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ABSTRACT
We study the relation between the density distribution of tracers for large-scale structure and the
underlying matter distribution – commonly termed bias – in the � cold dark matter framework.
In particular, we examine the validity of the local model of biasing at quadratic order in the
matter density. This model is characterized by parameters b1 and b2. Using an ensemble
of N-body simulations, we apply several statistical methods to estimate the parameters. We
measure halo and matter fluctuations smoothed on various scales. We find that, whilst the fits
are reasonably good, the parameters vary with smoothing scale. We argue that, for real-space
measurements, owing to the mixing of wavemodes, no smoothing scale can be found for which
the parameters are independent of smoothing. However, this is not the case in Fourier space.
We measure halo and halo–mass power spectra and from these construct estimates of the
effective large-scale bias as a guide for b1. We measure the configuration dependence of
the halo bispectra Bhhh and reduced bispectra Qhhh for very large-scale k-space triangles. From
these data, we constrain b1 and b2, taking into account the full bispectrum covariance matrix.
Using the lowest order perturbation theory, we find that for Bhhh the best-fitting parameters
are in reasonable agreement with one another as the triangle scale is varied, although the fits
become poor as smaller scales are included. The same is true for Qhhh. The best-fitting values
were found to depend on the discreteness correction. This led us to consider halo–mass cross-
bispectra. The results from these statistics supported our earlier findings. We then developed a
test to explore whether the inconsistency in the recovered bias parameters could be attributed
to missing higher order corrections in the models. We prove that low-order expansions are not
sufficiently accurate to model the data, even on scales k1 ∼ 0.04 h Mpc−1. If robust inferences
concerning bias are to be drawn from future galaxy surveys, then accurate models for the full
non-linear bispectrum and trispectrum will be essential.
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1 IN T RO D U C T I O N

The accurate estimation and modelling of higher order clustering
statistics in current and future galaxy redshift surveys has the po-
tential to act as a powerful probe for cosmological physics. The
higher order connected moments, beginning at lowest order with
the three-point correlation function and its Fourier analogue, the
bispectrum, when interpreted within the gravitational instability
paradigm, encode important information regarding the growth of
large-scale structure (Matarrese, Verde & Heavens 1997; Scocci-
marro et al. 1998). Their measurements also provide insight into
the statistical nature of the primordial fluctuations (Fry & Scherrer
1994; Sefusatti & Komatsu 2007; Nishimichi et al. 2010; Baldauf,
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Seljak & Senatore 2011) and the cosmological parameters (Sefusatti
et al. 2006). Another attribute of three-point statistics, and the focus
of our study, is their capability to probe the manner in which an ob-
servable tracer population of objects, such as galaxies, are related
to the unobservable matter distribution – termed the ‘bias’ (Kaiser
1984; Dekel & Rees 1987; Fry & Gaztanaga 1993; Dekel & Lahav
1999; Catelan, Porciani & Kamionkowski 2000).

If the primordial fluctuations were Gaussian, as appears to be
the case (Komatsu et al. 2011), then the statistical properties of
the initial fields are fully characterized by the power spectrum,
with all higher order connected correlators vanishing. However,
gravitational instability leads to the coupling of Fourier modes and
this generates a hierarchy of non-vanishing connected correlators,
each of which has a precise characteristic mathematical structure.
The matter bispectrum is thus an inherently non-linear quantity,
whose signal depends on closed triangles in Fourier space. In theory,
this should vanish at early times and on scales large enough where

C© 2012 The Authors
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



3470 J. E. Pollack, R. E. Smith and C. Porciani

linear theory is valid. If galaxy bias is local and linear, then the
bispectrum of the observable tracers is proportional to the matter
bispectrum. If, on the other hand, bias is local and non-linear, then
the triangle configuration dependence of the signal is modified,
and this happens in a very precise and calculable way. Thus, the
bispectrum can be used to constrain the bias (Fry & Gaztanaga
1993; Matarrese, Verde & Heavens 1997; Scoccimarro, Couchman
& Frieman 1999).

There is a long and rich history of measurements of three-point
statistics from galaxy surveys, going all the way back to Peebles
& Groth (1975). However, attempts to constrain the non-linearity
of galaxy bias from galaxy redshift surveys have only been per-
formed over the last decade. Feldman et al. (2001) and Scoccimarro
et al. (2001a) both analysed IRAS survey using the bispectrum,
and found a negative quadratic bias, although due to small sample
size the constraints were rather weak. Verde et al. (2002) analysed
2dFGRS, also using the bispectrum approach, and claimed that the
flux-limited sample was an unbiased tracer of the dark matter. A
subsequent analysis of the final 2dFGRS data set by Gaztañaga
et al. (2005), using the three-point correlation function, contra-
dicted this: using information from weakly-non-linear scales (R ∼
6–27 h−1 Mpc), the unbiased case (b1 = 1 and b2 = 0) was excluded
at the order of 9σ . More recently a number of authors have analysed
various data releases of SDSS (Nishimichi et al. 2007 – Third Data
Release; McBride et al. 2011 – Sixth Data Release; Marin 2011 –
Seventh Data Release). These all claim a non-zero quadratic bias
term for most of the samples within the data set. Obviously, these
variations of the results with survey and statistical method require
an explanation.

Whilst the local bias model can be used to test whether the bias is
linear or non-linear, a significant detection of non-zero non-linear
bias does not imply that we have understood the bias. In order to
believe that these measurements are meaningful, we need to be sure
that the local model is indeed the correct model for interpreting
data. This is currently an open question. Attempting to shed light
on this subject is one of the aims of this paper. Over the past
few years, the local model of galaxy bias has been scrutinized by a
number of authors (Heavens, Matarrese & Verde 1998; Gaztañaga &
Scoccimarro 2005; Smith, Scoccimarro & Sheth 2007; Guo & Jing
2009; Manera, Sheth & Scoccimarro 2010; Manera & Gaztañaga
2011; Roth & Porciani 2011). However, no firm conclusions have
yet been reached.

In this paper, we use a large ensemble of 40 mid-resolution, large-
volume, pure dark matter N-body simulations to test the validity of
the local bias model. In this study, we compare a selection of differ-
ent methods for determining the bias. We first present a point-wise
comparison of the halo and matter density fields smoothed on certain
scales. We also utilize the power spectrum to estimate a large-scale
effective bias parameter. Then we expend most of our efforts on
using the bispectrum and reduced bispectrum approaches for con-
straining the bias. Besides the auto-bispectra, we also present, for
the first time, measurements of the halo–mass cross-bispectra: Bhhm

and Bhmm, and Qhhm and Qhmm. The value of these new statistics
becomes apparent when correcting for shot-noise effects. Finally,
we perform a numerical test that allows us to sharply illuminate
the importance of terms in the theory that are beyond the tree-level
expansions typically used.

The layout of this paper is as follows. In Section 2, we present
the theory for the matter bispectrum and the local bias model. In
Section 3, we provide details of the numerical simulations used in
this work. In Section 4, we present the results for the bias parameters
from the various commonly used simple estimators. In Section 5,

we present the estimation of the bias from the bispectrum. Then,
in Section 6, we present measurements of bias from the cross-
bispectra. In Section 7, we present a test of the importance of terms
in the theory that are beyond tree level. Finally, in Sections 8 and 9,
we discuss our findings and present our conclusions.

2 T H E O R E T I C A L OV E RV I E W

2.1 Standard perturbation theory dynamics

In the fluid approximation, the gravitational collapse of collision-
less cold matter structures in the expanding Universe can be fully
characterized by specifying the evolution of the density δρ(x) and
the peculiar velocity δv(x) perturbations (Bernardeau et al. 2002).
Focusing primarily on the density field, we work with models of
the matter density contrast:

δ(x, t) ≡ ρ(x, t) − ρ(t)

ρ(t)
, (1)

where ρ̄(t) is the mean matter density of the Universe. In Fourier
space, we define its corresponding Fourier representation, δ(k),
accordingly, as

δ(x) =
∫

d3k
(2π)3

δ(k)e−ik·x ⇔ δ(k) =
∫

d3x δ(x)eik·x . (2)

It can be shown that the non-linear equations of motion for
δ(k) can be solved exactly by perturbative expansions of the type
(Juszkiewicz 1981; Vishniac 1983; Goroff et al. 1986)

δ(k) =
∞∑

n=1

an(t)δn(k), (3)

where δn(k) is given by

δn(k) =
∫

d3q1

(2π)3
. . .

∫
d3qn

(2π)3
(2π)3δD(k − q1 − · · · − qn)

×Fn(q1, . . . , qn)δ1(q1) · · · δ1(qn) . (4)

The density kernel Fn is the dimensionless, homogeneous, mode-
coupling function that couples together the amplitudes and phases
of n initial Fourier wavemodes {δ(q1), . . . , δ(qn)}. As was shown by
Goroff et al. (1986), Makino et al. (1992) and Jain & Bertschinger
(1994), the nth-order kernel may be constructed recursively from the
lower order solutions. Linear theory is thus represented by F1(q1) =
1, and the first non-linear correction by F2, where

F2(k1, k2) = 5

7
+ k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 2

7

(k1 · k2)2

k2
1k

2
2

. (5)

The above approach defines the standard perturbation theory (here-
after SPT). Before moving on, we note that the above statements are
only exactly true for the Einstein–de Sitter model. However, it has
been shown that the F2 kernel is almost independent of cosmology
(Fry 1994; Bouchet et al. 1995; Hivon et al. 1995). We therefore
adopt equation (5) when dealing with the density at second order.

2.2 From dynamics to statistics

Owing to the stochastic nature of the density field, we are not
interested in reproducing a specific density field per se, but instead
in characterizing its statistical properties. In this work, we focus on
two- and three-point correlation functions in Fourier space. These
we may write as

〈δ(k1)δ(k2)〉 ≡ (2π)3 δD(k12)Pmm(k1), (6)
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〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3 δD(k123)Bmmm(k1, k2, k3), (7)

where Pmm(k) and Bmmm(k1, k2, k3) constitute definitions of the
power and bispectrum. For the Dirac delta functions, we used the
short-hand notation δD(k1...n) ≡ δD(k1 + · · · + kn) and these guar-
antee that P and B are translationally invariant. This is an important
property for estimation, since it means that we should consider only
closed pairs and triangles in Fourier space:

∑
ki = 0.

The perturbative expansion of the density field described in the
previous section implies that Pmm and Bmmm may also be described
in a perturbative fashion. Hence,

〈δ(k1)δ(k2)〉 = 〈[δ1(k1) + δ2(k1) + · · ·]
× [δ1(k2) + δ2(k2) + · · ·]〉 , (8)

〈δ(k1) . . . δ(k3)〉 = 〈[δ1(k1) + δ2(k1) + · · ·] · · ·
× [δ1(k3) + δ2(k3) + · · ·]〉 . (9)

Since we are assuming that the initial Fourier modes are Gaussianly
distributed, that is, the phase of each initial mode is uniformly
random φ ∈ [0, 2π], modes must cancel in pair. Hence, Wick’s
theorem applies, and so odd products of initial Fourier modes must
vanish: 〈δ1(k1)δ2(k2)〉 = 〈δ1(k1)δ1(k2)δ1(k3)〉 = 0. This led us to
write the perturbative expansions for Pmm and Bmmm as

Pmm(k) = P (0)
mm(k) + P (1)

mm(k) + · · · , (10)

Bmmm(k1, k2) = B (0)
mmm(k1, k2) + B (1)

mmm(k1, k2) + · · · . (11)

We shall refer to the lowest order terms in the expansions as ‘tree-
level’ terms. For P, P(0) is simply the linear spectrum, while for B
the tree-level term can be written as

B (0)
mmm(k1, k2) = 2 P (0)

mm(k1) P (0)
mm(k2) F2(k1, k2) + 2 cyc. (12)

In this work, we shall mainly be dealing with tree-level quantities;
we now set P (0)

mm = Pmm and B (0)
mmm = Bmmm, unless otherwise

stated.
Another statistical quantity commonly used to explore galaxy

clustering is the reduced bispectrum (Peebles & Groth 1975;
Scoccimarro et al. 1998), which can be defined as

Qmmm(k1, k2, k3) ≡ Bmmm(k1, k2, k3)

Pmm(k1)Pmm(k2) + 2 cyc
. (13)

As will be made clear below, the importance of this statistic becomes
apparent when one considers non-Gaussian terms that are generated
by simple quadratic products of Gaussian fields. In this case, Qmmm

simply scales as a constant.

