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The long-time integration of Hamiltonian differential equations requires special numerical methods. Sym-
plectic integrators are an excellent choice, but there are situations (e.g., multistep schemes or energy-
preserving methods), where symplecticity is not possible. It is then of interest to study whether the meth-
ods are conjugate symplectic and thus have the same long-time behaviour as symplectic methods. This
question is addressed in this work for the class of B-series integrators. Algebraic criteria for conjugate
symplecticity up to a certain order are presented in terms of the coefficients of the B-series. The effect
of simplifying assumptions is investigated. These criteria are then applied to characterize the conjugate
symplecticity of implicit Runge–Kutta methods (Lobatto IIIA and Lobatto IIIB) and of energy-preserving
collocation methods.
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1. Introduction

Consider a Hamiltonian differential equation

ẏ = J−1∇ H(y), J =
(

0 I
−I 0

)
, (1.1)

where J is the canonical structure matrix and H : R2d → R is sufficiently differentiable (d is the
number of degrees of freedom). The function H(y) is called the Hamiltonian or energy of the system.
A classical result by Poincaré tells us that the exact flow, denoted by ϕt (y), is for every t a symplectic
transformation. This means that the derivative with respect to the initial value satisfies

ϕ′
t (y)T Jϕ′

t (y) = J. (1.2)

For problems with one degree of freedom this property is equivalent to area preservation, and it implies
volume preservation of the flow in the general case. Another property of Hamiltonian systems is energy
preservation, which means that H(y(t)) is constant along solutions of (1.1).

We are interested in the numerical treatment of Hamiltonian systems. In the spirit of geometric nu-
merical integration, the ideal situation would be to have a numerical integrator yn+1 = Φh(yn) for which
the discrete flow mapping Φh(y) is symplectic and which exactly preserves the energy. Unfortunately
this is not possible (Ge & Marsden, 1988; see also Chartier et al., 2006). One is therefore constrained to
consider methods satisfying one of these properties and to study how well the other is verified.

An important tool for studying the long-time behaviour of numerical methods is backward error
analysis (see Hairer et al., 2006). It tells us that the discrete flow of a numerical integrator Φh(y), when
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applied to ẏ = f (y), can be (formally) interpreted as the exact flow of a modified differential equation,
whose vector field is given as a series in powers of the step size h:

ẏ = f (y) + h f1(y) + h2 f2(y) + h3 f3(y) + · · · .

If the method is of order p, we have f j (y) = 0 for 1 � j < p, so that the perturbation is of size O(h p).
For symplectic methods applied to (1.1) the modified differential equation is Hamiltonian,

ẏ = J−1∇ Hh(y) with Hh(y) = H(y) + h H1(y) + h2 H2(y) + h3 H3(y) + · · · ,

with functions Hj (y) that are globally defined for B-series integrators. This shows that the discrete
flow of symplectic methods has the same qualitative behaviour as the exact flow. Formally, it exactly
conserves the modified Hamiltonian Hh(y), so that the energy H(y) is nearly conserved with an error
bounded by O(h p) (without any drift). Moreover, it can be shown (see, e.g., Hairer et al., 2006) that
symplectic methods exactly preserve quadratic first integrals of the system and, in the case of nearly
integrable systems, they nearly conserve all action variables and have at most a linear error growth in
the angle variables.

In the present article we are interested in methods that are not necessarily symplectic but nevertheless
have excellent long-time behaviour. We call a numerical method of order p conjugate symplectic up to
order p + r (with r � 0) if there exists a change of coordinates z = χ(y) that is O(h p) close to the
identity such that Ψh = χ ◦ Φh ◦ χ−1 satisfies

Ψ ′
h(z)T JΨ ′

h(z) = J +O(h p+r+1). (1.3)

The method Ψh has the same order as Φh , and the coefficient functions f j (z) of the corresponding
modified differential equation are Hamiltonian for j < p + r . Consequently, the error in the energy
H(zn) is bounded byO(h p)+O(th p+r ), so that no drift can be seen on intervals of lengthO(h−r ). The
same is true for the near preservation of quadratic first integrals and for the action variables in nearly
integrable Hamiltonian systems. Since for a method that is conjugate symplectic up to order p + r we
have yn − zn = O(h p), the same statements remain true for the numerical approximation {yn}.

