating sample magnetometer (VSM) using a 3–10 mT sampling interval. Afterwards curves were smoothed with a 5- or 10-point running average. For the cross-component experiment, the IRM was imparted using an ASC scientific impulse magnetizer (Model IM-10-30). A 2000 mT field was applied along the sample z-axis, followed by a 460 mT field along the sample y-axis and finally a 200 mT field along the sample x-axis. An ASC scientific oven was used to thermally demagnetize samples; remanent magnetization was measured using a 2G Enterprise model 755R 3-axis DC-SQUID rock magnetometer. Hysteresis loops and first-order reversal curves were made on the VSM. FORC data was processed with the software of Harrison & Feinberg (2008). Viscosity tests were performed after three weeks of storage in zero field. The viscosity coefficient v is calculated as

$$v = \frac{|NRM_0 - NRM_x|}{NRM_0} \cdot 100 \quad (1)$$

Table 1. Radiocarbon dates, calibrated ages and ages based on the model stratigraphy.

<table>
<thead>
<tr>
<th>Name</th>
<th>Material</th>
<th>Fireplace</th>
<th>Unit</th>
<th>$\Delta Age_{uncal} \pm \sigma$ (BP)</th>
<th>Age_{cal} (BC)</th>
<th>Age_{mod} (BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ua-43129</td>
<td>Charcoal</td>
<td>FA32A I</td>
<td>II</td>
<td>6032 ± 33</td>
<td>4990–4890</td>
<td>4995–4840</td>
</tr>
<tr>
<td>Ua-43315</td>
<td>Bone</td>
<td>FA32A I</td>
<td>II</td>
<td>5995 ± 43</td>
<td>4950–4830</td>
<td>4955–4840</td>
</tr>
<tr>
<td>Ua-37285</td>
<td>Charcoal</td>
<td>FA24</td>
<td>II</td>
<td>6600 ± 45</td>
<td>5570–5490</td>
<td>5620–5480</td>
</tr>
<tr>
<td>Ua-37283</td>
<td>Charcoal</td>
<td>FA06</td>
<td>III</td>
<td>6715 ± 45</td>
<td>5670–5610</td>
<td>5840–5720</td>
</tr>
<tr>
<td>Ua-45037</td>
<td>Charcoal</td>
<td>FA06</td>
<td>III</td>
<td>7025 ± 42</td>
<td>5990–5880</td>
<td>5840–5720</td>
</tr>
<tr>
<td>Ua-37284</td>
<td>Charcoal</td>
<td>FA19</td>
<td>III</td>
<td>7005 ± 50</td>
<td>5930–5830</td>
<td>5900–5740</td>
</tr>
<tr>
<td>Ua-43131</td>
<td>Charcoal</td>
<td>FA40</td>
<td>IV</td>
<td>6967 ± 45</td>
<td>5900–5780</td>
<td>5980–5810</td>
</tr>
<tr>
<td>Ua-23586</td>
<td>Charcoal</td>
<td>FA16</td>
<td>IV</td>
<td>7225 ± 60</td>
<td>6100–6200</td>
<td>6220–6010</td>
</tr>
<tr>
<td>Ua-41124</td>
<td>Charcoal</td>
<td>FA78</td>
<td>V</td>
<td>7579 ± 46</td>
<td>6470–6410</td>
<td>6490–6260</td>
</tr>
<tr>
<td>Ua-45041</td>
<td>Charcoal</td>
<td>FA39</td>
<td>VI</td>
<td>7744 ± 57</td>
<td>6640–6500</td>
<td>6680–6530</td>
</tr>
<tr>
<td>Vera-2904</td>
<td>Charcoal</td>
<td>FA15 III</td>
<td>VI</td>
<td>7840 ± 35</td>
<td>6830–6560</td>
<td>6750–6610</td>
</tr>
<tr>
<td>Ua-41232</td>
<td>Charcoal</td>
<td>FA24</td>
<td>IV</td>
<td>7894 ± 47</td>
<td>6830–6640</td>
<td>6750–6610</td>
</tr>
</tbody>
</table>

Notes: Age_{uncal} is the uncalibrated 14C age. Age_{cal} gives the calibrated radiocarbon age within its 2σ boundary. Age_{mod} is the calibrated age further constrained by the model of the stratigraphy with its 2σ boundary. Superscript numbers in the column ‘Fireplace’ mark dates, which belong to the same layer and were combined in the age model (marked as ‘Comb.’ in Fig. 3). Fireplaces with a star have no radiocarbon dates, but their ages were estimated from the age model, as described in the text.
Figure 3. Radiocarbon ages and their stratigraphic position. Light grey probability distributions are the calibrated age ranges (Table 1: Age$_{cal}$), dark grey are the finally modelled distributions (Table 1: Age$_{mod}$). Each white box represents either one or several ages from one unit (marked as Comb). Unit boundaries are shown with respect to archaeological units. Age ranges of FA06 do not overlap, hence, no combined probability distribution for the calibrated ages can be calculated (light grey, 2D-2DAE).