2.3 Halo bias: local form

In this study, we investigate the relation between the clustering of
dark matter haloes and total matter. If galaxies are only formed
in dark matter haloes, as is the usual assumption for all models
of galaxy formation (White & Rees 1978), then understanding the
clustering of haloes is an essential component of any theory of
galaxy biasing (Smith et al. 2007). In the local model of halo biasing,
the number density of dark matter haloes of mass scale M, smoothed
over a scale R, can be expressed as a function of the local matter
density, smoothed on the scale R. This function may then be Taylor
expanded to give (Coles 1993; Fry & Gaztanaga 1993; Mo, Jing &
White 1997; Smith et al. 2007)

δh(x|M,R) =
∞∑

j=0

bj (M)

j !
[δ(x|R)]j , (14)

where we defined the smoothed halo overdensity to be
δh(x|M,R) ≡ [nh(x|M,R)−nh(M)]/nh(M). Owing to the fact that
〈δh〉 = 0, the constant coefficient b0(M) = −∑∞

j=2 bj (M)〈δj 〉/j !
(Fry & Gaztanaga 1993). Note that on Fourier transforming
δh(x|M,R) the constant b0 only contributes to the unmeasurable
k = 0 mode. The terms b1(M) and b2(M) represent the linear and
first non-linear bias parameters, respectively.

In Fourier space, equation (14) can be written as

δh(k|M,R) = b1(M)δ(k|R)

+b2(M)

2

∫
d3q1

(2π)3
δ(q1|R)δ(k − q1|R) + · · · ,

(15)

where δi(qj |R) ≡ W (|qj |R)δi(qj ). If one inserts the SPT expan-
sions for the density into the local model, then, up to second order
in the density and bias, one finds

δh(k|M,R) = b1(M) [δ1(k|R) + δ2(k|R)]

+b2(M)

2

∫
d3q1

(2π)3
δ1(q1|R)δ1(k − q1|R). (16)

Using this approach one may then find a perturbative expansion for
the halo power and bispectra:

Phh(M) = P
(0)
hh (M) + P

(1)
hh (M) + · · · , (17)

Bhhh(M) = B
(0)
hhh(M) + B

(1)
hhh(M) + · · · . (18)

Again, we refer to the lowest order terms in these expansions as
tree-level terms, and for these we have

P̃ (0)
hh (k|M) = b2

1(M)P̃mm(k) , (19)

B̃(0)
hhh(k1, k2|M) = b3

1(M)B̃mmm(k1, k2) + b2
1(M)b2(M)

×
[
P̃mm(k1)P̃mm(k2) + 2 cyc

]
, (20)

where in the above expressions we have derived the spec-
tra of the smoothed fields: P̃ ≡ W 2(kR)P (k), and B̃ ≡
W (k1R)W (k2R)W (k3R)B. However, when we estimate the bis-
pectrum from data, we do not smooth the fields apart from the
‘Cloud-in-Cell’ (CIC) assignment scheme used to obtain the den-
sity contrast field. As pointed out by Smith et al. (2007), Smith,
Sheth & Scoccimarro (2008) and Sefusatti (2009), one way to over-
come this is to adopt the ansatz

P
(0)
hh (k|M) = P̃ (0)

hh (k|M,R)

W 2(kR)
, (21)

B
(0)
hhh(k1, k2, k3|M) = B̃(0)

hhh(k1, k2, k3|M, R)

W (k1R)W (k2R)W (k3R)
. (22)

On applying this ‘de-smoothing’ operation to equations (19) and
(20), one finds

P
(0)
hh (k|M) = b2

1(M)Pmm(k) , (23)

B
(0)
hhh(k1, k2|M) = b3

1(M)Bmmm(k1, k2) + b2
1(M) b2(M)

×W̃k1,k2Pmm(k1)Pmm(k2) + 2 cyc , (24)

where we have defined the function (Sefusatti 2009)

W̃k1,k2 ≡ W (|k1|R)W (|k2|R)

W (|k1 + k2|R)
. (25)

Note that in the limit of very large scales or arbitrarily small
smoothing scales, kiR → 0 for i ∈ {1, 2, 3}, equation (24)
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approximates to

B
(0)
hhh(k1, k2|M) ≈ b3

1(M)Bmmm(k1, k2) + b2
1(M) b2(M)

× [
Pmm(k1)Pmm(k2) + 2 cyc

]
. (26)

Again, since in this paper we are only considering tree-level expres-
sions we shall take P

(0)
hh → Phh and B

(0)
hhh → Bhhh.

Considering now the reduced halo bispectrum, it may be defined
in a similar fashion to equation (13):

Qhhh(k1, k2, k3|M) ≡ Bhhh(k1, k2|M)

Phh(k1|M)Phh(k2|M) + 2 cyc
. (27)

On inserting our tree-level expressions from equations (23) and
(24), we find that

Qhhh(M) = Qmmm

b1(M)
+ b2(M)

b2
1(M)

α(k1, k2, k3), (28)

where we have defined

α(k1, k2, k3) ≡ W̃k1,k2P (k1)P (k2) + 2 cyc

P (k1)P (k2) + 2 cyc
. (29)

Again, in the limit of very large scales or arbitrarily small smoothing
scales and α(k1, k2, k3) → 1, the above expression approximates
to

Qhhh(k1, k2, k3|M) ≈ Qmmm(k1, k2, k3)

b1(M)
+ b2(M)

b2
1(M)

. (30)

We now see the utility of the reduced bispectrum: if one constructs
halo/galaxy density fields from a local transformation of the matter
density, then the lowest order non-linear corrections will lead to a
function that is a scaled version of the matter Qmmm, plus a constant
offset. Moreover, if the density field were simply Gaussian, then
estimates of Qhhh on large scales would directly measure b2/b

2
1.

3 N- B O DY SI M U L ATI O N S

For our investigations of the bias, we use an ensemble of 40 large
N-body simulations, executed on the zBOX-2 and zBOX-3 super-
computers at the University of Zürich. We use only the z = 0 out-
puts from the simulations. Each simulation was performed using the
publicly available GADGET-2 code (Springel 2005), and followed the
non-linear evolution under gravity of N = 7503 equal-mass particles
in a comoving cube of length Lsim = 1500 h−1 Mpc.

The cosmological model that we simulated was analogous to the
basic vanilla � cold dark matter (�CDM) model determined by
the WMAP experiment (Komatsu et al. 2009): matter density 	m =
0.25, vacuum density 	� = 0.75, power spectrum normalization
σ 8 = 0.8, power spectral index n = 1, and dimensionless Hub-
ble parameter h = 0.7. The transfer function for the simulations
was generated using the publicly available CMBFAST code (Seljak &
Zaldarriaga 1996; Seljak et al. 2003), with high sampling of the spa-
tial frequencies on large scales. Initial conditions were set at redshift
z = 49 using the serial version of the publicly available 2LPT code
(Scoccimarro 1998; Crocce, Pueblas & Scoccimarro 2006).

Dark matter halo catalogues were generated for each simulation
using the Friends-of-Friends algorithm (Davis et al. 1985), with
the linking-length parameter b = 0.2, where b is the fraction of
the interparticle spacing. For this we employed the fast parallel
B-FOF code, provided to us by V. Springel. The minimum number
of particles for which an object is considered to be a bound halo was
set at 20 particles. This gave a minimum host halo mass of Mmin =
1.11 × 1013 h−1 M�. For our analysis of the bias, we use the full
sample of haloes and this corresponded to roughly Nh ≈ 1.26 ×
106 haloes per simulation. Further details of the simulations may be
found in Smith (2009).

4 SI MPLE ESTI MATES OF BI AS

Before we examine halo bias in the context of the bispectrum, we
explore two alternative methods for studying the bias. We first eval-
uate the second-order local biasing model directly, by comparing in
a point-wise fashion the halo and matter density fields, smoothed
over a range of scales. Then, we use power spectra to determine an
effective large-scale bias.

4.1 Analysing density fields

One obvious way to examine the local model of biasing is to simply
construct a scatter plot of the local density of dark matter haloes
against the local density of dark matter in the simulations (see e.g.
Dekel & Lahav 1999; Sheth & Lemson 1999). As was discussed in
Section 2.3, this model only makes sense in the context of smooth
fields. We shall therefore also inspect how the model parameters
depend on the adopted smoothing scale R.

We generate the smoothed density fields as follows: we assign
particles/haloes to a Fourier grid using the CIC algorithm (cf.
Section 5.1); then we Fourier transform the grid using the fast
Fourier transform (FFT) algorithm; each Fourier mode is then mul-
tiplied by a Gaussian filter of the form

W (kR) ≡ exp
[−(kR)2/2

]
. (31)

Finally, on taking the inverse Fourier transform, we obtain the
smoothed δ(x|R) and δh(x|R). We perform the above procedure
for 28 of the ensemble of simulations and consider the filter scales
R = {50 , 20 , 10} h−1 Mpc.

In Fig. 1, we present the bin-averaged scatter plots of δh(x|R)
versus δ(x|R), averaged over the realizations. The colour contours
are shaded by the normalized population density of that pixel, for
example, the central red region indicates that most of the points in
the simulation are regions of density close to average. We also see
that as the smoothing scale is decreased (panels going from the left-
hand to right-hand side) the scatter increases and that there are more
points that have higher and lower density. Conversely, as the filter
scale is increased, the relation becomes tighter and more linear. One
obvious conclusion that may be drawn from this behaviour is that
the bias relation is certainly not deterministic.

In order to obtain a more quantitative understanding, we next
consider fitting for the parameters of the local bias model at second
order. From equation (14) we have

δh(x|M,R) = b0(M) + b1(M) δ(x|R) + b2(M)

2
[δ(x|R)]2 . (32)

We perform a least-squares analysis on each realization, and then
average over the resulting set of bias parameters to obtain the mean
parameters: b0(M), b1(M) and b2(M). The 1σ errors are then es-
timated in the usual way, as quadratic deviations from the sample
mean. In Fig. 1, we plot the resultant best-fitting local model as the
dot–dashed line in each of the three panels.

The information on the parameters is summarized in Table 1 as a
function of the filter scale R. This clearly shows that the estimates
of b1 increase as the smoothing scale is decreased, whereas those
for b2 appear to be parabolical. Naively, one might expect that
the non-linear bias terms should approach zero as the amount of
smoothing is increased and non-linearities are washed out; however,
at R = 50 h−1 Mpc even with σ (x|R) < 1, the fluctuations are still
significant enough to yield a non-zero b2. Note also that in all cases
b0 
= 0.

The local model, as written in equation (14), asserts that the
parameters bi are independent of the smoothing scale R, and we
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Figure 1. Scatter plots of δh(x) versus δ(x) smoothed with a Gaussian filter of various scales averaged over the realizations. From the left-hand to right-hand
side, the panels correspond to the smoothing scales R = {50, 20, 10} h−1 Mpc, respectively. The colour coding denotes the log of the population density, that
is, the red region corresponds to the largest concentration of points and the white background to null values. The dot–dashed line in each panel denotes the
local halo bias model up to second order with the best-fitting bias parameters averaged over 28 realizations.

Table 1. Average of the mean bias parameters and the rms errors
for the local halo bias model up to second order averaged over
28 realizations determined from fitting the scatter plots of the
halo and matter density fields smoothed on scales ks = {0.02,
0.05, 0.1} h Mpc−1.

R b0 ± σb0 b1 ± σb1 b2 ± σb2

(h−1 Mpc) (× 10−3)

50 1.3 ± 0.1 1.497 ± 0.002 −0.577 ± 0.031
20 12.0 ± 0.1 1.542 ± 0.006 −0.635 ± 0.004
10 37.2 ± 0.1 1.644 ± 0.005 −0.512 ± 0.001

therefore consider the implications as follows. Suppose that non-
linear bias is exactly as described by equation (32), but that the
coefficients are not independent of the smoothing scale. Let us now
consider the results that would be obtained from measurements for
two smoothing scales Ra and Rb. From equation (32) we would have

δh(x|Ra) = ba
0 + ba

1 δ(x|Ra) + ba
2

2
[δ(x|Ra)]2 , (33)

δh(x|Rb) = bb
0 + bb

1 δ(x|Rb) + bb
2

2
[δ(x|Rb)]2. (34)

Supposing now that we de-smoothed each of the fields, by Fourier
transforming and dividing out the appropriate window function. We
would then have

δh(k) = ba
1 δ(k) + ba

2

2

∫
d3q

(2π)3
δ(q)δ(|k − q|)W̃q,k−q(Ra) ,

δh(k) = bb
1 δ(k) + bb

2

2

∫
d3q

(2π)3
δ(q)δ(|k − q|)W̃q,k−q(Rb).