In Section 2 we start by recalling the definition of B-series, we present the composition law and
we give explicit formulas for the B-series representing the modified equation. We also recall algebraic
conditions on the coefficients of a B-series that guarantee its symplecticity, and we discuss the B-series
that is obtained after conjugation. Section 3 is then devoted to criteria for conjugate symplecticity in
terms of the coefficients of the modified differential equation. A recurrence relation counting the number
of necessary conditions is given. Analogous criteria in terms of the coefficients of the B-series integrator
are then proved in Section 4. For high order the number of order conditions is very high, and they can be
handled only with the use of simplifying assumptions. In Section 5 we recall a coordinate-free definition
of simplifying assumptions C(η) and D(ζ ), and we discuss the simplification of the algebraic criteria
for conjugate symplecticity under these simplifying assumptions. Applications of the criteria are the
subject of the final Section 6. We discuss the conjugate symplecticity of Lobatto IIIA and Lobatto IIIB
Runge–Kutta methods, and we prove that the energy-preserving collocation methods of maximal order
2s are conjugate symplectic up to order 2s + 2 but not up to a higher order.

2. B-series theory

Based on the seminal publication of Butcher (1972), the concept of B-series was introduced in Hairer &
Wanner (1974). It is motivated by the fact that the exact solution of ẏ = f (y), as well as the numerical
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solution of nearly all integrators, can be written as a B-series. For a modern treatment of the theory
of B-series we refer to Murua (1999), the monograph of Hairer et al. (2006) and the recent article by
Chartier et al. (2010). In the following we collect the definitions and the results that will be needed in
this work.

Let

T =
{

, , , , , , , , . . .

}

be the set of rooted trees. If it is convenient to consider also the empty tree, we write T0 = T ∪ {∅}. We
use the notation τ = [τ1, . . . , τm] for the tree that is obtained by grafting the roots of τ1, . . . , τm ∈ T to
a new vertex which becomes the root of τ . We denote the number of vertices by |τ | and call it the order
of τ . The symmetry coefficient is defined recursively by

σ( ) = 1, σ (τ) = σ(τ1) · · · σ(τm)μ1!μ2! · · · , (2.1)

where the integers μ1, μ2, . . . count equal trees among τ1, . . . , τm . For a differential equation ẏ = f (y)
the corresponding elementary differentials F(τ ) are given by

F( )(y) = f (y), F(τ )(y) = f (m)(y)(F(τ1)(y), . . . , F(τm)(y)).

For given real coefficients a(∅) and a(τ ), τ ∈ T , a B-series is a formal series of the form

B(a, y) = a(∅)y +
∑
τ∈T

h|τ |

σ(τ)
a(τ )F(τ )(y). (2.2)

2.1 B-series integrators

A discrete flow Φh(y), whose (formal) Taylor series is of the form (2.2) with a(∅) = 1, is called a
B-series integrator, Φh(y) = B(a, y). It is consistent with ẏ = f (y) if in addition a( ) = 1. This
is a wide class of numerical methods that comprises all Runge–Kutta methods, the underlying one-
step method of multistep methods, the averaged vector field integrator, energy-preserving collocation
methods and many more.

The exact time-h flow of ẏ = f (y) can be interpreted as a B-series integrator ϕh(y) = B(e, y) with
coefficients

e(∅) = e( ) = 1, e(τ ) = 1

|τ |e(τ1) . . . e(τm) for τ = [τ1, . . . , τm]. (2.3)

A B-series integrator is of order p if its Taylor series matches that of the exact solution up to an error of
size O(h p+1). Algebraically, this can be expressed as a(τ ) = e(τ ) for all trees with |τ | � p.

2.2 Composition law

Let B(c, y) be a B-series with c(∅) = 1, so that it is close to the identity mapping. The expressions
F(τ )(B(c, y)) can then be expanded into a Taylor series around y, and it turns out (see, e.g., Hairer
et al., 2006, p. 62) that the composition of B-series satisfies

B(b, B(c, y)) = B(cb, y) with (cb)(τ ) =
∑

θ∈OST(τ )

b(θ)c(τ \ θ). (2.4)
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Here, OST(τ ) denotes the set of ordered subtrees of τ . The empty tree ∅ and τ are in OST(τ ), as well
as trees θ that are formed by a connected subset of vertices of τ containing its root. All vertices of τ are
considered different, so that, for example, the tree appears twice in the set OST( ). The difference
set τ \ θ consists of those trees that remain when θ and its adjacent branches are removed from τ , and
the expression c(τ \ θ) is defined as the product c(τ \ θ) = ∏

δ∈τ\θ c(δ) .
The set G = {a: T0 → R; a(∅) = 1} provided with the above composition law is called the Butcher

group. Let us also mention that (2.4) defines a coproduct which makes the algebra of polynomials with
the rooted trees as commuting indeterminates to a Hopf algebra.