3.2 Archaeomagnetic measurements

Samples were demagnetized using either progressive alternating field (AF) demagnetization or by stepwisely heating up to 580 °C (thermal demagnetization). Remanent magnetization was measured with the aforementioned DC-SQUID rock magnetometer, which is equipped with a 2-axis AF demagnetizer. Thermal magnetization experiments were carried out in an ASC Scientific oven, which has separate heating and cooling chambers. The remaining magnetic field in the cooling chamber is <3 nT. We applied principle component analysis (PCA) to isolate the characteristic component of the remanent magnetization (ChRM), using PmagPy-2.75 MagIC software (Tauxe et al. 2010).

In a first step, components of magnetization were accepted when at least four data points were used in the PCA, and the fitted line had a maximum angular deviation (MAD) $\leq 5^\circ$ (Kirschvink 1980). Effects of possible post-burning disturbances in the fireplaces induced by animals or human activities may cause diverging directions within a sample, or even reversed inclination, when the magnetic grain has been completely disturbed from its original position. Samples with reversed inclinations were therefore systematically rejected. A sample may not entirely be affected by post-depositional disturbances. In order to objectively reduce spurious directions of single specimens we applied in a second step a hierarchical weighted average approach, which has already been used in Kapper et al. (2014). In the undisturbed case magnetizations of specimens from one fireplace are supposed to point in the same direction, regardless to which sample they belong. Hence, we apply the weighted outlier approach on specimen level. In this approach we first calculated the specimen average (Fisher mean) and assigned weights to each individual specimen, based on the distance from the Fisher mean and proportional to the 2σ range of the Fisher mean. Secondly, specimens with weights below 0.3 were rejected and considered outliers. Finally, we proceeded with the standard hierarchical approach, averaging the new set of specimens into sample averages and then calculating the averages for each fireplace. 22 per cent of the specimens had weights below 0.3, and were rejected. Weights of all specimens are on average 0.70 ± 0.05.

\[P_j = \exp \left(2 \cdot (\eta_1 - \eta)^2 + (\eta_2 - \eta)^2 + (\eta_3 - \eta)^2 \right) \frac{1}{2} \]

with \[\eta_i = \ln k_i \]

\[\eta = \frac{\eta_1 + \eta_2 + \eta_3}{3} \]

and the shape parameter \[T = \frac{2\eta_2 - \eta_1 - \eta_3}{\eta_1 - \eta_3}. \]
4 RESULTS

4.1 Rock magnetic results

Rock magnetic results for each fireplace are summarized in Table 2. A total of 27 thermomagnetic determinations were made, of which 16 were measured in air and 11 in argon environment. Measurements in argon environment do not show more reversible curves than those measured in air, although Curie temperatures \(T_C \) were always lower than 595 °C in samples measured in argon. From these data we calculate the \(T_C \) based on the differential method by Tauxe (1998) and obtain an average \(T_C \) of 590 °C. Several samples showed that a new ferromagnetic phase is created starting around 400 °C, which is stable upon cooling (Fig. 4a). In all fireplaces, except in FA39, we found at least one thermomagnetic curve with a \(T_C \) between 600 and 640 °C (Fig. 4b).

IRM acquisition in a backfield reveals coercivities of remanence, \(B_{cr} \), between 13.6 mT for FA39 and 48.1 mT for FA24, with an average of 25.1 ± 6.8 mT for all nine fireplaces (Fig. 5, Table 2). The IRM of most samples is saturated at 300 mT. The cross-component IRM shows that all samples are dominated by the soft component (≤ 0.2 T), which has a maximum unblocking temperature of around 580 °C (Fig. 6a). In nearly all layers we found that the soft component also showed another unblocking around 620 °C, which might originate from another low coercivity mineral.