In order for the above equations to be equivalent, we must have

ba
1 = bb

1 , (35)

ba
2 = bb

2

[
W (qRb)

W (qRa)

W (|k − q|Ra)

W (|k − q|Rb)

W (kRa)

W (kRb)

]
. (36)

The last of the above two equations may only be satisfied if and
only if Ra = Rb or {kR, qR, |k − q|R} � 1. Since the δh(x|R)
versus δ(x|R) method is inherently a real-space measure, it involves

contributions from all Fourier modes. It is therefore difficult to
ensure that ba

2 = bb
2 .

We conclude that the above method will not be a safe way to
recover bias parameters independent of the smoothing scale. We
now turn to Fourier-space methods.

4.2 Effective large-scale bias from power spectra

We now use various halo power spectra to derive estimates for an
effective large-scale halo bias.

In order to do this, we first measure the Fourier transform of
the matter and halo density fields as described in Appendix A. The
halo–halo, halo–mass and mass–mass power spectra, {Phh, Phm and
Pmm}, are then estimated from the data by performing the following
sums:

P̂μν(kl) = Vμ

N (k)

N(k)∑
m=1

δμ(kl)δ
∗
ν (kl), (37)

where {μ, ν} ∈ {m, h}, Vμ is the sample volume (which in our
case is the simulation volume), and N(k) are the number of Fourier
modes in a shell of thickness �k.

Following Smith et al. (2007), we next construct the estimators:

b̂NL
hh = 1

Ns

Ns∑
i=1

√
P̂hh(ki)

P̂mm(ki)
, b̂L

hh = 1

Ns

Ns∑
i=1

√
P̂hh(ki)

P L
mm(ki)

, (38)

b̂NL
hm = 1

Ns

Ns∑
i=1

P̂hm(ki)

P̂mm(ki)
, b̂L

hm = 1

Ns

Ns∑
i=1

P̂hm(ki)

P L
mm(ki)

, (39)

where Ns is the number of simulations and P L
mm is the linear matter

power spectrum. Note that in the case of bhh we also consider
shot-noise-corrected versions of these two estimators, that is, we
correct Phh using equation (A11). We denote these bias estimates
by bNL,SC

hh and bL,SC
hh , respectively. Finally, we determine the 1σ

errors by evaluating the variance of each realization against the
mean.

The left-hand panel of Fig. 2 shows bNL
hh (solid blue data

points) and bNL,SC
hh (open red points). The bias for the shot-noise-

corrected terms remains roughly constant at ∼1.49 down to scales
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Figure 2. Scale dependence of the effective bias parameters bNL
hh , bL

hh, bNL
hm and bL

hm (cf. equations 38 and 39) estimated from the auto- and cross-power spectra
as a function of wavemode. For the left-hand and middle panels: solid blue and open red symbols denote the bias when Phh is not and is shot noise corrected,
respectively. The left-hand panel shows bhh when the non-linear matter power spectrum is used; the middle panel shows the same but when the linear matter
power spectrum is used; the right-hand panel shows bhm, where the red stars and blue points denote the case where the non-linear and linear matter power
spectra are used, respectively.

k ∼ 0.08 h Mpc−1 and with very small errors, indicating that the
result is highly constrained by the data. On scales smaller than this,
the bias is a decreasing function of k. Without shot-noise correc-
tion, we find that the bias is strongly scale-dependent, and the bias
rapidly increases with increasing k.

The middle panel of Fig. 2 shows the results obtained from using
bL

hh (solid blue points) and bL,SC
hh (open hexagonal points). The results

are similar to those for bNL,SC
hh , but with increased cosmic variance

on large scales. An oscillation structure is also present; this can
be understood as explained in Guzik, Bernstein & Smith (2007).
Nevertheless, comparing the two provides a clear indication of the
validity of the tree-level power spectrum up to k = 0.08 h Mpc−1.

The right-hand panel of Fig. 2 shows the bias results bNL
hm (solid red

points) and bL
hm (solid blue points). The value of bNL

hm stays roughly
constant for the whole scale range considered in the estimate, while
bL

hm is not smooth and clearly shows the imprint of the oscillation
structure. Nevertheless, we find bL

hm ∼ 1.48, to within the errors
for k < 0.08 h Mpc−1. On comparing the results for bNL,SC

hh and
bNL

hm , we see that for scales k � 0.08 h Mpc−1 these estimates are
compatible and that the effective large-scale bias is roughly b ∼
1.49. Interestingly, these findings are consistent with real-space
measures of the effective large-scale bias from cell variances (Smith
& Marian 2011).

In Table 2, we report the weighted average and corresponding 1σ

error on the effective bias, bhh, computed over the same k modes
corresponding to the magnitude of the third wavevector k3 for each
triangle configuration. The tabulated results for the analysis of the
uncorrected data confirm the results shown in Fig. 2 that bias is
indeed scale-dependent. Applying the shot-noise correction yields

Table 2. Weighted average estimates of the effective bias, bhh (see equa-
tion 38).

k ( h Mpc−1) bNL
hh b

NL,SC
hh bL

hh b
L,SC
hh

0.03–0.09 1.589 ± 0.002 1.493 ± 0.002 1.589 ± 0.004 1.487 ± 0.004
0.04–0.12 1.624 ± 0.002 1.486 ± 0.002 1.638 ± 0.003 1.489 ± 0.003
0.05–0.15 1.663 ± 0.002 1.474 ± 0.002 1.709 ± 0.003 1.503 ± 0.003
0.06–0.18 1.695 ± 0.001 1.460 ± 0.002 1.775 ± 0.002 1.511 ± 0.003

a more constant effective bias, even for the range of k modes en-
tering into our bispectrum estimation. Interestingly, the value b1 =
1.49 ± 0.002 found for k ∈ [0.03, 0.09] is in good agreement with
the result for b1 obtained from fitting the density fields smoothed
on scales R = 50 h−1 Mpc. Therefore, if we opt to infer that the
effective bias is equivalent to b1 over these scales, then the bis-
pectrum (reduced bispectrum) should also yield this value for b1

when fitted over the same scale ranges (cf. Table 2), that is, if the
local bias model is correct and the tree-level bispectrum (reduced
bispectrum) is a sufficient description of the non-linearities on these
scales.

Before moving on, we point out that one can also use the
halo power spectra to define an effective b2 (Smith, Hernández-
Monteagudo & Seljak 2009); however, we shall not explore this
here.

5 H ALO BI AS FRO M BI SPECTRA

In this section, we present our main results from the analysis of the
halo bispectra.

5.1 Bispectrum estimation

The computational code used to estimate the matter and halo
power and bispectra is a modified version of the code developed
in Smith et al. (2008), which itself is based on the algorithm of
Scoccimarro et al. (1998). The major modification to that code,
which we have implemented, is that no random subsampling of the
Fourier modes is performed to estimate the bispectrum. Instead,
all modes that contribute to a particular triangle configuration are
used. In this work, we use a FFT grid of size Ng = 5123 to esti-
mate the power and bispectra. We only evaluate triangles that have
k2 = 2k1, but consider the variation of B with the angular sepa-
ration of the two vectors. The largest scale at which we estimate
the bispectrum is k1 = 0.03 h Mpc−1, and this is ≈7.5kf , where
kf = 2π/L ≈ 0.004 h Mpc−1. Further details of the bispectrum
estimation procedure may be found in Appendix A.

Fig. 3 shows the ensemble-averaged shot-noise-corrected results
for the halo bispectra Bhhh (open red squares) and matter bispectra
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Figure 3. Ensemble-averaged matter and halo bispectrum measurements for 40 �CDM N-body simulations in real space in comparison with the PT models at
tree level. Each panel shows the shot-noise-corrected bispectrum measurements as a function of angle for a variety of triangle configurations at different scale
ranges set by k1 = {0.03 0.04 0.05 0.06} h Mpc−1 and k2 = 2k1. The blue solid symbols represent the matter bispectrum, whereas the open squares denote
the halo bispectrum. The tree-level bispectrum is represented by the solid orange line, and the local halo bias model with the best-fitting parameters listed in
Table 4 is represented by the dashed violet line.

Bmmm (solid blue diamonds), measured from the ensemble of N-
body simulations. The four panels show the results obtained for the
scales: k1 = {0.03, 0.04, 0.05, 0.06} h Mpc−1. The error bars are
the 1σ errors on the mean, derived from the ensemble-to-ensemble
variation. The solid red line represents the tree-level prediction for
Bmmm as given by equation (12). We see that this appears to be a
good description of the Bmmm estimates for the scales that we have
considered. We note that, for the case k1 = 0.06 h Mpc−1, the theory
systematically underpredicts the measurements for θ/π ∼ 0.5 (but
see Section 5.4 for a more quantitative discussion of the goodness-
of-fit).

Fig. 4 shows the same as in Fig. 3, however, this time for Qhhh

and Qmmm.

5.2 Bias estimation

Our method for estimating the bias parameters follows an approach
similar to that presented by Scoccimarro (2000) and Porciani &
Giavalisco (2002). To start, we take a χ2 function that is a quadratic

form of the type

χ2(b1, b2) =
Nθ∑
i=1

Nθ∑
j=1

�i(b1, b2)r̂−1
ij�j (b1, b2), (40)

where Nθ is the number of angular bins considered and

�i ≡ B̂hhh(k1, k2, θi) − Bmod
hhh (k1, k2, θi |b1, b2)

σhhh(k1, k2, θi)
. (41)

Note that in dividing the difference between the estimate of the

ensemble average bispectrum (B̂) and the model prediction (Bmod)

by the standard deviation (σhhh), r̂−1
ij is in fact the inverse correla-

tion matrix. Recall that the correlation and covariance matrices are
related by rij = Cij /

√
CiiCjj .

In order to minimize this χ2 function and so recover the best-
fitting bias parameters, we need an estimate of r̂−1

ij , and we do this
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Figure 4. Ensemble-averaged matter and halo-reduced bispectrum measurements of the 40 �CDM N-body simulations in real space in comparison with the
PT models at tree level. The point and line styles are the same as in Fig. 3.

using the standard unbiased estimator

r̂ij = 1

(Nsim − 1)

Nsim∑
k=1

�̃k
i �̃

k
j , (42)

where Nsim is the number of simulations and

�̃i ≡ B̂
(k)
hhh(k1, k2, θi) − B̂hhh(k1, k2, θi)

σhhh(k1, k2, θi)
, (43)

where B̂
(k)
hhh is the kth estimate of the bispectrum and B̂hhh is the

mean of the ensemble.
Next, we use singular value decomposition to invert r̂ij . For

the estimate of the inverse correlation matrix, we utilize principal
component analysis (PCA) to remove some of the noisy eigenvec-
tors. We select the fraction of principal components that account
for 95 per cent of the variance. According to this selection cri-
terion, we typically retain 15 out of 20 of the most ‘dominant’
eigenmodes. Note that as pointed out in Hartlap, Simon & Schnei-

der (2007), Ĉ−1 
= Ĉ−1. However, since we are using PCA, this
should be a subdominant correction. Thus, we may approximate

equation (40) to

χ2 =
Nθ∑
i=1

Nθ∑
j=1

�i(b1, b2)[RT�R]−1
ij �j (b1, b2),

=
Nθ∑
i=1

Nθ∑
j=1

�i(b1, b2)
Nθ∑
l=1

RT
il�

−1
ll Rlj�j (b1, b2),

≈
Nθ∑
l=1

�−1
ll Y 2

l �ll , (44)

where the correlation matrix r was diagonalized by rotation into
its eigenbasis, that is, r = RT�R, with � representing a diagonal
matrix of eigenvalues. We also defined Yl ≡ ∑Nθ

i=1 Rli�i(b1, b2).
Note that in the final approximate expression we include a matrix
�ll, a diagonal matrix with entries either 1 or 0, depending on
whether the eigenvector is to be retained or cut from the PCA
reconstruction.

Finally, the χ2(b1, b2) function was minimized using the
Levenberg–Marquardt routine for non-linear least-squares fitting.
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5.3 Errors in parameter estimates

To the best-fitting parameters (b1, b2), we assign both systematic
and statistical errors.