2.3 B-series vector fields and the modified differential equation

A B-series B(α, y) with coefficients satisfying α(∅) = 0 is of the form

B(α, y) = hα( ) f (y) + h2α( ) f ′(y) f (y) + · · ·
and can be interpreted as a vector field. The modified differential equation of a B-series integrator (in
the sense of backward error analysis) is such a vector field. To get a relation between the coefficients
a(τ ) of the method and the coefficients α(τ) of the vector field, it is convenient to work with the Lie
derivative ∂αc as discussed in Hairer et al. (2006, p. 370). If y(t) is a solution of the differential equation
h ẏ(t) = B(α, y(t)), then we have

h
d

dt
B(c, y(t)) = B(∂αc, y(t)) with (∂αc)(τ ) =

∑
θ∈SP(τ )

c(θ)α(τ \ θ) (2.5)

for |τ | � 1 and (∂αc)(∅) = 0. Here, SP(τ ) = {θ ∈ OST(τ ); τ \ θ consists of only one element} denotes
the set of splittings of the tree τ . Higher derivatives can be expressed in terms of iterated applications
of the Lie derivative. It then follows from the Taylor series expansion that h ẏ(t) = B(α, y(t)) is the
modified differential equation of the B-series integrator yn+1 = B(a, yn) if and only if

a(τ ) =
|τ |∑
j=1

1

j!
(∂ j−1

α α)(τ). (2.6)

This formula yields a bijection between the coefficients a(τ ) and α(τ), which can be used to compute
the modified differential equation from the coefficients of the integrator.

2.4 Criteria for symplecticity

The symplecticity of a mapping y �→ B(a, y) can be characterized in terms of algebraic conditions on
the coefficients of the B-series. To this end, we need the Butcher product of two trees u, v ∈ T , which
is defined by

u ◦ v = [u1, . . . , um, v] for u = [u1, . . . , um].

The B-series B(a, y) is symplectic for all Hamiltonian systems if and only if

a(u ◦ v) + a(v ◦ u) = a(u)a(v) for all u, v ∈ T . (2.7)

The differential equation h ẏ = B(α, y) is Hamiltonian whenever f (y) = J−1∇ H(y) if and only if

α(u ◦ v) + α(v ◦ u) = 0 for all u, v ∈ T . (2.8)
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If the coefficients a(τ ) and α(τ) are related via (2.6), then both conditions (2.7) and (2.8) are equivalent.
These statements are discussed in Hairer et al. (2006, Sections VI.7 and XI.9).

2.5 Conjugation

We consider a B-series integrator yn+1 = Φh(yn) with Φh(y) = B(a, y) and a change of coordinates
z = χ(y) that can be written as a B-series,

z = B(c, y) with c(∅) = 1.

In the new coordinates the method becomes zn+1 = Ψh(zn) with Ψh = χ ◦ Φh ◦ χ−1. Using the
composition law for B-series, this can be expressed as

zn+1 = B(b, zn) with b = c−1ac. (2.9)

If h ẏ = B(α, y) denotes the modified differential equation corresponding to the method B(a, y), then
the modified differential equation for the method B(b, z) is given by

hż = B(β, z) with β = c−1∂αc. (2.10)

This is a consequence of (2.5) because hż = B(∂αc, y) = B(∂αc, B(c−1, z)).

3. Conjugate symplecticity in terms of the modified equation

We consider a B-series integrator B(a, y) of order p � 1. For the coefficients of the corresponding
modified differential equation h ẏ = B(α, y) this implies that

α(∅) = 0, α( ) = 1, α(τ) = 0 for 2 � |τ | � p. (3.1)

With a view to studying the conjugate symplecticity of numerical integrators in terms of their modified
differential equation, we introduce the notation (for u, v ∈ T )

α(u, v) = α(u ◦ v) + α(v ◦ u).

The same notation is used for the coefficients β of the modified differential equation in the transformed
coordinates and for the coefficients c of the transformation.

LEMMA 3.1 In addition to (3.1), assume that the B-series B(c, y) satisfies

c(∅) = 1, c(τ ) = 0 for 1 � |τ | � p − 1, (3.2)

so that B(c, y) = y + O(h p), and let β be given by (2.10). For u, v ∈ T with |u| + |v| � 2p we then
have