The majority of the 44 measured hysteresis loops have a narrow shape that is closed by 300 mT (Fig. 7a); three samples from FA40 and FA16 show slightly wasp-waisted loops. Coercivities, \(B_u \), are 8.4 ± 2.1 mT on average. Loops from fireplaces FA24, FA32-5, FA31 and FA32A have slightly larger \(B_u \) (12.5 mT on average). Fig. 7b shows that all specimens fall into the pseudo-single domain (PSD) field of the Day–Dunlop plot, with average \(M_r/M_H \)-ratios of 0.14 ± 0.01 and \(B_{cr}/B_u \)-ratios of 2.97 ± 0.24. FORC analysis shows that the samples can be divided into three types of behaviour (Fig. 8). In the first case samples show a broad coercivity distribution between 0 and 60 mT with a single peak in the coercivity around 8 mT (Fig. 8a). The interaction field, \(B_{int} \), is about ±20 mT. The second behaviour shows two distinct coercivity peaks (Fig. 8b). The first is centred around 1–2 mT and the second peak around 8 mT. The interaction field in this case is smaller and lies between ±10 mT. The third behaviour lies between these first two cases with a peak near 0 mT and a second broader plateau centred around 8 mT (Fig. 8c). Most samples show this third behaviour. The lower coercivity peak suggests the presence of superparamagnetic particle size, which is also expressed by the tail in the FORC distribution at 0 mT for negative \(B_u \) (Pike et al. 2001).

Table 2. Rock magnetic results of Arconcuel samples.

<table>
<thead>
<tr>
<th>Fireplace</th>
<th>(B_{cr}) (mT)</th>
<th>(B_u) (mT)</th>
<th>(M_u/M_s)</th>
<th>(B_{cr}/B_u)</th>
<th>(T_{ub}) (°C)</th>
<th>(\chi) (\times 10^{-6})</th>
<th>NRM (mAm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA16</td>
<td>7.9 ± 1.2 (6)</td>
<td>24.4 ± 3.9</td>
<td>0.15 ± 0.02</td>
<td>3.11 ± 0.21</td>
<td>606 ± 37 (2)</td>
<td>3035 ± 135 (2)</td>
<td>168.2 ± 167.8 (10)</td>
</tr>
<tr>
<td>FA24</td>
<td>8.7 ± 3.1 (5)</td>
<td>27.0 ± 12.1</td>
<td>0.14 ± 0.01</td>
<td>3.07 ± 0.26</td>
<td>612 ± 37 (2)</td>
<td>2471 ± 1552 (9)</td>
<td>18.4 ± 15.8 (6)</td>
</tr>
<tr>
<td>FA31</td>
<td>8.5 ± 3.2 (4)</td>
<td>27.0 ± 9.0</td>
<td>0.11 ± 0.03</td>
<td>3.21 ± 0.32</td>
<td>586 ± 55 (2)</td>
<td>1405 ± 445 (21)</td>
<td>12.2 ± 11.8 (19)</td>
</tr>
<tr>
<td>FA31-1</td>
<td>7.8 ± 0.6 (6)</td>
<td>22.9 ± 2.1</td>
<td>0.14 ± 0.01</td>
<td>2.96 ± 0.05</td>
<td>592 ± 14 (2)</td>
<td>2330 ± 538 (9)</td>
<td>23.5 ± 11.8 (7)</td>
</tr>
<tr>
<td>FA32-2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FA32-5</td>
<td>8.3 ± 1.5 (3)</td>
<td>24.5 ± 3.6</td>
<td>0.14 ± 0.01</td>
<td>2.94 ± 0.15</td>
<td>588 ± 7 (3)</td>
<td>2097 ± 604 (8)</td>
<td>18.0 ± 7.8 (8)</td>
</tr>
<tr>
<td>FA32A</td>
<td>13.1 (1)</td>
<td>38.2</td>
<td>0.16</td>
<td>2.90</td>
<td>601 ± 23 (1)</td>
<td>1178 ± 262 (10)</td>
<td>14.0 ± 4.6 (10)</td>
</tr>
<tr>
<td>FA39</td>
<td>5.6 ± 0.9 (2)</td>
<td>13.6 ± 0.5</td>
<td>0.15 ± 0.02</td>
<td>2.43 ± 0.28</td>
<td>585 ± 1 (2)</td>
<td>2177 ± 1746 (16)</td>
<td>8.5 ± 2.1 (3)</td>
</tr>
<tr>
<td>FA40</td>
<td>7.3 ± 1.4 (4)</td>
<td>23.0 ± 3.2</td>
<td>0.14 ± 0.01</td>
<td>3.16 ± 0.18</td>
<td>598 ± 4 (3)</td>
<td>4143 ± 1430 (11)</td>
<td>30.8 ± 28.8 (15)</td>
</tr>
</tbody>
</table>