In our context, the systematic errors correspond to the errors
induced in the best-fitting parameters from fitting the data with
a noisy inverse covariance matrix (or correlation matrix). Owing
to the relatively low number of simulations (Nsim = 40), we ex-
pect that equation (42) provides a noisy estimate of r−1

ij . In order
to estimate the errors this has on the best-fitting parameters, we
employ the jackknife subsampling method (see e.g. Norberg et al.
2009). This involves slicing the total data set into Nsub subsamples.
Then a resampling of the data is obtained by excluding one of the
subsamples from the set. From this resampling, we then estimate
the mean statistic of interest and the inverse correlation matrix as
described in the previous section. The resampled data set is then
used to determine a new estimate of the best-fitting bias parameters.
This procedure is then repeated for all of the possible Nsub resam-
plings of the data. In our particular case, we treat the measurements
from each simulation as the regions to be included or excluded, and
this gives us 40 jackknife estimates of the bias parameters (b1, b2).
The parameter covariance matrix for the systematic errors can be
computed as (Norberg et al. 2009)

ĈJK[bi, bj ] = Nsub − 1

Nsub

Nsub∑
k=1

(bi,k − ˆ̄bj )(bj,k − ˆ̄bj ), (45)

where bi,k is the estimate of bi from the kth resampling of the
data and ˆ̄bi is the estimate of the mean bi obtained from all of the
resamplings.

The statistical error is obtained directly from the non-linear least-
squares analysis. The routine mrqmin provides an approximation to
the errors on the parameters that corresponds to a �χ2 ≈ 1 for a
one-parameter model. However, the confidence regions we present
in the forthcoming plots correspond to either�χ2 = (2.30, 6.17) ,
which roughly denote the (∼1σ , ∼2σ ) errors for a two-parameter
model.

Given that we consider two forms of error, systematic and statis-
tical, and that one is never consistently larger than the other, in all
forthcoming tables, we choose to report only the total error. This is
obtained simply from the two errors added in quadrature.

5.4 Testing the validity of the tree-level matter B

Before we report the estimates of the halo bias parameters, we first
present a test of the validity of the tree-level model for the matter
bispectrum. We do this by applying the χ2 test described above, to
the Bmmm and Qmmm data, and so fit for b1 and b2. Note that since
the total number of principal components retained equals 15, for
a two-parameter model, the number of degrees of freedom equals
13. If the tree-level expressions in the large-scale limit as given by
equations (26) and (30) are correct, then we should expect to find
b1 = 1 and b2 = 0.

Table 3 presents the best-fitting non-linear bias parameters for the
four different bispectrum scale ranges discussed earlier. In the anal-
ysis, we fit the shot-noise-corrected bispectra. The χ2 values (last
column of the table) confirm that the tree-level expressions B0

mmm

and Q0
mmm provide good fits for the triangle configurations with k1 =

{0.03, 0.04} h Mpc−1. However, for k1 = {0.05, 0.06} h Mpc−1, the
fits are poor, given the χ2 estimates, and we see that, for both B
and Q, they yield non-zero values for b2 at 1σ . The results also
imply that the failure of the tree-level model on these scales is more
severe for Q than for B. This can be understood by noting that b1

Table 3. Assessment of the validity of the tree-level modelling
by fitting the matter bispectra and reduced bispectra. Column (1):
bispectrum triangle scale; column (2): statistic, where Bmmm and
Qmmm are shot-noise corrected; columns (3) and (4): best-fitting b1

and b2 along with 1σ errors; column (5): χ2.

k1 (h Mpc−1) b1 ± σb1 b2 ± σb2 χ2

0.03 Bmmm 1.01 ± 0.07 −0.04 ± 0.25 19.08
Qmmm 0.93 ± 0.19 −0.05 ± 0.30 19.03

0.04 Bmmm 0.98 ± 0.03 0.04 ± 0.10 14.31
Qmmm 1.05 ± 0.09 0.07 ± 0.16 14.95

0.05 Bmmm 0.97 ± 0.02 0.13 ± 0.08 38.83
Qmmm 1.14 ± 0.07 0.19 ± 0.13 19.97

0.06 Bmmm 0.98 ± 0.02 0.10 ± 0.10 34.09
Qmmm 1.15 ± 0.04 0.22 ± 0.08 29.58

from Qmmm shows a prominent departure from unity, whereas Bmmm

does not (although the deviation still exceeds 2σ ). We thus conclude
that it is likely that the tree-level expressions for the halo bispectra
will only be valid for k1 ≤ 0.04 h Mpc−1, for our chosen bispectrum
configurations.

5.5 Constraints on b1 and b2 from halo bispectra

Table 4 presents the best-fitting non-linear bias parameters and their
respective 1σ errors in quadrature, obtained from the χ2 analysis
of Bhhh and Qhhh. Note that we present the results for both the
uncorrected and shot-noise-corrected measurements, indicated in
the table by superscript ‘SC’. Table 4 also shows the χ2 value of
these best-fitting parameters as an indication of the goodness-of-fit.

In Figs 3 and 4, we also show the tree-level theoretical models for
Bhhh and Qhhh (dashed lines), where the best-fitting bias parameters
from Table 4 have been used. These figures demonstrate that, at
least by eye, the tree-level models provide a reasonable description
of the data. However, a more detailed inspection of Table 4 reveals
some important discrepancies.

Table 4. Best-fitting bias parameters from fitting the halo–halo–
halo bispectra and reduced bispectra. Column (1): bispectrum
triangle scale; column (2): statistic, where Bhhh and Qhhh are raw,
and BSC

hhh and QSC
hhh are shot noise corrected; columns (3) and (4):

best-fitting b1 and b2 along with 1σ errors; column (5): χ2.

k1 (h Mpc−1) b1 ± σb1 b2 ± σb2 χ2

0.03 Bhhh 1.43 ± 0.11 −0.18 ± 0.40 17.20
BSC

hhh 1.42 ± 0.11 −0.36 ± 0.38 17.08
Qhhh 2.09 ± 0.55 −0.12 ± 0.76 16.08
QSC

hhh 1.75 ± 0.47 −0.39 ± 0.56 16.66

0.04 Bhhh 1.41 ± 0.08 −0.05 ± 0.26 26.92
BSC

hhh 1.38 ± 0.08 −0.27 ± 0.25 26.16
Qhhh 2.32 ± 0.39 0.14 ± 0.58 26.40
QSC

hhh 1.80 ± 0.29 −0.34 ± 0.36 26.96

0.05 Bhhh 1.40 ± 0.06 0.15 ± 0.21 31.92
BSC

hhh 1.38 ± 0.05 −0.25 ± 0.15 12.63
Qhhh 2.66 ± 0.26 0.57 ± 0.42 11.53
QSC

hhh 1.90 ± 0.19 −0.30 ± 0.22 11.60

0.06 Bhhh 1.41 ± 0.05 0.19 ± 0.24 63.64
BSC

hhh 1.37 ± 0.03 −0.23 ± 0.13 19.30
Qhhh 2.84 ± 0.20 0.88 ± 0.40 20.70
QSC

hhh 1.87 ± 0.14 −0.30 ± 0.19 19.47
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Figure 5. Evolution of the likelihood contours for the bias parameters b1 and b2, estimated from Bhhh and Qhhh, with scale. The solid lines denote the 68 and
95 per cent confidence intervals, obtained from a full exploration of the likelihood surface around the best-fitting values; the dashed lines denote the same, but
where the jackknife parameter covariance matrix from equation (45) has been used to determine the error contours. The top left-hand, top right-hand, bottom
left-hand and bottom right-hand panels show the results for triangle configurations with k1 = {0.03, 0.04, 0.05, 0.06} h Mpc−1, respectively. The vertical black
lines denote the effective bias parameter b

NL,SC
hh , using the same wavemodes as that enter into the bispectrum estimates.

For the case of fitting B, the shot-noise correction is less impor-
tant, as we see that the estimates of b1 for all bispectrum config-
urations with and without shot-noise corrections are consistent to
within the errors, and have b1 ∼ 1.4. However, b2 shows systematic
differences, being more negative if the correction is made, and for
this we find that b2 ∼ −0.25. On the other hand, for the case of
Q, the results clearly show that the shot-noise subtraction has an
important effect on the recovered values for the bias parameters. If
the shot noise is not corrected, then we see that the estimates for b1

increase systematically as we go from triangle configurations with
k1 = 0.03 to 0.06 h Mpc−1, whereas if it is corrected, then we find
b1 ∼ 1.8 and b2 ∼ −0.3 to within the errors. On comparing the
results from B and Q, we see that, whilst the values for b1 disagree
significantly, surprisingly, the values for b2 remain consistent at the
1σ level.

The χ2 function of equation (41) may be interpreted as a Gaus-
sian likelihood if we make the transformation, L({Bhhh}|b1, b2) ∝
exp[−χ2/2]. Once suitably normalized and on assuming a set of
prior probabilities, we may then explore the shape of the confidence
regions in the posterior probability p(b1, b2|{Bhhh}).

Fig. 5 shows the 1σ likelihood confidence contours in the poste-
rior probability for the non-linear bias parameters for the four scales
considered according to our method of analysis described above.
The solid lines denote the size of the confidence regions at the 68
and 95 per cent level (i.e. �χ2 ≈ 2.3, 6.17) when we construct a
correlation matrix from the 40 realizations without regard to the
systematic uncertainty. The dashed lines demonstrate the magni-
tude at which the 68 and 95 per cent confidence regions expand
following our generation of a set of jackknife subsamples to moni-
tor the effect due to the implicit error associated with the estimated
correlation matrix. Hence, we clearly see the relevance of account-
ing for the uncertainty of the correlation matrix when obtaining the
bias parameter constraints. The discrepancy between the resulting
jackknife error ellipses for B and Q is less severe than the likeli-
hood contours obtained from the complete sample where the level
of agreement improves progressing to large scales, yet this might be
due to the fact that the statistical error is more prominent at larger
scales. Interestingly, the overlap of the two likelihood regions at 2σ

for k1=0.03, 0.04 and 0.05 h Mpc−1 occurs with the rectangular re-
gion or strip denoting the effective bias measure, bNL,SC

hh , at 1σ . This
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set of panels in Fig. 5 convey pictorially the information obtained
from the results in Table 4 that the likelihood contours from analysis
of Q show an evolution with decreasing scale towards larger and
larger b1, whereas the constraints on b2 remain consistent. Finally,
the constraints obtained from analysing the Q amplitudes are much
weaker than those coming from the bispectrum.

6 H ALO BIAS FRO M C RO SS-BISPECTRA

In Section 5.5, we saw that shot-noise corrections influenced the
recovery of the bias parameters particularly for Q. In this section,
we attempt to develop the use of cross-bispectra, as measures of the
bias that are less susceptible to discreteness effects. The use of cross-
correlations in large-scale structure work has long been known as a
way of reducing discreteness corrections (Peebles 1980). However,
it is only relatively recent that it has been applied to study bias
(Smith et al. 2007; Dalal et al. 2008; Desjacques, Seljak & Iliev
2009; Padmanabhan et al. 2009; Smith 2009; Pillepich, Porciani &
Hahn 2010).

6.1 Definitions and theory

We may define the halo cross-bispectra as follows:

〈δh(k1)δh(k2)δ(k3)〉 = (2π)3 δD(k123)Bhhm(k1, k2, k3) , (46)

〈δh(k1)δ(k2)δ(k3)〉 = (2π)3 δD(k123)Bhmm(k1, k2, k3). (47)

We then symmetrize these quantities by the operations

B
(sym)
hhm = [Bhhm + Bhmh + Bmhh] /3 , (48)

B
(sym)
hmm = [Bhmm + Bmhm + Bmmh] /3. (49)

For ease of notation, we shall now simply take B
(sym)
hhm ≡ Bhhm and

B
(sym)
hmm ≡ Bhmm, unless otherwise indicated. We may now also define

the cross-reduced bispectra as

Qhhm ≡ Bhhm/PPhhm , (50)

Qhmm ≡ Bhmm/PPhmm, (51)

where we have for the denominators (again symmetrized)

PPhhm = 2

3

[
Phh(k1)Phm(k2) + 2 cyc

]
+1

3

[
Phm(k1)Phm(k2) + 2 cyc

]
, (52)

PPhmm = 2

3

[
Phm(k1)Pmm(k2) + 2 cyc

]
+1

3

[
Phm(k1)Phm(k2) + 2 cyc

]
. (53)

The relations for PPhhm and PPhmm can easily be constructed using
a graphical approach. Let us consider three nodes two of which are
the same and the third is different (we shall think of the nodes as
the density fields). Label these nodes 1, 2 and 3. Now consider all
possible ways to connect the three nodes together by two edges.
When the two nodes, which are the same, connect together, this
gives us an auto-power spectrum with a delta function, and when
two nodes that are different connect together, this gives us a cross-
power spectrum and delta function. One may then symmetrize the
results by considering all possible re-labellings of the nodes and
dividing by three.