α(u, v) = β(u, v) −
∑

v̂∈SP∗(v)

c(u, v̂) −
∑

û∈SP∗(u)

c(û, v), (3.3)

where SP∗(τ ) = {θ ∈ SP(τ ); |θ | = |τ | − 1} is the set of splittings that separate only one tree with one
vertex. By convention, SP∗( ) is the empty set, so that the corresponding sums are zero.
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Proof. The assumption on c implies that the conjugated method is also of order p, so that the coefficients
β satisfy the same relations (3.1) as α. We now write equation (2.10) as ∂αc = cβ. The assumptions on
α and c imply that only the terms with θ = ∅ and |θ | = |τ | − 1 give rise to nonvanishing terms in (2.5).
Those on β and c imply that in the composition law for cβ, only the terms with θ = τ and |θ | = 1 have
to be considered. The relation ∂αc = cβ thus yields

α(τ) +
∑

θ∈SP(τ ),|θ |=|τ |−1

c(θ) = β(τ) +
∑

θ∈SP(τ ),|θ |=1

c(τ \ θ) for |τ | � 2p. (3.4)

For τ = u ◦ v the sum on the right-hand side of (3.4) is empty if |u| � 2, and the set {θ ∈ SP(τ ); |θ | =
|τ | − 1} is in one-to-one correspondence with SP∗(u) ∪ SP∗(v) if |v| � 2. This proves

α(u ◦ v) = β(u ◦ v) −
∑

v̂∈SP∗(v)

c(u ◦ v̂) −
∑

û∈SP∗(u)

c(û ◦ v),

and the statement of the lemma follows for |u| � 2 and |v| � 2.
For τ = ◦ v the sum on the right-hand side of (3.4) reduces to c(v). For τ = u ◦ the set

{θ ∈ SP(τ ); |θ | = |τ | − 1} is in one-to-one correspondence with SP∗(u) ∪ {u}, so that the sum on the
left-hand side has an additional term c(u). In the sum α( , v) = α( ◦ v)+α(v ◦ ) these terms cancel
and we get (3.3) also in this case. �
EXAMPLE 3.2 For p � 2 and |u| + |v| = 3 we have

α
(

,
) = β

(
,

) − c( , ).

For p � 2 and |u| + |v| = 4 we have

α
(

,
) = β

(
,

) − 2c
(

,
)
,

α
(

,
) = β

(
,

) − c
(

,
)
,

α
(

,
) = β

(
,

) − 2c
(

,
)
.

Equations (3.3) can be considered as a linear system for the coefficients c(u, v). For its formulation
we let (T × T )r = {(u, v); |u| + |v| = r} for r � 2, and we consider the vector space of mappings on
(T × T )r ,

Vr = {c: (T × T )r → R; c(u, v) = c(v, u)}.
To compute the dimension of this vector space we consider the formal series

N (ζ ) = n1ζ + n2ζ
2 + n3ζ

3 + · · · = ζ(1 − ζ )−n1(1 − ζ 2)−n2(1 − ζ 3)−n3 · · · ,

M(ζ ) = m2ζ
2 + m3ζ

3 + m4ζ
4 + · · · = 1

2
(N (ζ )2 + N (ζ 2)).

The coefficient nr denotes the number of trees with r vertices (this formula is due to Cayley and can be
found in Hairer et al., 2006, p. 95), and a straightforward computation shows that the coefficient mr is
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TABLE 1 Number of rooted trees of order r and dimension mr of the vector space Vr

r 1 2 3 4 5 6 7 8 9 10 11 12

nr 1 1 2 4 9 20 48 115 286 719 1842 4766
mr 0 1 1 3 6 16 37 96 239 622 1607 4235

the dimension of Vr . These numbers are given in Table 1 for r � 12. They have also been computed in
Celledoni et al. (2010).

We consider the linear mapping A on ∪r�2Vr , whose restriction A: Vr → Vr+1 is defined by

(Ac)(u, v) =
∑

v̂∈SP∗(v)

c(u, v̂) +
∑

û∈SP∗(u)

c(û, v), (3.5)

so that the condition (3.3) becomes α(u, v) = β(u, v) − (Ac)(u, v). Since symplecticity of the trans-
formed method is equivalent to β(u, v) = 0 for all u, v ∈ T , the integrator Φh(y) = B(a, y) is
conjugate symplectic up to order p + r if and only if there exists a B-series B(c, y) satisfying (3.2)
such that α(u, v) = −(Ac)(u, v) for all pairs of trees with |u| + |v| � p + r . Before we state this as
a theorem, we show that the conditions are independent and we prove that the assumption (3.2) can be
removed.

LEMMA 3.3 The mapping A: Vr → Vr+1 of (3.5) is injective.

Proof. For a mapping c: (T × T )r → R we have to prove that the condition Ac = 0 implies c = 0. It
is sufficient to consider pairs of trees satisfying |u| � |v|.