Notes: \(B_{cr} \), coercivity; \(B_u \), coercivity of remanence; \(M_u/M_s \), saturation remanence; \(B_{cr}/B_u \), saturation magnetization; \(T_{ub} \), unblocking temperature; \(\chi \), bulk magnetic susceptibility; NRM, natural remanent magnetization. Numbers in brackets are the amount of measured samples.

Numbers in the first column apply as well to the second to fourth column.

Figure 4. Thermomagnetic curves for representative sample. Magnetic susceptibility is normalized to the maximum value; the red dashed line shows the heating curve and the blue continuous the cooling curve.

AMS was used to investigate if the samples show any significant compaction, which may reflect the remanent magnetization. The minimum magnetic susceptibility, \(k_1 \), clusters to the SW with an average inclination of 40° away from the centre of the stereoplot for all fireplaces (Fig. 9a). The medium, \(k_2 \), and maximum, \(k_1 \), susceptibilities are distributed in a girdle in a plane normal to the \(k_2 \) axes. Fig. 9b (shows the corrected anisotropy degree \(P_j \) versus bulk susceptibilities \(\chi_w \). Average \(P_j \) is (2.2 ± 0.1) per cent excluding the four specimens with high \(P_j \) (Figs 9b and c). Fig. 9(c) shows shape
Figure 5. Backfield IRM acquisition curves for representative samples. IRM is first smoothed and then normalized by the absolute value of its minimum IRM.

parameter T versus anisotropy degree P_j. Most samples have an oblate shape with $T > 0$, up to rotational oblate shape with $T = 1$. Average bulk susceptibilities are largest for FA40 with $(4143 \pm 11430) \times 10^{-6}$ SI (Table 2).

Fig. 10(a) shows NRM versus bulk magnetic susceptibility with lines of constant Q. Specimens have Q values between 0.1 and 1 for the majority of samples. FA31 shows the highest variability within a single fireplace, and samples from FA32A and FA39 show highest Q values on average. Viscosity tests on seven selected specimens show that the amount of viscosity is related to the intensity of NRM, with high viscosity coefficient for weaker NRM (Fig. 10b). One specimen from FA24 shows an extremely large viscosity of around 45 per cent. Further viscosity test are needed to investigate if more samples of FA24 have similar high-viscosity coefficients or if this specimen is an outlier.

4.2 Archaeomagnetic directions

A total of 140 specimens were demagnetized with AF or thermal demagnetization (Table 3), and 91 fulfilled the quality criteria (cf. Section 3.2). Most samples possess either a single component of magnetization, the characteristic remanent magnetization (ChRM) or two components: the ChRM and a viscous component (Fig. 11). For specimens, which were demagnetized in an AF, the ChRM is generally isolated in the linear fraction between 4 and 46 mT, and a viscous component is at the low coercivity portion of the vector diagram. An exception is specimens from FA16, of which the ChRM ranges from 18 to 86 mT on average with a larger viscous component (Fig. 11a). Most of the specimens of FA16 are not demagnetized at 160 mT, which could be indicative for a high-coercivity magnetic mineral. Largest NRM values were observed in FA16, FA40 and FA32-1 (Table 2). For FA39 90 per cent of magnetization was demagnetized at low field strengths of 28 mT on average, followed by FA40 by 34 mT, whereas FA16 and FA32A lost 90 per cent of their magnetization at 85 mT and 100 mT, respectively. Vector fits to the demagnetization are well-defined with MAD $\leq 3^\circ$ for most specimens.

5 DISCUSSION

5.1 Types of magnetic minerals and stability of magnetization

Rock magnetic measurements show that all fireplaces have similar magnetic properties. The main magnetic carrier is magnetite, which was identified by maximum unblocking temperatures close...
Archaeomagnetic data of burned cave sediments

Figure 7. (a) Example of a typical hysteresis loop after dia- and paramagnetic slope correction (70 per cent of the maximum signal). (b) Day–Dunlop plot showing magnetization and coercivity ratios for a typical selection of samples. The MD-SD and SD-SP mixing lines (dashed) refer to the calculations of Dunlop (2002).