In Appendix B, we calculate the tree-level cross-bispectra, Bhmm

and Bhhm, in the local model of halo biasing. The main results are

B
(0)
hmm(k1, k2, k3) ≈ b1(M)B (0)

mmm(k1, k2, k3)

+b2(M)

3

[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc
]

, (54)

B
(0)
hhm(k1, k2, k3) ≈ b2

1(M)B (0)
mmm(k1, k2, k3) + 1

3
b1(M)

×b2(M)
[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc
]
. (55)

In the limit of large scales, and/or small smoothing scales, the filter
functions W̃k1,k2 → 1 and we have

B
(0)
hmm ≈ b1B

(0)
mmm + b2

3

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
, (56)

B
(0)
hhm ≈ b2

1B
(0)
mmm + 1

3
b1b2

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (57)

At second order in the non-linear bias and PT, the cross-reduced
bispectra are

Q
(0)
hmm ≈ 3Qmmm

2 + b1(M)
+ b2(M)

2b1(M) + b2
1(M)

α(k1, k2, k3) , (58)

Q
(0)
hhm ≈ 3 Qmmm

2b1(M) + 1
+ 2b2(M)

2b2
1(M) + b1(M)

α(k1, k2, k3). (59)

In the large-scale limit, α → 1, these expressions become

Q
(0)
hmm ≈ 3Qmmm

2 + b1(M)
+ b2(M)

2b1(M) + b2
1(M)

, (60)

Q
(0)
hhm ≈ 3 Qmmm

2b1(M) + 1
+ 2b2(M)

2b2
1(M) + b1(M)

. (61)

6.2 Estimation of the cross-bispectra

The cross-bispectra Bhhm and Bhmm can be estimated following the
algorithm described in Section 5.1 with some small modifications.
First, the estimates must be symmetrized, and for the discrete form
of Bhhm we have

B̂d
hhm(k1, k2, θ12) = 1

3

V 2
μ

Ntri

Ntri∑
(n1,n2)

×
{
Re[δh(kn1 )δh(kn2 )δm(kn3 )] + 2 cyc

}
, (62)

and similarly for B̂d
hmm. The reduced bispectra are estimated by

dividing the above bispectrum estimates by estimates for PPhhm

and PPhmm from equations (52) and (53), respectively.
One further complication is constructing the corrections for shot

noise. This may be performed following the Counts-in-Cells ap-
proach of Peebles (1980) (see also Smith 2009). We find that the
symmetrized corrections for Bhhm and Bhmm can be written as

̂̄Bhhm,shot ≡ 1

3nh

[
P d

hm(k1) + 2 cyc
]

, (63)

̂̄Bhmm,shot ≡ 1

3nm

[
P d

hm(k1) + 2 cyc
]
, (64)

where nm = N/Vμ and nh = Nh/Vμ are the number density of
matter particles and haloes, respectively. For the reduced bispectra,
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we must correct the estimates of PPhhm and PPhmm, which are
written in the following form:

Qdenom
hhm,shot = 2

3nh

[
P̂ d

hm(k1) + 2 cyc
]

, (65)

Qdenom
hmm,shot = 2

3nm

[
P̂ d

hm(k1) + 2 cyc
]
. (66)

As it is the case that nm � nh, we expect that the shot-noise
corrections to Bhmm will be significantly smaller than for Bhhm.
Hence, we shall think of this as being an almost perfect measure
independent of discreteness.

Using these estimators, we compute the ensemble average and
ensemble-to-ensemble variations of the halo–mass cross-bispectra.
We do this for the same bispectrum configurations as were consid-
ered in Section 5.1.

6.3 Non-linear bias from cross-bispectra

We estimate the non-linear bias parameters and their errors from
the cross-bispectra using the same method as employed for the
auto-bispectra in Sections 5.2 and 5.3. The results are tabulated in
Tables 5 and 6, respectively.

Fig. 6 presents the 2D 95 per cent confidence likeli-
hood contours for b1 and b2 that are obtained from fitting
the shot-noise-corrected bispectra {BSC

hhh, BSC
hhm, BSC

hmm} and re-
duced bispectra {QSC

hhh, QSC
hhm, QSC

hmm}. The four panels show
the results obtained from fitting triangle configurations, k1 ∈
{0.03, 0.04, 0.05, 0.06} h Mpc−1, with k2/k1 = 2, and these corre-
spond to the top left-hand, top right-hand, bottom left-hand and
bottom right-hand panels, respectively. For comparative purposes,
the vertical band in each panel denotes the 1σ constraint on bNL,SC

hh ,
obtained from the shot-noise-corrected halo and non-linear matter
power spectra (cf. Section 4.2).

Considering first the bispectra {BSC
hmm, BSC

hhm, BSC
hhh} (solid red

lines of increasing thickness), from the figure and the tables, we
see that all the results are reasonably consistent with one another
over the various scale ranges considered. However, when smaller

Table 5. Best-fitting bias parameters from halo–mass–mass bispec-
tra and reduced bispectra. Column (1): bispectrum triangle scale;
column (2): statistic, where Bhmm and Qhmm are raw, and BSC

hmm and
QSC

hmm are shot noise corrected; columns (3) and (4): best-fitting b1

and b2 along with 1σ errors; column (5): χ2.

k1 ( h Mpc−1) b1 ± σb1 b2 ± σb2 χ2

0.03 Bhmm 1.37 ± 1.18 −0.36 ± 0.32 16.86
BSC

hmm 1.37 ± 1.18 −0.36 ± 0.32 16.86
Qhmm 1.98 ± 0.75 −0.75 ± 0.99 19.09
QSC

hmm 1.98 ± 0.75 −0.75 ± 0.99 19.09

0.04 Bhmm 1.33 ± 0.16 −0.33 ± 0.51 16.83
BSC

hmm 1.33 ± 0.16 −0.33 ± 0.51 16.83
Qhmm 2.50 ± 0.56 −0.31 ± 0.89 17.96
QSC

hmm 2.51 ± 0.56 −0.32 ± 0.89 17.97

0.05 Bhmm 1.30 ± 0.07 −0.01 ± 0.23 26.98
BSC

hmm 1.30 ± 0.07 −0.02 ± 0.23 26.82
Qhmm 2.94 ± 0.25 0.24 ± 0.57 16.90
QSC

hmm 2.94 ± 0.25 0.23 ± 0.57 16.95

0.06 Bhmm 1.29 ± 0.07 −0.001 ± 0.28 13.99
BSC

hmm 1.29 ± 0.07 −0.004 ± 0.28 13.93
Qhmm 3.45 ± 0.30 1.43 ± 0.94 46.60
QSC

hmm 3.45 ± 0.30 1.42 ± 0.94 46.87

Table 6. Best-fitting bias parameters from halo–halo–mass bis-
pectra and reduced bispectra. Column (1): bispectrum triangle
scale; column (2): statistic, where Bhhm and Qhhm are raw, and
BSC

hhm and QSC
hhm are shot noise corrected; columns (3) and (4):

best-fitting b1 and b2 along with 1σ errors; column (5): χ2.

k1 ( h Mpc−1) b1 ± σb1 b2 ± σb2 χ2

0.03 Bhhm 1.42 ± 0.25 −0.32 ± 0.60 17.13
BSC

hhm 1.42 ± 0.24 −0.45 ± 0.47 17.49
Qhhm 2.08 ± 0.40 −0.49 ± 0.46 17.45
QSC

hhm 2.11 ± 0.40 −0.67 ± 0.42 17.46

0.04 Bhhm 1.39 ± 0.14 −0.24 ± 0.25 21.29
BSC

hhm 1.37 ± 0.15 −0.37 ± 0.24 21.42
Qhhm 2.49 ± 0.46 −0.17 ± 0.56 22.92
QSC

hhm 2.56 ± 0.49 −0.47 ± 0.51 24.60

0.05 Bhhm 1.38 ± 0.08 −0.05 ± 0.18 22.46
BSC

hhm 1.36 ± 0.07 −0.29 ± 0.14 13.16
Qhhm 2.87 ± 0.18 0.22 ± 0.29 12.55
QSC

hhm 2.92 ± 0.19 −0.37 ± 0.25 16.77

0.06 Bhhm 1.39 ± 0.07 −0.07 ± 0.25 20.56
BSC

hhm 1.36 ± 0.07 −0.31 ± 0.22 15.32
Qhhm 3.12 ± 0.27 0.54 ± 0.52 37.81
QSC

hhm 3.25 ± 0.31 −0.14 ± 0.47 60.54

scales are used (i.e. k1 ≥ 0.05 h Mpc−1), the consistency weakens
and the best-fitting parameters, obtained from BSC

hhh and BSC
hmm, differ

by �2.5σ .
Evaluating the results for the reduced bispectra

{QSC
hmm, QSC

hhm, QSC
hhh} (dashed blue lines of increasing thick-

ness), the four panels show a strong evolution of the error ellipses
with scale. We also note that the level of agreement between the
different estimators also evolves strongly, becoming weaker and
weaker as smaller scales are considered. At the largest scale where
k = 0.03 h Mpc−1, all the 2σ likelihood contour regions overlap.
However, this consistency is broken for the next scale range, k =
0.04 h Mpc−1, where Qhmm and Qhhm are shifted downwards and
farther to the right-hand side, favouring a more negative b2 and
higher b1. The trend continues in this same direction heading to
smaller and smaller scales.

Comparing the results from both B and Q together, we see that
only on the largest scales is there any degree of overall consistency.
One way to interpret the results up to now is that if we believe
b1 ≈ bNL,SC

hh , then the agent driving the inconsistency between the
parameter estimates is the breakdown of the local bias model at tree
level. Furthermore, the breakdown of the local tree-level model is
more severe for the reduced bispectrum than for the bispectrum.

7 T H E N E E D F O R B E YO N D - T R E E - L E V E L
B I A S M O D E L S

This final set of analysis consists of a simple proof of method
test, and we determine whether, when the underlying bias model is
known, the ‘true’ bias parameters of the model are indeed recover-
able with our approach.

7.1 Biasing by hand

For these tests, and for simplicity, we shall assume that the local
model of biasing at quadratic order is the correct underlying bias
model. Non-linear biased density fields of this type may be obtained
through the following procedure.
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Figure 6. Evolution of the 95 per cent likelihood contours for b1 and b2 obtained from the halo auto- and cross-bispectra and reduced bispectra as a function
of scale. In each panel, the solid red lines of increasing thickness denote {Bhmm, Bhhm, Bhhh} and the dashed blue lines of increasing thickness denote
{Qhmm, Qhhm, Qhhh}. The alphabetical labels {a, b, c, d} correspond to the triangle configurations with k1 = {0.03, 0.04, 0.05, 0.06} h Mpc−1, respectively.
The vertical black lines denote the effective bias parameter b

NL,SC
hh , using the same wavemodes as that enter into the bispectrum estimates.

For each of the z = 0 outputs of the 40 simulations, we assign
the non-linear density field of matter to a cubical Fourier grid using
the CIC algorithm. This is then Fourier transformed. Each Fourier
mode is then smoothed using a Gaussian filter of scale R. We then
inverse Fourier transform this field and obtain the smoothed, non-
linear matter distribution in real space. Using this we next form the
sum

δb(x|R) = bb
1δ(x|R) + bb

2[δ(x|R)]2/2, (67)

where bb
1 and bb

2 are the artificial bias parameters. Finally, this is
Fourier transformed to give us δb(k|R). Thus, given δ(k|R) and
δb(k|R), we can now use our standard bispectrum estimators to
estimate Bbbb, Bbbm, Bbmm and Bmmm. We refer to this procedure as
the ‘biasing-by-hand’ test.

The major benefits of these tests are that we are able to better
gauge the effects to which non-linearities beyond tree-level order

influence the measured bispectra and reduced bispectra. We also
note that shot noise plays no role here, since the biased field is
created from the matter density field which is densely sampled.