We start with u = , we assume that (Ac)( , v) = 0 for trees v with |v| = r , and we prove by
induction on the height of the tree v̂ that c( , v̂) = 0 for trees with |v̂| = r − 1. We denote by μk the
unique tree with k vertices and maximal height k. The equation (Ac)( , μr ) = c( , μr−1) then proves
c( , v̂) = 0 for v̂ = μr−1. Assume that this relation holds for v̂ with height at least h. For an arbitrary
tree v̂ with r − 1 vertices and height h − 1 we choose a tree v of height h such that v̂ ∈ SP∗(v). We
have (Ac)( , v) = c( , v̂) because further terms in the sum (3.5) vanish by the induction hypothesis.
Consequently, c( , v̂) = 0 for all trees with |v̂| = r − 1.

We next put u = and apply the same induction argument as above on the height of the tree v̂ .
Then we consider trees of order 3 for u, etc. �
LEMMA 3.4 Consider a B-series integrator B(a, y) of order p which is conjugate symplectic up to order
p+r with r � 0. Then there exists a change of coordinates z = B(c, y) satisfying B(c, y) = y+O(h p),
such that in the z coordinates the method is symplectic up to order p + r .

Proof. Since the method is conjugate symplectic up to order p + r , there exists a change of coordinates
z = B(c, y) that makes the method symplectic up to order p + r . Let ρ = min{|τ |; τ ∈ T, c(τ ) �=
0}. If ρ � p, nothing has to be proved. Therefore, let us assume ρ < p. For trees (u, v) satisfying
|u|+ |v| = ρ +1 we have α(u, v) = 0 (as a consequence of order p) and β(u, v) = 0 (as a consequence
of symplecticity). Lemma 3.1 (with ρ in place of p) shows that (Ac)(u, v) = 0 for all such pairs of trees,
and Lemma 3.3 implies c(u∗, v∗) = 0 for all trees with |u∗| + |v∗| = ρ. Consequently, there exists a
symplectic mapping B(cρ, y) such that B(cρ, y) = B(c, y) +O(hρ+1). The transformation B(cc−1

ρ , y)

is O(hρ+1) close to the identity and leaves the transformed method symplectic up to order p + r . The
proof can be repeated until ρ � p is reached. �
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LEMMA 3.5 Consider a symmetric B-series integrator B(a, y) of order p which is conjugate symplectic
up to order p + r with 0 � r � p. Then there exists a change of coordinates z = χh(y) = B(c, y)
satisfying χ−h(y) = χh(y) such that in the z coordinates the method is symplectic up to order p + r .

Proof. By Lemma 3.4 it is sufficient to consider transformations B(c, y) that are O(h p) close to the
identity. For pairs of trees (u, v) with even |u|+|v| we have α(u, v) = 0 by the symmetry of the method.
Lemma 3.1 thus implies (Ac)(u, v) = 0 for all such pairs of trees if |u| + |v| � p + r , and Lemma 3.3
implies c(u∗, v∗) = 0 for all trees with odd |u∗| + |v∗| � p + r − 1. The same argument as in the
proof of Lemma 3.4 shows that nonzero terms c(τ ) with odd |τ | � p + r − 1 can be removed from the
transformation. Nonzero terms c(τ ) with |τ | � p + r can also be removed because they do not affect
conjugate symplecticity up to order p + r . �
THEOREM 3.6 A B-series integrator B(a, y) of order p is conjugate symplectic up to order p + r (with
0 � r � p) if and only if there exist coefficients c(u∗, v∗) such that the B-series coefficients of its
modified differential equation h ẏ = B(α, y) satisfy

α(u, v) = −
∑

v̂∈SP∗(v)

c(u, v̂) −
∑

û∈SP∗(u)

c(û, v) for p < |u| + |v| � p + r. (3.6)

Elimination of the coefficients c(u∗, v∗) gives exactly m p+r − m p linear relations between the expres-
sions α(u, v). If the integrator is symmetric, the conditions (3.6) are automatically satisfied for trees
with even |u| + |v|.
Proof. It follows from Lemma 3.4 that (3.2) can be assumed without loss of generality. The equivalence
of conjugate symplecticity with (3.6) is then a consequence of Lemma 3.1. Finally, Lemma 3.3 yields
the number of additional order conditions, and Lemma 3.5 the statement for symmetric methods. �

4. Conjugate symplecticity in terms of the B-series integrator

The aim of this section is to translate the criterion of Theorem 3.6 into conditions on the coefficients
a(τ ) of the integrator yn+1 = B(a, yn). To this end, we introduce the expression (for u, v ∈ T )

a(u, v) = a(u ◦ v) + a(v ◦ u) − a(u)a(v).