Figure 8. Examples for FORC diagrams (above) and their corresponding coercivity profiles (below) for (a) FA39-2, (b) FA16-008 and (c) FA24-006.

Figure 9. (a) Anisotropy of susceptibility for all specimens. Squares represent maximum k_1, triangles intermediate k_2 and circles minimum k_3 susceptibilities. Larger symbols are averages for the principal axes, and ellipses are 95 per cent confidence intervals. Data are plotted on an equal-area, lower hemisphere projection in geographic coordinates. (b) Anisotropy degree P_j versus average bulk susceptibility χ_m. (c) Shape parameter T versus P_j.

to $T_c = 585^\circ$C in thermomagnetic curves (Fig. 4a) and the cross-component experiment (Fig. 6a). Some samples have a low coercivity phase that is completely unblocked at 620 $^\circ$C in the cross-component experiment, which indicates a phase between magnetite and maghemite (Fig. 6b, soft component). Similar high unblocking temperatures in low coercivity minerals have been observed in other archaeomagnetic studies (e.g. Chauvin et al. 2000; Carrancho et al. 2009). A few samples from FA31, FA16, FA32A and FA32-1
Table 3. Directional results of ARC fireplaces.

<table>
<thead>
<tr>
<th>Level/Fireplace</th>
<th>Ns/Nsac</th>
<th>Nsp/Nspac</th>
<th>D (°)</th>
<th>I (°)</th>
<th>α95 (°)</th>
<th>k</th>
<th>R (°)</th>
<th>Age (BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA39</td>
<td>13/9</td>
<td>15/10</td>
<td>359.2</td>
<td>59.8</td>
<td>2.8</td>
<td>329.3</td>
<td>9.0</td>
<td>6635</td>
</tr>
<tr>
<td>FA16</td>
<td>10/9</td>
<td>28/20</td>
<td>11.9</td>
<td>56.1</td>
<td>5.8</td>
<td>79.0</td>
<td>8.9</td>
<td>6065</td>
</tr>
<tr>
<td>FA31</td>
<td>14/8</td>
<td>17/9</td>
<td>18.7</td>
<td>56.1</td>
<td>7.9</td>
<td>50.1</td>
<td>7.9</td>
<td>5990</td>
</tr>
<tr>
<td>FA40</td>
<td>9/7</td>
<td>14/8</td>
<td>29.4</td>
<td>61.9</td>
<td>9.1</td>
<td>44.9</td>
<td>6.9</td>
<td>5885</td>
</tr>
<tr>
<td>FA32-1</td>
<td>5/4</td>
<td>8/6</td>
<td>10.6</td>
<td>73.1</td>
<td>9.8</td>
<td>88.8</td>
<td>4.0</td>
<td>5780</td>
</tr>
<tr>
<td>FA32-2</td>
<td>7/5</td>
<td>13/8</td>
<td>16.4</td>
<td>70.0</td>
<td>9.6</td>
<td>64.7</td>
<td>4.9</td>
<td>5710</td>
</tr>
<tr>
<td>FA32-5</td>
<td>8/6</td>
<td>13/8</td>
<td>22.6</td>
<td>61.8</td>
<td>6.9</td>
<td>96.2</td>
<td>5.9</td>
<td>5640</td>
</tr>
<tr>
<td>FA24</td>
<td>6/5</td>
<td>9/6</td>
<td>19.6</td>
<td>64.6</td>
<td>2.9</td>
<td>703.5</td>
<td>5.0</td>
<td>5535</td>
</tr>
<tr>
<td>FA32A</td>
<td>10/9</td>
<td>20/14</td>
<td>342.9</td>
<td>58.6</td>
<td>4.8</td>
<td>113.8</td>
<td>8.9</td>
<td>4930</td>
</tr>
</tbody>
</table>

Notes: FA represents individual ARC fireplaces. Ns is the total number of samples, Nsac the number of accepted samples. Nsp is the total number of specimens, Nspac the number of accepted specimens. Declination (D) and inclination (I) of Fisher mean of each fireplace, α95 is the confidence interval around the Fisher mean, k the precision parameter. R is the length of the vector sum, and Age the modelled age, which is the age at maximum probability of the dark grey age distributions shown in Fig. 3 for the ARC samples. Please refer to the corresponding age ranges in Table 1 in the last column.