7.2 Theoretical interpretation

In order to interpret the results from such a construction we may use
the results presented in Appendix B, with the small modification
that we do not de-smooth the results. If we define the smoothed
bispectra as

B(k1, k2, k3) ≡ W (k1R)W (k2R)W (k3R)B(k1, k2, k3), (68)

then for {Bbmm, Bbbm, Bbbb}, we have

Bbmm = b1Bmmm + b2

6
P4,m , (69)
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Bbbm = b2
1Bmmm + b1b2

3
P4,m + b2

2

12
P5,m, (70)

Bbbb = b3
1Bmmm + b2

1b2

2
P4,m + b1b

2
2

4
P5,m + b3

2

8
P6,m, (71)

where for ease of notation we take bb
i = bi and in the above we

have suppressed the dependence of B, P4,m, P5,m and P6,m on
(k1, k2, −k1 − k2). We have also introduced the auxiliary functions

Pn,m ≡ W (k1R)W (k2R)W (k3R)Pn,m, (72)

P4,m ≡
∫

d3q1

(2π)3
W̃q1,k1−q1

×T (q1, k1 − q1, k2, k3) + 2 cyc, (73)

P5,m ≡
∫

d3q1

(2π)3

d3q2

(2π)3
W̃q1,k1−q1

W̃q2,k2−q2

×P5,m(q1, k1 − q1, q2, k2 − q2, k3)

+2 cyc,
(74)

P6,m ≡
∫

d3q1

(2π)3
. . .

d3q3

(2π)3
W̃q1,k1−q1

. . . W̃q3,k3−q3

×P6(q1, k1 − q1, q2, k2 − q2, q3, k3 − q3). (75)

The attractive aspect of this test can now be understood: if we move
the terms in equations (69), (70) and (71), which are proportional
to Bmmm from the right-hand to the left-hand-side, then we may
rewrite this system as the matrix equation⎛⎜⎜⎝

Ybmm

Ybbm

Ybbb

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b2/6 0 0

b1b2/3 b2
2/12 0

b2
1b2/2 b1b

2
2/4 b3

2/8

⎞⎟⎟⎠
⎛⎜⎜⎝

P4,m

P5,m

P6,m

⎞⎟⎟⎠ , (76)

where we defined Ybmm ≡ Bbmm − b1Bmmm, etc. This equation may
be inverted to give⎛⎜⎜⎝

P4,m

P5,m

P6,m

⎞⎟⎟⎠ = 1

b3
2

⎛⎜⎜⎝
6b2

2 0 0

−24b1b2 12b2 0

24b2
1 −24b1 8

⎞⎟⎟⎠
⎛⎜⎜⎝

Ybmm

Ybbm

Ybbb

⎞⎟⎟⎠ . (77)

Hence, if we specify b1, b2 and measure the four bispectra Bmmm,
Bbmm, Bbbm and Bbbb, then we can exactly determine P4,m, P5,m and
P6,m. Thus, we have complete knowledge of all components of the
non-linear model at all orders in the theory. The lowest order PT
expansions of these statistics are (cf. Appendix B)

B(0)
bmm ≈ b1B(0)

mmm + b2

3

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
, (78)

B(0)
bbm ≈ b2

1B(0)
mmm + b1b2

3

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
, (79)

B(0)
bbb ≈ b3

1B(0)
mmm + b2

1b2

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
, (80)

where in the above, we defined Pmm(k) ≡ W 2(k|R)Pmm(k).

7.3 Results of the artificial bias test

Following the algorithm described in Section 7.1, for each realiza-
tion of our ensemble of simulations, we generate three artificially bi-
ased density fields smoothed on scales R = {20 , 10 , 6.67} h−1 Mpc.
In all cases, we apply the same non-linear bias: b1 = 1.63 and b2 =

−0.53. Whilst these values are somewhat arbitrary, they were se-
lected to coincide with the best-fitting values to the scatter plot
of δh(x|R) versus δ(x|R), smoothed at R ∼ 10 h−1 Mpc, that we
recorded in Section 4.1.

For each filtering scale, we then measure the four bispectra
Bmmm, Bbmm, Bbbm and Bbbb for triangle configurations with k1 =
0.04 h Mpc−1, k2/k1 = 2, over 20 angular bins. From these, using the
method described above, we recover the higher order terms: P4,m,
P5,m and P6,m.

We now define three modelling cases of interest:

(i) Case 1 (All Order). Equations (69)–(71) are used to interpret
the data.

(ii) Case 2 (Exact Trispectrum). Equations (69)–(71) are exact
up to P4,m. All higher order terms (P5,m, P6,m) are dropped from
the modelling.

(iii) Case 3 (Tree Level). Lowest order expansions given by equa-
tions (78)–(80) are used to interpret the data.

For each of the models described above, we then apply the same
χ2-fitting analysis, as described in Section 5.2, to determine the
best-fitting b1 and b2 parameters.

We begin by first examining the All Order expansion model. We
confirm that for this case, the true bias parameters b1 = 1.63 and b2 =
−0.53 are recovered exactly, albeit with some uncertainty, however,
with a χ2 = 0, and for all the smoothing lengths considered. This null
test is important, because it gives us confidence that any departures
of the fits from the true bias values can be attributed solely to a
breakdown of the theoretical modelling.

Next, we focus on the Exact Trispectrum model where Bmmm

and P4,m are measured from the simulations. In Table 7, we report
the best-fitting bias parameters with the 1σ errors expressed in
quadrature for the auto-bispectrum and cross-bispectrum and for
the four smoothing scales examined. For the case Bbmm, a quick
inspection of equation (69) tells us that the modelling should be
exact, and indeed we see that the bias parameters are correctly
recovered. However, for the cases Bbbm and Bbbb, we see that the
absence of the higher order terms (P5,m, P6,m) induces biases in
the parameters. For b1 the deviation from the true value is relatively
small, with the value of the parameter only slightly decreasing in
size. For b2 the deviations are larger, and this parameter becomes
more positive. We also note that the deviations from the true values
appear to increase as the smoothing scale is decreased.

Table 7. Constraints on b1 and b2 obtained using the Exact
Trispectrum model described in the text. The actual input bias
parameters were b1 = 1.63 and b2 = −0.53. Column (1): the
smoothing scale of the biased density field; column (2): mea-
sured quantity; column (3) and (4): best-fitting values for b1 and
b2 along with 1σ errors; column (5): the median χ2.

R (h−1 Mpc) b1 ± σb1 b2 ±σb2 χ2

20 Bbbb 1.62 ± 0.07 −0.46 ± 0.14 0.01
20 Bbbm 1.62 ± 0.10 −0.49 ± 0.22 0.00
20 Bbmm 1.63 ± 0.22 −0.53 ± 0.51 0.00
10 Bbbb 1.62 ± 0.04 −0.42 ± 0.06 0.15
10 Bbbm 1.62 ± 0.06 −0.47 ± 0.09 0.02
10 Bbmm 1.63 ± 0.13 −0.53 ± 0.20 0.00
6.7 Bbbb 1.59 ± 0.04 −0.35 ± 0.02 0.70
6.7 Bbbm 1.60 ± 0.05 −0.42 ± 0.04 0.14
6.7 Bbmm 1.63 ± 0.12 −0.53 ± 0.12 0.00
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Table 8. Same as Table 7, but this time the χ2 analysis is for the
tree-level model described in the text.

R (h−1 Mpc) b1 ± σb1 b2 ± σb2 χ2

20 Bbbb 1.63 ± 0.11 −0.67 ± 0.36 14.75
20 Bbbm 1.58 ± 0.17 −0.45 ± 0.65 15.71
20 Bbmm 1.37 ± 0.33 0.56 ± 1.19 18.43
10 Bbbb 1.49 ± 0.03 −0.66 ± 0.08 13.32
10 Bbbm 1.48 ± 0.04 −0.69 ± 0.13 13.60
10 Bbmm 1.46 ± 0.09 −0.69 ± 0.29 14.13
6.7 Bbbb 1.36 ± 0.02 −0.74 ± 0.06 13.21
6.7 Bbbm 1.36 ± 0.03 −0.82 ± 0.09 12.87
6.7 Bbmm 1.32 ± 0.07 −0.86 ± 0.22 13.13

Finally, we focus on the tree-level model. Table 8 presents the
best-fitting results for b1 and b2. We see that in nearly all cases,
there are systematic biases in the recovery of the non-linear bias
parameters for all of the measured bispectra. In particular, for the
case of Bbmm, the results are most deviant and poorly constrained,
whereas for Bbbb, only when the data have been smoothed on scales
R = 20 h−1 Mpc are the recovered parameters close to the true
values.

The comparison of the results from this analysis led us to conclude
that the recovered bias parameters are very sensitive to the inclusion
of beyond-leading-order corrections in the modelling. Furthermore,
accurate non-linear modelling of, at the very least, the matter bis-
pectrum and trispectrum will be essential, if we are to safely recover
the non-linear bias parameters from this approach.

8 D ISC U SSION

We have evaluated the local halo bias model at second order using
three different probes: smoothed density fields; power spectra; and
bispectra and reduced bispectra. A summary of our results for the
best-fitting bias parameters determined from shot-noise-corrected
spectra is shown in Fig. 7.

In the figure, we also compare our estimates for b1 and b2 with
the analytical predictions for the halo bias parameters obtained from
the peak background split (PBS) ansatz (Bardeen et al. 1986; Mo
& White 1996). The average theory bias parameters are obtained
through computing the expressions

bi = 1

n

∫ ∞

Mmin

dM n(M) bi(M) , n ≡
∫ ∞

Mmin

dM n(M), (81)

where n(M) is the halo mass function, and Mmin is set equal to the
value of the minimum halo mass identified in the simulations (see
Section 3). We evaluate the above integral using three different fits
to N-body simulations by Sheth & Tormen (1999), Warren et al.
(2006) and Pillepich et al. (2010). The corresponding expressions
for the bias parameters as a function of halo mass are presented in
Scoccimarro et al. (2001b) and Manera et al. (2010).

Considering the results for b1 (bottom panel), we see that when
the reduced bispectra, Qhhh, Qhhm and Qhmm, are used, the recovered
parameters are poorly constrained and appear incompatible with
respect to the other estimates and are only weakly consistent with
one another. On the other hand, the estimates from the bispectra Bhhh,
Bhhm and Bhmm are in much better agreement with each other. They
are also in close agreement with the predictions from Warren et al.
(2006) and Pillepich et al. (2010), which both provided an estimate
of b1 = 1.39. However, they slightly undershoot the values from the
effective bias estimates, bNL

hh and bL
hh, likewise the smoothed density

fields, and the Sheth–Tormen prediction. The analytical predictions

Figure 7. Plot summary of bias measurements on b1 and b2 for the second-
order local bias model from different estimators: shot-noise-corrected B,
Q, P, and finally smoothed, δR, in comparison with analytical predictions
applying the PBS ansatz with the Sheth & Tormen (1999) mass function
denoted by the dotted line, as well as the Warren et al. (2006) and Pillepich
et al. (2010) mass functions both of which are represented by the dashed
line.

from the Sheth & Tormen (1999) mass function yielded b1 = 1.50 in
good agreement with the power spectrum and density field results
smoothed on a scale R ∼ 50 h−1 Mpc. The recovered values of
b1 from the effective bias in the power spectra and the smoothed
density fields collectively are in broad agreement, but the latter
increase with decreasing smoothing scale.

In the top panel of the figure, we see that the constraints on b2

from the different estimators used in the simulations are reasonably
consistent with one another, albeit with significant error bars. These
estimates also agree well with the PBS prediction from the Warren
et al. (2006) and Pillepich et al. (2010) mass functions, which give
an average b2 = −0.24. However, the prediction from the Sheth &
Tormen (1999) mass function gives b2 = −0.06, and this appears
to be in worse agreement with the data.

There are a number of possible explanations for the deviations
in the recovered bias parameters. First, the relation between matter
and halo fluctuations may not be local. Indeed, we know it is not
deterministic owing to the scatter in the δh–δ relation. Perhaps,
this is a consequence of non-locality. In this case, we need a more
advanced theoretical approach to understand the halo clustering.
One possibility may be that the bias is local in Lagrangian space
(Catelan et al. 2000; Matsubara 2011).

Secondly, our simple biasing-by-hand test has enabled us to dis-
cern that, for the current set of tests that we have performed, the
most likely explanation at this point is that the tree-level expan-
sions for Bhhh and Qhhh are not sufficiently accurate enough. Higher
order non-linear corrections in the modelling must be included,
and if possible all order expansions for Bmmm and P4,m would be
invaluable.