The coefficients α(τ) of the modified differential equation are related to the coefficients a(τ ) of the
method by (2.6). We have to find a similar relation between the expressions α(u, v) for the modified
equation and a(u, v) of the B-series, so that the conditions for conjugate symplecticity can be expressed
in terms of a(u, v).

The following notation will be convenient: a j -fold splitting of a tree τ is a chain of ordered subtrees

θ0 < θ1 < · · · < θ j−1 < θ j = τ such that θl−1 ∈ SP(θl), l = 1, . . . , j.

We denote such a j-fold splitting by Θ = θ0 < θ1 < · · · < θ j−1 < θ j , and we let SP j (τ ) be the set of
all j-fold splittings of τ . For a mapping on the set of trees satisfying α(∅) = 0 we define

α(Θ) = α(θ0)α(θ1 \ θ0) · · · α(θ j \ θ j−1).

We further consider the set SP j∗(τ ) = {Θ ∈ SP j∗(τ ); θl−1 ∈ SP∗(θl), l = 1, . . . , j} which consists of
j-fold splittings for which |θ j \ θ j−1| = 1 for all j .
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LEMMA 4.1 Assume the B-series integrator B(a, y) to be of order p � 1, and let u and v be nonempty
trees satisfying |u| + |v| � 2p. Then we have

a(u, v) =
∑
j�1

1

j!

∑
Θ∈SP j−1∗ (u◦v)

α(û, v̂), (4.1)

where û and v̂ are nonempty ordered subtrees of u and v , respectively, such that the smallest tree in the
splitting Θ is θ0 = û ◦ v̂ . Splittings, for which θ0 is not of this form, are not considered in (4.1).

Proof. Iteratively applying formula (2.5) for the Lie derivative ∂α we obtain

(∂ j−1
α α)(τ) =

∑
Θ∈SP j−1(τ )

α(Θ).

For a pair of trees (u, v) we split this sum into

(∂ j−1
α α)(u ◦ v) =

∑
Θ∈SP j−1

+ (u◦v)

α(Θ) +
∑

Θ∈SP j−1
− (u◦v)

α(Θ), (4.2)

where SP j−1
+ (u ◦ v) denotes the set of ( j − 1)-fold splittings for which the root of v belongs to θ0, and

SP j−1
− (u ◦ v) is the set of those splittings for which the root of v does not belong to θ0, i.e., there is a

separation between the roots of u and v for splittings in SP j−1
− (u ◦ v). We write the second sum as

∑
Θ∈SP j−1

− (u◦v)

α(Θ) =
j−1∑
l=1

(
j − 1

l − 1

) ∑
Θu∈SPl−1(u)

α(Θu)
∑

Θv∈SP j−l−1(v)

α(Θv).

Here, l − 1 denotes the number of branches removed from u and j − l − 1 the number of branches
removed from v . The binomial coefficient counts all possible ( j − 1)-fold splittings of u ◦ v that reduce
to fixed splittings Θu and Θv for u and v , respectively. Similarly, we have

∑
Θ∈SP j−1

− (v◦u)

α(Θ) =
j−1∑
l=1

(
j − 1

j − l − 1

) ∑
Θu∈SPl−1(u)

α(Θu)
∑

Θv∈SP j−l−1(v)

α(Θv).

As a consequence of the binomial identity
( j−1

l−1

) + ( j−1
l

) = ( j
l

)
we thus obtain

∑
Θ∈SP j−1

− (u◦v)

α(Θ) +
∑

Θ∈SP j−1
− (v◦u)

α(Θ) =
j−1∑
l=1

(
j

l

) ∑
Θu∈SPl−1(u)

α(Θu)
∑

Θv∈SP j−l−1(v)

α(Θv). (4.3)

On the other hand, we have

a(u) =
∑
j�1

1

j!
(∂ j−1

α α)(u) =
∑
j�1

1

j!

∑
Θ∈SP j−1(u)

α(Θ)
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and a similar formula for a(v). Using the Cauchy product of two series, this implies that

∑
j�2

1

j!

⎛⎜⎝ ∑
Θ∈SP j−1

− (u◦v)

α(Θ) +
∑

Θ∈SP j−1
− (v◦u)

α(Θ)

⎞⎟⎠ = a(u)a(v).

Note that SP j−1
− (u ◦ v) is empty for j = 1. It therefore follows from (4.2) that

a(u, v) =
∑
j�1

1

j!

⎛⎜⎝ ∑
Θ∈SP j−1

+ (u◦v)

α(Θ) +
∑

Θ∈SP j−1
+ (v◦u)

α(Θ)

⎞⎟⎠ .