5.2 Smoothing spline fit

To calculate continuous secular variation curves for declination and inclination, we fit a curve to the data points using the technique of penalized least square spline (PLSS; e.g. Constable & Parker 1988). The aim of the PLSS method is to find the smoothest twice differentiable function fitting the data points. Further, an L1 norm, the least-absolute deviation, of the residuals is used instead of the L2 norm. The L1, which was also used by Panovska et al. (2012) has been shown to reduce the influence of spurious data points by giving less weight to outliers than the L2 norm (Walker & Jackson 2000). The L2 exhibits less smooth variations, sometimes even unrealistic and fast changing behaviour. Furthermore, the L1 norm better fits unevenly distributed data, which is the case here. The basis functions for the fit are cubic splines, which are defined on a regular set of knot points with a fixed 50 yr spacing. A smoothing parameter, which controls the relation between the smoothness and the goodness of the fit to the data, is objectively chosen using the method of cross validation (CV, Green & Silverman 1994). The minimum of CV gives the smoothing parameter for the spline fit. The smoothing spline fit technique was applied to the new ARC data from this study (Table 3) together with other archaeomagnetic data included in a circular area of 700 km radius around ARC.

Figure 10. (a) Natural remanent magnetization (NRM) versus bulk magnetic susceptibility (χ) showing lines of constant Koenigsberger ratio (Q). (b) Viscosity coefficient versus NRM for seven specimens.
Figure 11. Vector diagrams (Zijderveld 1967) and corresponding normalized demagnetization diagrams (insets) for selected samples with horizontal (vertical) components shown with black (white) dots. Dashed lines with diamonds illustrate demagnetization steps used for PCA. D, declination; I, inclination; MAD, maximum angular deviation. The x-axis represents North and the horizontal plane and y-axis West and upward directions, respectively.

(Fig. 13). This area has been chosen to reduce the relocation error (Casas & Incoronato 2007), while all selected data are characterized by $\alpha_{95} \leq 10^\circ$ and an age error < 150 yr. With these criteria we obtained 356 data points from France, England, Netherlands, Austria, Italy, Germany, Switzerland and Belgium from the Geomagia50v.2 database (Donadini et al. 2006; Korhonen et al. 2008, Fig. 13) and six data points from northern Italy (Kapper et al. 2014). For time periods with little or no data (4500–1000 BC), the spline fit cannot be interpreted. The limited amount of data in these time periods leads to a limited resolution of the spline fit. The spline fits are used for comparisons with other archaeomagnetic data, lake sediment records and models.

5.3 Comparison with other data sets and models

Figs 14(a) and (b) show inclinations and declinations of ARC, which were relocated to the location of ARC (7.11°E and 46.76°N) using the conversion via pole method (Noel & Batt 1990), and cover the period between 7000 and 4900 BC. Casas & Incoronato (2007) show that relocation within Europe leads to relocation errors in declination and inclination of 0.25° per 100 km. However, this error is irrelevant when only the position of peaks is investigated, and not the absolute directional value. The data are presented together with other archaeomagnetic data, the archaeomagnetic spline fit, the Balkan curve of Tema & Kondopoulou (2011), and the European palaeosecular variation curve (PSVC; Carrancho et al. 2013). Another data point from a recent study, which is at present not in the Geomagia50v.2 database, from Hervé et al. (2013) at 3730 BC is also shown. The archaeomagnetic spline fit has a maximum in inclination of 65° at around 5750 BC, followed by a decrease to 55° at 4700 BC. Further inclination maxima are observed at around 3300 BC, 500 BC, 750 AD and 1600 AD. The archaeomagnetic spline fit of declination shows an eastward trend between 6800 and 5900 BC, where a maximum declination value of 15° is observed. After this time, the trend changes to -17° in the west until 4200 BC. Compared with the Balkan curve and the European PSVC the spline fit shows similar trends over the entire time interval, although the period between 4500 and 1000 BC is constrained by only six data points and therefore can not be considered reliable. Further, the peak in declination at around 5900 BC may occur about 700 yr earlier than the peak in the Balkan curve and approximately 1000 yr earlier than the peak in the European PSVC, although the peaks for inclination coincide.