Thirdly, as we have argued, the local bias model only makes sense
in the context of smoothing. The bias parameters one recovers from
fitting depend sensitively on the smoothing scale R. For the biasing-
by-hand tests, the exact smoothing scale was known beforehand.
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However, in real data, we do not know this a priori. In all of the
cases, when recovering bias parameters from the bispectra, we have
assumed that we are on sufficiently large scales such that W(kiR)
→ 1. However, in general, R should be a free parameter and as such
marginalized over in the analysis.

Manera & Gaztañaga (2011) performed a similar study of non-
linear halo bias with the three-point correlation function in config-
uration space. In contrast to our analysis, they measured the bias
parameters for different halo mass bins. They found inconsisten-
cies between the predictions of the different estimators considered.
They evaluated the scatter plots of δh versus δ as a function of
smoothing scale, and found that stability in the local bias parameters
(b1, b2) occurred for smoothing scales, R > 30–60 h−1 Mpc, albeit
with larger errors. They also found that the bias predictions derived
from δh versus δ for R = 60 h−1 Mpc were in good agreement, to
within the errors, with the linear bias measured from evaluating the
two-point correlation function on large and intermediate scales. As
in the case of our findings, they found the linear bias measured from
evaluating the three-point correlation function, expressed in terms
of the Q amplitudes, was not consistent with that of the two-point
correlation function for the lower mass bins: M < 1013 h−1 M�.
They were unable to formulate solid conclusions for larger mass
ranges.

Guo & Jing (2009) explored the differences between estimates
of bias from Q and P. They also found that b1 based on analysis of
the mock galaxy catalogues was larger for galaxy-reduced bispectra
and power spectra Qg than for Pg. While Guo & Jing (2009) also
noted that this might be due to the failure of SPT at tree level, they
also reported that agreement could be found between estimators if
Qmmm measured directly from the simulations was used in place of
the tree-level expression. However, when we performed the same
test with our data we found no dramatic reconciliation of the two
bias estimates. The investigation performed by Guo & Jing (2009)
was carried out using only four large volume and three smaller vol-
ume runs. As a result of having too few realizations, they assumed
the Gaussian approximation for the covariance matrix in order to
perform their study at large scales.

9 C O N C L U S I O N S

In this paper, we have used a sample of 40 large-volume N-body
simulations, with total volume V ∼ 135 Gpc3 h−3, to test the local
model of halo biasing, and the extent to which non-linearities im-
pact the modelling. We used three different methods for exploring
the bias: smoothed density fields; power spectra; and bispectra and
reduced bispectra. We focused mainly on the results from the bis-
pectra. All of the reported results were scaled to a single realization
of our simulations, and so are directly relevant for galaxy surveys
with a total volume V ∼ 4 h−3 Gpc3.

In Section 2, we reviewed the basic results of PT and how they
connect to density statistics. We then reviewed the local model of
halo biasing, drawing special attention to the role that smoothing
plays in the theory. The important result being that even at tree level
the smoothing explicitly enters the theory. The expressions for Bhhh

and Qhhh, which are typically used in all past and current analyses,
make the assumption that smoothing is unimportant. In subsequent
sections, we argued that this assumption is not safe.

In Section 3, we described our suite of N-body simulations, and
the halo catalogues used in this study.

In Section 4, we made measurements of the relation between
δh(x|R) and δ(x|R) smoothed on the set of scales R = {50, 20,
10} h−1 Mpc. To these data we fitted the local model of halo biasing

up to second order, including b0, b1 and b2. We found that the fits
were reasonably good; however, the best-fitting parameters showed
a running with the filter scale R. We then demonstrated, theoretically,
why the non-linear bias parameters from this approach could not be
made independent of smoothing scale. We then turned to Fourier-
space statistics, and used the halo auto- and cross-power spectra to
obtain an effective large-scale bias. We found that the effective bias
estimators bNL

hh and bNL
hm were reasonably scale-independent for k <

0.08 h Mpc−1. However, on scales smaller than this, bNL
hh decreased

with increasing wavenumber, whereas bNL
hm remained surprisingly

flat.
In Section 5, we estimated the matter auto- and halo auto-

bispectra and reduced bispectra from our simulations. We
measured these statistics for the triangle configurations k1 =
{0.03, 0.04, 0.05, 0.06} h Mpc−1 and with k2/k1 = 2 and θ12 ∈
[0, π]. These triangles all lie in the weakly non-linear regime k =
0.03–0.18 h Mpc−1. We modelled these estimates using tree-level
PT expressions for the matter bispectrum and non-linear bias at sec-
ond order, and assumed smoothing to be unimportant. Our method
for the estimation of the bias parameters followed a standard min-
imum χ2 approach. We estimated the covariance matrix for the
full ensemble applying PCA to minimize the intrinsic noise. We
also performed a jackknife subsampling routine to propagate the
error of the estimated covariance matrix on to the errors of the bias
parameters.

We tested how well the measurements of the matter bispectra
Bmmm and reduced bispectra Qmmm could be described by such
modelling. The results obtained for the bias parameters b1 and
b2 showed that the tree-level expressions were a good descrip-
tion of the data for configurations, k1 = {0.03, 0.04} h Mpc−1,
for which b1 = 1 and b2 = 0. However, for smaller scale trian-
gles, k1 = {0.05, 0.06} h Mpc−1, significant deviations were ap-
parent, and these were manifested as b1 
= 1 and b2 
= 0 at high
significance.

We then applied the χ2 test to the halo bispectra Bhhh and reduced
bispectra Qhhh. We found, for the shot-noise-corrected Bhhh, that the
estimated values for b1 ∼ 1.40 and b2 ∼ −0.25 were reasonably
consistent with one another. However, the fits became progressively
poorer as smaller scales were added, yet the reduced χ2 remained
�2 for k1 = {0.06} h Mpc−1. For the shot-noise-corrected Qhhh, we
found that the values of b1 were significantly larger, b1 ∼ 1.85, with
large errors, and the values evolved with triangle configuration scale.
However, b2 ∼−0.3 appeared to be more stable, although again with
large errors. For triangle configurations with k1 ≥ 0.04 h Mpc−1, the
fits from Bhhh and Qhhh were inconsistent with each other at the ∼3σ

level. For both Bhhh and Qhhh, shot-noise corrections significantly
influenced the recovered bias parameters.

In Section 6, we explored the halo and matter cross-bispectra,
Bhhm and Bhmm, and reduced bispectra Qhhm and Qhmm. We calculated
the tree-level expressions for these quantities symmetrized in all
of their arguments. We then developed estimators for them. We
showed that for Bhmm and Qhmm, provided the matter distribution
was densely sampled, the shot-noise corrections were small.

We applied the χ2 analysis from Section 5 to these statistics and
recovered the best-fitting values for b1 and b2. We found that for
Bhhm the shot-noise-corrected data were all reasonably consistent
with one another, giving b1 ∼ 1.39 and b2 ∼ −0.3. For Bhmm we
found a similar pattern, except that for k1 ≥ 0.05 h Mpc−1 where
we found b2 ∼ 0.0, but with large errors. The results for Qhhm and
Qhmm appeared to vary significantly.

Finally, in Section 7, we explored to what extent the breakdown
could be attributed to the absence of terms that were beyond tree
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level in the modelling. In order to do this, we developed a novel
approach, whereby we constructed smoothed biased density fields
from the smoothed matter density field, using the local model at
quadratic order. We showed that if we set b1 and b2 to some fiducial
values, and then measure the smoothed matter and halo bispectra
and their cross-bispectra, then the higher order matter correlators
P4,m, P5,m and P6,m could be recovered exactly. Thus, we were able
to construct three models: an all order model; a model that used the
exact matter bispectrum and trispectrum; and a tree-level model.

We applied the χ2 analysis using these three models and for
bispectra with k1 = 0.04 h Mpc−1. As expected, the exact model
recovered the correct bias parameters. The model with the exact
Bmmm and P4,m was in fact also exact for Bbmm. For Bbbm and Bbbb

the recovered parameters were close to the true values, but showed
evolution with smoothing scale. Finally, for the tree-level model we
showed that there was a significant evolution in the estimated bias
parameters with smoothing scale and with the type of statistic used.

We conclude that estimates of non-linear bias from the bispectrum
that do not attempt to account for higher order corrections will most
likely provide biased estimates for the bias parameters b1 and b2.
Robust modelling of non-linear bias from bispectra will, at the very
least, require almost exact models for the matter bispectrum and
trispectrum.

Real-space estimates of bias appear to be inconsistent with
Fourier-space-based ones. We believe that this owes primarily to
the mixing of large- and small-scale wavemodes in real space. We
therefore recommend that perturbative methods should strictly be
applied in Fourier space. We also recommend that measurements
focus on the bispectrum and the associated cross-statistics, rather
than the reduced bispectra, since this appears very sensitive to non-
linearities in the modelling and also shot-noise corrections.

Finally, we emphasize the importance of smoothing in the local
model. Owing to the fact that the smoothing scale associated with
the halo/galaxy distribution in question is not known a priori, it
must be treated as a nuisance parameter and so marginalized over.

An alternative strategy for recovering information from higher
order statistics, which may be of interest for future consideration,
is the use of ‘Gaussianizing transformations’ or ‘density clipping’
(Neyrinck, Szapudi & Szalay 2009; Seo et al. 2011; Simpson et al.
2011). However, the theoretical connection between what is mea-
sured and what is interpreted from such approaches still remains to
be fully calculated.
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A P P E N D I X A : BI S P E C T RU M ES T I M ATI O N : A L G O R I T H M

Briefly, the algorithm that we employ is as follows: first, the dark matter density field is computed by assigning the dark matter particles to
a cubical grid using the CIC technique (Hockney & Eastwood 1988). Next, the FFT of the gridded density field is computed. Each Fourier
mode is then corrected for convolution with the Fourier mesh. We do this by dividing out from each mode the Fourier transform of the window
assignment function of the CIC scheme (Hockney & Eastwood 1988; Jing 2005):

δ(k) = δg(k)

WCIC(k)
; WCIC(k) ≡

∏
i=1,3

[
sin(πki/2kNy)

πki/2kNy

]2

, (A1)

where the subscript g denotes gridded quantities, kNy = πNg/L is the Nyquist frequency of the mesh and Ng is the number of Fourier grid
cells.

The estimator for the bispectrum can be written (Scoccimarro et al. 1998) as

B̂(k1, k2, θ ) = V 2
μ

VB (k1, k2, θ )

∫
d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
(2π)3δD(q123)δ(q1)δ(q2)δ(q3), (A2)

where Vμ is the sample volume (in our case the simulation volume), the normalization factor, VB, can be written as (Sefusatti et al. 2006;
Joachimi, Shi & Schneider 2009)

VB (k1, k2, μ) ≡
∫

d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
(2π)3δD(q123) ≈ 8π2k1k2k3

(2π)6
(�k)3, (A3)

and we write in shorthand δD(q1...n) ≡ δD(q1 + · · ·+ qn). A practical implementation of the above estimator may be achieved through (Smith
et al. 2008)

B̂
d
(k1, k2, θ12) = V 2

μ

Ntri(k1, k2, θ12)

Ntri(k1,k2,θ12)∑
(n1,n2)

Re[δ(kn1 )δ(kn2 )δ(k−n1−n2 )], (A4)

where the superscript ‘d’ denotes discretized quantities; ni denotes an integer vector from the origin of the k space to each mesh point;
(n1, n2) represents a pair of integer vectors that lie in thin shells centred on k1 and k2 and whose angular separation lies in a narrow angular
bin centred on θ12, and for which k3 = −k1 − k2. The upper limit of the sum N tri(k1, k2, θ12) represents the total number of triangles that
have such a configuration.