If the method is of order p and if |u| + |v| � 2p, a splitting Θ gives a nonzero contribution only if all
factors in the product α(Θ) are 1, with the exception of α(θ0). This means that Θ ∈ SP j−1∗ . Writing
θ0 = û ◦ v̂ concludes the proof. �

Combining the statements of Theorem 3.6 and Lemma 4.1 yields the desired criterion for conjugate
symplecticity.

THEOREM 4.2 A B-series integrator B(a, y) of order p is conjugate symplectic up to order p + r (with
0 � r � p) if and only if there exist coefficients c(û, v̂) such that

a(u, v) = −
∑
j�1

1

j!

∑
Θ∈SP j∗(u◦v)

c(û, v̂) for p < |u| + |v| � p + r. (4.4)

Here, û and v̂ are nonempty ordered subtrees of u and v , respectively, such that the smallest tree in the
splitting Θ is θ0 = û ◦ v̂ . Splittings for which θ0 is not of this form are not considered in (4.4).

If the integrator is symmetric, conditions (4.4) are automatically satisfied for trees with even |u| +
|v|.

The following particular cases (of low order) were first obtained in the thesis of Leone (2000); see
also Hairer et al. (2006, Section VI.8.1). We eliminate the parameters c(u∗, v∗) to get conditions on the
B-series coefficients only.

EXAMPLE 4.3 Every B-series method of order 2 is conjugate symplectic up to order 3. It is conjugate
symplectic up to order 4 if and only if

a
(

,
) − 2a

(
,

)
= 0, a

(
,

) − 2a

(
,

)
= 0.

EXAMPLE 4.4 For a method of order p there are m p+1 − m p (with mr taken from Table 1) additional
order conditions for being conjugate symplectic up to order p + 1 (up to p + 2 for symmetric methods).
For p = 4 we have the three conditions

2a
(

,
) − 6a

(
,

)
+ 3a

(
,

)
= 0, a

(
,

)
− 2a

(
,

)
= 0,

a
(

,
) − 3a

(
,

)
− 3a

(
,

) + 6a

(
,

)
= 0.
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For a method of order 6 this results in 21 additional conditions, and this number increases rapidly for
higher orders. The practical investigation of conjugate symplecticity up to a high order is therefore only
possible with the use of simplifying assumptions.

5. Simplifying assumptions

Simplifying assumptions play an important role in the construction of high-order Runge–Kutta methods.
They reduce the number of order conditions. In this section we give a coordinate-free definition (i.e.,
independent of the Runge–Kutta coefficients) of the simplifying assumptions C(η) and D(ζ ), which is
originally due to Butcher (1972); see also Butcher & Chan (2002). We then study their effect on the
conditions for conjugate symplecticity.

Besides the Butcher product u◦v of two trees, we consider the commutative merging product which,
for u = [u1, . . . , um] and v = [v1, . . . , vl ], is defined by

u × v = [u1, . . . , um, v1, . . . , vl ].

Furthermore, we introduce the notation τk for the bushy tree with k vertices (the unique tree of height
1). We have, for example, τ1 = , τ2 = , τ3 = , . . . .

5.1 Simplifying assumption C(η)

DEFINITION 5.1 (Partial order on T ) We denote by �η the smallest order relation satisfying

[u∗
1, . . . , u∗

m] × τk+1�η[u1, . . . , um] ◦ τk,

where u∗
j�ηu j for j = 1, . . . , m (with m � 0) and 0 � k � η (see Fig. 1).

We note that m = 0 yields τk+1�η[τk] for k � η, which is the starting point for the construction of
pairs satisfying u∗�ηu. For k = 0 the relation simply reads [u∗

1, . . . , u∗
m]�η[u1, . . . , um]. By definition,

the relation �η is reflexive, transitive and antisymmetric. It is not a total order, and it only compares
trees having the same number of vertices.

DEFINITION 5.2 A B-series B(a, y) is said to satisfy the simplifying assumption C(η) if

a(u∗)
e(u∗)

= a(u)

e(u)
whenever u∗�ηu.

Here, the e(u), given in (2.3), are the B-series coefficients of the exact flow.