Hervé et al. (2013) noted similar time lags of 50 and 100 yr for the maxima in declination and inclination curves for Western Europe at Paris and Eastern Europe at Thessaloniki in the time period around 900 BC and 300 BC. This feature indicates a westward drift of secular variation from west to east, and is interpreted as westward drift of the fluid core. It may also be similar for the earlier time lag between the Balkan curve and the archaeomagnetic spline fit. Considering the distance between Thessaloniki, where the Balkan curve is centered, and Arcconcel of about 1500 km, the lag in declination appears to move about 0.02 degrees yr$^{-1}$ eastward starting at 5900 BC. The peak in declination might be a local event, which appears 700 yr later in the Balkan area. The European PSVC is mainly based on data from eastern Europe (Carrancho et al. 2013), and may therefore show more similarities in declination around 5900 BC to the Balkan curve, than to the archaeomagnetic spline fit.

Figs 15(a) and (b) show the spline fit of the archaeomagnetic data together with a spline fit from lake sediments taken from a single core at Lake Baldeg (Switzerland, 47.2°N, 8.3°E, BAL, Kind 2012), which is located in 140 km distance from the ARC shelter (Fig. 1). It is also compared to the stacked record from Fennoscandian lake sediments (FENN, Snowball et al. 2007), and to the detransformed UK lake sediments curve (UK, Turner & Thompson 1981, 1982; Gigliotti 2006). The BAL spline fit was produced with the same method as the archaeomagnetic spline fit. Declinations and inclination of the Fennostack record are relative. The detransformed
Figure 12. Stereoplots showing sample averages (black circles), fireplace Fisher means (white triangles) and α95-confidence ellipses. N is the number of samples.

Table 1. Samples used in the analysis (presented in order of appearance).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>Declination</th>
<th>Inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA32A</td>
<td>4995 - 4840 BC</td>
<td>342.9°, I: 58.6°</td>
<td>α95: 4.8°, N: 9</td>
</tr>
<tr>
<td>FA24</td>
<td>5620 - 5480 BC</td>
<td>19.6°, I: 64.6°</td>
<td>α95: 2.9°, N: 5</td>
</tr>
<tr>
<td>FA32-5</td>
<td>5660 - 5620 BC</td>
<td>22.6°, I: 61.8°</td>
<td>α95: 6.9°, N: 6</td>
</tr>
<tr>
<td>FA32-2</td>
<td>5760 - 5660 BC</td>
<td>16.4°, I: 70.0°</td>
<td>α95: 9.6°, N: 5</td>
</tr>
<tr>
<td>FA32-1</td>
<td>5810 - 5760 BC</td>
<td>10.6°, I: 73.1°</td>
<td>α95: 9.8°, N: 4</td>
</tr>
<tr>
<td>FA40</td>
<td>5980 - 5810 BC</td>
<td>29.4°, I: 61.9°</td>
<td>α95: 9.1°, N: 7</td>
</tr>
<tr>
<td>FA31</td>
<td>6100 - 5885 BC</td>
<td>18.7°, I: 56.1°</td>
<td>α95: 7.9°, N: 8</td>
</tr>
<tr>
<td>FA16</td>
<td>6220 - 6010 BC</td>
<td>11.9°, I: 56.1°</td>
<td>α95: 5.8°, N: 9</td>
</tr>
<tr>
<td>FA39</td>
<td>6680 - 6530 BC</td>
<td>359.2°, I: 59.8°</td>
<td>α95: 2.8°, N: 9</td>
</tr>
</tbody>
</table>

Figure 13. Locations of archaeomagnetic directional data, which were used for the archaeomagnetic spline fit (dots), from a circular area with a radius of 700 km around Arcueil (star). Data are from a time period between 7000 BC and 1990 AD, and are taken from the Geomagia50v2 database (Donadini et al. 2006; Korhonen et al. 2008) and from a site in northern Italy close to Trento (Kapper et al. 2014). The dashed line denotes zero longitude.

UK curve is absolute and relocated to London. To avoid relocation errors, especially for the UK and FENN curves, directions of UK and FENN were scaled by subtracting the median of the records and adding the median of the archaeomagnetic data used for the archaeomagnetic spline fit. The BAL spline fit was scaled with the same method to be consistent with the other curves. All three lake sediment curves show similar features as the archaeomagnetic spline fit, for example between 2250 BC and 2000 AD in inclination (Fig. 15a) and between 3500 BC and 1500 AD in declination (Fig. 15b). A similar lag in declination as the one observed in Fig. 14(b) for the Balkan curve appears in this comparison as well; in this case, the FENN record shows the youngest peak at 4700 BC, followed by the peak in UK curve at 5250 BC. On the contrary, the BAL fit, located close to ARC, shows largest values of declination around 5900 BC. The discrepancy in peaks both geographically and temporarily suggests that the records of individual regions contain local features. Also in inclination a time lag between the lake sediment curves and the archaeomagnetic spline fit is observed, with maxima in the FENN record at 6000 BC and in the UK curve at 6400 BC. In the same time period the BAL fit shows two maxima in inclination, one at 6000 BC and another one at 5600 BC, which coincides with a peak of the archaeomagnetic spline fit.