The estimator for the bin-averaged reduced bispectrum, Q̂, is written as

Q̂
d

= B̂
d
/Q̂

denom,d
, (A5)

where Q̂
denom,d

is the estimator for the bin-averaged cyclical terms of the power spectrum generated from first computing the bin-averaged

power spectra, P̂
d

i . Note that we estimate the power spectra that enter into this product in a slightly different way from normal: we use only

those modes that go into estimating the particular B triangle configuration to estimate Q̂
denom,d

(k1, k2, θ12). Hence,

P̂
d

i = Vμ

Ntri(k1, k2, θ12)

Ntri(k1,k2,θ12)∑
(n1,n2)

|δ(kni
)|2, (A6)

where i ∈ {1, 2, 3} and P̂
d

3 is dependent on the angular bin, since, with |n1| and |n2| fixed, we still have cos θ12 = n1 · n2/|n1||n2| and the
closure criterion implies n3 = −n1 − n2 varies as a function of θ12. Therefore,

Q̂
denom,d

= P̂
d

1P̂
d

2 + P̂
d

2P̂
d

3 + P̂
d

1P̂
d

3. (A7)

The estimates of Bd and Qd are then corrected for discreteness, that is, shot noise. For the estimators of interest, the corrections are (Peebles
1980; Smith et al. 2008)

P̂ shot ≡ 1/n , (A8)
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B̂shot ≡
(

P̂
d

1 + P̂
d

2 + P̂
d

3

)
/n − 2/n2 , (A9)

Q̂
denom

shot ≡ 2

(
P̂

d

1 + P̂
d

2 + P̂
d

3

)
/n − 3/n2. (A10)

Shot-noise-corrected estimates of the statistics are obtained as

χ = χd − χshot , (A11)

where χ ∈
{

P̂ , B̂, Q̂
denom

}
and Q̂ = B̂/Q̂

denom
. Note that the above recipe corrects some typos that are present in Smith et al. (2008).

APPEN D IX B: H ALO C RO SS-BISPECTRA IN THE LOCAL MODEL

As was shown in equation (15), at quadratic order, the local model of non-linear biasing can be written as

δh(k|R) = b1(M)δ(k|R) + b2(M)

2

∫
d3q1

(2π)3

d3q1

(2π)3
δ(q1|R)δ(q2|R)(2π)3δD(k1 − q1 − q2), (B1)

where δ(qi |R) ≡ δ(qi)W (qiR) is the filtered density. Using this model, we may now proceed to calculate the halo auto- and halo–mass
cross-bispectra.

B1 Halo–mass–mass bispectrum in the local model

Let us start with the simplest three-point cross-statistic, the halo–mass–mass bispectrum, which can be written as

〈δh(k1|M,R)δ(k2|R)δ(k3|R)〉 = b1(M) 〈δ(k1|R)δ(k2|R)δ(k3|R)〉

+b2(M)

2

∫
d3q1

(2π)3

d3q1

(2π)3
(2π)3δD(k1 − q1 − q2)

〈
δ(q1|R)δ(q2|R)δ(k1|R)δ(k2|R)

〉
. (B2)

Let us define the smoothed n-point spectra as

〈δ(k1|R) . . . δ(kn|R)〉 ≡ (2π)3δ(k1 + · · · + kn)P̃n(k1, . . . , kn|R),

= (2π)3δ(k1 + · · · + km)W (k1R) . . . W (knR)Pn(k1, . . . , kn),
(B3)

where P̃2 ≡ P̃ = W 2(kR)P , P̃3 ≡ B̃ = W (k1R)W (k2R)W (k3R)B, and P̃4 ≡ T̃ = W (k1R)W (k2R)W (k3R)W (k4R)T . We may now
integrate over q2 to obtain

〈δh(k1|M,R)δ(k2|R)δ(k3|R)〉 = (2π)3δD(k1 + k2 + k3)

[
b1(M)B̃(k1, k2, k3) + b2(M)

2

∫
d3q1

(2π)3
T̃ (q1, k1 − q1, k2, k3)

]
. (B4)

On dividing the above expression by W(k1R)W(k2R)W(k3R), the halo–mass–mass bispectrum can be written as

Bhmm(k1, k2, k3) = b1(M)Bmmm(k1, k2, k3) + b2(M)

2

∫
d3q1

(2π)3
W̃q1,k1−q1

Tmmmm(q1, k1 − q1, k2, k3). (B5)

We may symmetrize the above result by constructing the sum (Bhmm + Bmhm + Bmmh)/3, and this gives us

Bhmm(k1, k2, k3) = b1(M)Bmmm(k1, k2, k3) + b2(M)

6

∫
d3q1

(2π)3

[
W̃q1,k1−q1

Tmmmm(q1, k1 − q1, k2, k3) + 2 cyc
]
. (B6)

On expanding B and T to fourth order in δ, the above expression can be approximated to

B
(0)
hmm(k1, k2, k3) ≈ b1(M)B (0)

mmm(k1, k2, k3) + b2(M)

3

[
W̃k2,k3P

(0)
mm(k2)P (0)

mm(k3) + 2 cyc
]
. (B7)

Finally, in the large-scale limit ki → 0, or for arbitrarily small smoothing scales, kiR � 1, the above expression becomes

B
(0)
hmm(k1, k2, k3) ≈ b1(M)B (0)

mmm(k1, k2, k3) + b2(M)

3

[
P (0)

mm(k2)P (0)
mm(k3) + 2 cyc

]
. (B8)

The reduced bispectrum Qhmm is given by

Qhmm(k1, k2, k3) ≡ Bhmm(k1, k2, k3)

PPhmm
, (B9)

where

PPhmm = 2

3

[
Phm(k1)Pmm(k2) + 2 cyc

] + 1

3

[
Phm(k1)Phm(k2) + 2 cyc

]
. (B10)

In order to calculate the reduced halo–mass cross-bispectrum, we need to evaluate the halo–mass power spectrum. In the local model and up
to quadratic order in the bias, we have

Phm(k) = b1(M)Pmm(k1) + b2(M)

2

∫
d3q1

(2π)3
W̃q1,k1−q1

Bmmm(q1, k1 − q1, −k1). (B11)
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Using the above expression in equation (B10), we find

PPhmm(k1, k2, k3) =
{

2

3

[
b1(M)Pmm(k1) + b2(M)

2

∫
d3q1

(2π)3
W̃q1,k1−q1

Bmmm(q1, k1 − q1, −k1)

]
Pmm(k2) + 2 cyc

}
+1

3

{[
b1(M)Pmm(k1) + b2(M)

2

∫
d3q1

(2π)3
W̃q1,k1−q1

Bmmm(q1, k1 − q1, −k1)

]
×
[
b1(M)Pmm(k2) + b2

2

∫
d3q1

(2π)3
W̃q2,k2−q2

Bmmm(q2, k2 − q2,−k2)

]
+ 2 cyc

}
. (B12)

If we expand PPhmm to fourth order in the density, then the above expression simplifies to

PP
(0)
hmm(k1, k2, k3) ≈ b1(M)

3
[2 + b1(M)]

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (B13)

Hence, we have

Q
(0)
hmm(k1, k2, k3) ≈ 3

2 + b1(M)
Q(0)

mmm(k1, k2, k3) + b2(M)

2b1(M) + b2
1(M)

[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc

P
(0)
mm(k1)P (0)

mm(k2) + 2 cyc

]
. (B14)

Finally, in the limit that kiR � 1, W̃ → 1 and the above result can be approximated to

Q
(0)
hmm(k1, k2, k3) ≈ 3

2 + b1(M)
Q(0)

mmm(k1, k2, k3) + b2(M)

2b1(M) + b2
1(M)

. (B15)

B2 Halo–halo–mass bispectrum in the local model

Again, using equation (B1), the halo–halo–mass bispectrum, symmetrized in the ki arguments, can be written as

Bhhm(k1, k2, k3) = b2
1(M)Bmmm(k1, k2, k3) + b1(M)b2(M)

3

∫
d3q1

(2π)3

[
W̃q1,k1−q1

Tmmmm(q1, k1 − q1, k2, k3) + 2 cyc
]

+b2
2(M)

12

∫
d3q1

(2π)3

d3q2

(2π)3

[
W̃q1,k1−q1

W̃q2,k2−q2
P5,m(q1, k1 − q1, q2, k2 − q2, k3) + 2 cyc

]
. (B16)

If we use PT to expand P, B, T and P5, and only keep terms that are of fourth order in the density field, then the above expression can be
approximated to

B
(0)
hhm(k1, k2, k3) ≈ b2

1(M)B (0)
mmm(k1, k2, k3) + 1

3
b1(M)b2(M)

[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc
]
. (B17)

In the large-scale limit kiR → 0, the above expression can be approximated to

B
(0)
hhm(k1, k2, k3) ≈ b2

1(M)B (0)
mmm(k1, k2, k3) + 1

3
b1(M)b2(M)

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (B18)

The reduced bispectrum is given by

Qhhm(k1, k2, k3) ≡ Bhhm(k1, k2, k3)

PPhhm
, (B19)

where

PPhhm = 2

3

[
Phh(k1)Phm(k2) + 2 cyc

] + 1

3

[
Phm(k1)Phm(k2) + 2 cyc

]
. (B20)

The halo–mass power spectrum is given by equation (B11) and the halo auto-power spectrum is given by

Phh(k) = b2
1(M)Pmm(k1) + b1(M)b2(M)

∫
d3q1

(2π)3
W̃q1,k1−q1

Bmmm(q1, k1 − q1,−k1)

+b2
2(M)

4

∫
d3q1

(2π)3

d3q2

(2π)3
W̃q1,k1−q1

W̃q2,−k1−q2
Tmmmm(q1, k1 − q1, q2, −k1 − q2). (B21)

Expanding the above expression to lowest order in PT gives

PP
(0)
hhm ≈ 2b2

1(M)

3
[2b1(M) + 1]

[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (B22)

Using the above expression, we find that the tree-level expression for the reduced bispectrum can be written as

Q
(0)
hhm(k1, k2, k3) ≈ 3

2b1(M) + 1
Q(0)

mmm(k1, k2, k3) + 2b2(M)

2b2
1(M) + b1(M)

[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc

P
(0)
mm(k1)P (0)

mm(k2) + 2 cyc

]
. (B23)

In the large-scale limit kiR → 0, we again have W̃ → 1 and

Q
(0)
hhm(k1, k2, k3) ≈ 3

2b1(M) + 1
Q(0)

mmm(k1, k2, k3) + 2b2(M)

2b2
1(M) + b1(M)

. (B24)
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B3 Halo–halo–halo bispectrum in the local model

Again using equation (B1), the halo–halo–halo bispectrum, symmetrized in the ki arguments, can be written as

Bhhh(k1, k2, k3) = b3
1(M)Bmmm(k1, k2, k3) + 1

2
b2

1(M)b2(M)
∫

d3q1

(2π)3

[
W̃q1,k1−q1

Tmmmm(q1, k1 − q1, k2, k3) + 2 cyc
]

+1

4
b1b

2
2

∫
d3q1

(2π)3

d3q2

(2π)3

[
W̃q1,k1−q1

W̃q2,k2−q2
P5,m(q1, k1 − q1, q2, k2 − q2, k3) + 2 cyc

]
+b3

2

8

∫
d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
W̃q1,k1−q1

W̃q2,k2−q2
W̃q3,k3−q3

P6,m(q1, k1 − q1, q2, k2 − q2, q3, k3 − q3). (B25)

If we use PT to expand P, B, T , P5 and P6, and keep only terms that are of fourth order in the density field, then the above expression can be
approximated to

B
(0)
hhh(k1, k2, k3) ≈ b3

1(M)B (0)
mmm(k1, k2, k3) + b2

1(M)b2(M)
[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc
]
. (B26)

In the large-scale limit kiR → 0, the above expression can be approximated to

B
(0)
hhh(k1, k2, k3) ≈ b3

1(M)B (0)
mm(k1, k2, k3) + b2

1(M)b2(M)
[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (B27)

The reduced halo–halo–halo bispectrum is given by

Qhhh(k1, k2, k3) ≡ Bhhh(k1, k2, k3)

PPhhh
, (B28)

where

PPhhh = [
Phh(k1)Phh(k2) + 2 cyc

]
, (B29)

where the halo auto-power spectrum is given by equation (B21). On expanding the above expression to fourth order in the density, we find

PP
(0)
hhh ≈ b4

1(M)
[
P (0)

mm(k1)P (0)
mm(k2) + 2 cyc

]
. (B30)

Using the above expression, we find that the tree-level expression for the reduced bispectrum can be written as

Q
(0)
hhh(k1, k2, k3) ≈ 1

b1(M)
Q(0)

mmm(k1, k2, k3) + b2(M)

b2
1(M)

[
W̃k1,k2P

(0)
mm(k1)P (0)

mm(k2) + 2 cyc

P
(0)
mm(k1)P (0)

mm(k2) + 2 cyc

]
. (B31)

In the large-scale limit kiR → 0, we again have W̃ → 1 and

Q
(0)
hhh(k1, k2, k3) ≈ 1

b1(M)
Q(0)

mmm(k1, k2, k3) + b2(M)

b2
1(M)

. (B32)
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