The comparison of the archaeomagnetic spline fit with two spherical harmonics models, the CALS10k.1b (Korte et al. 2011) and the SCHA.DIF.3k/8k (Pavón-Carrasco et al. 2009, 2010) is shown in Fig. 16(a) and (b). The CALS10k.1b shows a rather smooth behaviour over the entire Holocene interval because of the scatter in lake sediment directions that are used in the model (Korte et al. 2011). To overcome this problem, Pavón-Carrasco et al. (2010) selected lake sediment data based on their agreement with available archaeomagnetic data in the vicinity of the lake to produce the SCHA.DIF.8k, or only considered archaeomagnetic and instrumental data for the SCHA.DIF.3k model (Pavón-Carrasco et al. 2009). In this respect, the archaeomagnetic spline fit agrees well
Figure 14. Spline fit of (a) inclination and (b) declination of the ARC data (red line and dots, respectively) and archaeomagnetic data from an area of 700 km around ARC (white dots). The dashed part in the spline fits denote the time period with little data. Further shown are the Balkan curve (dashed grey line) and its standard deviation, the European PSVC (continuous grey line) and its standard deviation, and archaeomagnetic data from a recent study (yellow dot, Hervé et al. 2013). All data are relocated to ARC (7.11°E and 46.76°N) using the conversion via pole method (Noel & Batt 1990).

Figure 15. Spline fit of (a) inclination and (b) declination of the archaeomagnetic data and ARC data (blue line and dots) compared to spline fits of sediment data from Lake Baldegg (BAL), the UK lake curve (UK) and the Fennostack record (FENN).
Figure 16. Spline fit of (a) inclination and (b) declination of the archaeomagnetic data and ARC data (green line and dots) compared to the CALS10k.1b model (light grey) and the SCHA.DIF.3k/8k (dark grey).

with the SCHA.DIF.3k and 8k. Again, the main difference appears to be the declination peak occurring at 5900 BC at ARC, which lags by about 700 yr in the regional spherical cap harmonic model. It must be noted, however, that most of the archaeomagnetic data used in the SCHA.DIF.8k is from Eastern Europe, for example Bulgaria and Ukraine; and lake sediment data, which makes the largest contribution to the SCHA.DIF.8k, is mainly from Scandinavia, UK and Italy. These discrepancies illustrate the importance of having a broad geographic distribution of data used in constructing field models, so that local features are not considered to represent global field behaviour.

6 CONCLUSIONS

This study illustrates the potential of fireplaces to record geomagnetic field variations. The directional results presented here show larger scatter than other archaeological materials such as ceramics, but are comparable to other studies on burned sediments. Directional data from this study can be combined with data from other archaeological studies within a 700 km circumference around Arconciel in order to construct a smoothed spline fit to describe secular variation for Central Europe. Similar behaviour is found between the temporal change in declination and inclination with the SCHA.DIF.3k/8k models. A good correlation is found between declination and inclination, obtained in this study and data from Lake Baldegg, which is located close by Arconciel. The declination peak that occurs at 5900 BC at Arconciel and Lake Baldegg occurs about 700–1000 yr earlier compared to Eastern and Northern European regions. These observations suggest that a local geomagnetic feature occurs in Central Europe in this time period, which might move to other European regions. New mid-Holocene archaeomagnetic data from nearby sites would be beneficial to verify the trend observed in this study, whereas data from distant sites may help in defining the extent of such feature.

ACKNOWLEDGEMENTS

This work was supported by ETH Research Grant ETH-12 10-2. We kindly acknowledge Jessica Kind for providing data from lake Baldegg. Furthermore, we thank L. Vigliotti for providing the new recalibrated UK lake sediment curve. Fabio Donadini gratefully acknowledges the support of a Swiss National Science Foundation grant (200021 130147). We highly appreciate the comments from the reviewers, Simo Spassov and Evdokia Tema.

REFERENCES

Kind, J., 2012. Ferromagnetic resonance spectroscopy and Holocene Earth’s magnetic field variations in sediments from Swiss lakes, PhD thesis, ETH Zurich, Switzerland.