FIG. 1. Trees involved in the simplifying assumption C(η).
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LEMMA 5.3 If a B-series B(a, y) satisfies the simplifying assumption C(η), then we have

a(u∗, v∗)
e(u∗)e(v∗)

= a(u, v)

e(u)e(v)
whenever u∗�ηu, v∗�ηv. (5.1)

If the method B(a, y) is of order p and satisfies C(η), then the coefficients of its modified differential
equation h ẏ = B(α, y) satisfy, for |u| + |v| � 2p,

α(u∗, v∗)
e(u∗)e(v∗)

= α(u, v)

e(u)e(v)
whenever u∗�ηu, v∗�ηv. (5.2)

Proof. Note that u∗�ηu and v∗�ηv imply |u∗| = |u|, |v∗| = |v| and u∗ ◦ v∗�ηu ◦ v . The first statement
thus follows from the relation (|u| + |v|)e(u ◦ v) = |u|e(u)e(v).

The proof of the second statement is by induction on ρ = |u| + |v| and invoking the formula of
Lemma 4.1. For ρ � p the statement is trivial because α(u∗, v∗) = α(u, v) = 0. For ρ = p + 1 it
follows from (5.1) because in this case α(u, v) = a(u, v) and α(u∗, v∗) = a(u∗, v∗). We now assume
that (5.2) holds for pairs (û, v̂) satisfying |û| + |v̂| � ρ, and we consider u∗�ηu, v∗�ηv satisfying
|u| + |v| = ρ + 1 � 2p. Without loss of generality, we assume u∗ = u and that v∗ differs from v only
by the fact that one branch [τk] (with k � η) in v is replaced by τk+1 in v∗.

Lemma 4.1 yields

a(u, v)

e(u)e(v)
= α(u, v)

e(u)e(v)
+

∑
j�2

1

j!

∑
Θ∈SP j−1∗ (u◦v)

α(û, v̂)

e(u)e(v)
(5.3)

and a similar formula for (u∗, v∗). We consider those Θ ∈ SP j−1∗ (u ◦ v), for which l branches are
removed from the highlighted subtree [τk] and the other splittings are fixed. There are (k − 1) · · · (k − l)
possible ( j − 1)-fold splittings of this kind if l < k, (k − 1) · · · 2 · 1 if l = k and 1 if l = 0. Similarly,
we consider splittings Θ∗ ∈ SP j−1∗ (u∗ ◦ v∗) for which l branches are removed from the highlighted
subtree τk+1 and the other splittings are exactly the same as above. There are k · · · (k − l + 1) possible
( j − 1)-fold splittings if l > 0 and 1 if l = 0. As in Lemma 4.1, we denote the smallest trees of the
splittings by û ◦ v̂ and û∗ ◦ v̂∗, respectively. The sum in (5.3) over the considered splittings is, for l < k,

(k − 1) · · · (k − l)
α(û, v̂)

e(u)e(v)
= (k − 1) · · · (k − l)

e(û)e(v̂)

e(u)e(v)

α(û, v̂)

e(û)e(v̂)
(5.4)

for the pair (u, v), and for the pair (u∗, v∗) it is

k · · · (k − l + 1)
α(û∗, v̂∗)

e(u∗)e(v∗)
= k · · · (k − l + 1)

e(û∗)e(v̂∗)
e(u∗)e(v∗)

α(û∗, v̂∗)
e(û∗)e(v̂∗)

. (5.5)

Since u∗ = u, û∗ = û and

e(v) = 1

k
e(v∗), e(v̂) = 1

k − l
e(v̂∗)

(the second relation is replaced by e(v̂) = e(v̂∗) if l = k), it follows from the induction hypothesis that
both expressions (5.4) and (5.5) are the same. This implies that the double sum in (5.3) is the same for
(u, v) and for (u∗, v∗). Consequently, (5.1) implies (5.2). �
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LEMMA 5.4 Consider a B-series integrator B(a, y) of order p satisfying C(η) and assume that the
change of coordinates z = B(c, y) transforms it into a method that is symplectic up to order p + r (with
0 � r � p). Then the coefficients of the transformation B(c, y) satisfy

c(u∗, v∗)
e(u∗)e(v∗)

= c(u, v)

e(u)e(v)
whenever u∗�ηu, v∗�ηv and |u| + |v| < p + r. (5.6)

Proof. Due to the symmetry of the coefficients c(u, v) we can assume without loss of generality that
u∗ = u. In the following we combine the ideas of the proofs of Lemmas 3.3 and 5.3.

We put u = , and we consider trees of the form v = w ◦ τk and v∗ = w × τk+1 with 2 � k � η
and |w| + k < p + r . For w = μs (the unique tree with s vertices and of height s) it follows from
Theorem 3.6 that

α( , μs ◦ τk) = −c( , μs−1 ◦ τk) − (k − 1)c( , μs ◦ τk−1),

α( , μs × τk+1) = −c( , μs−1 × τk+1) − kc( , μs × τk).
(5.7)

For k = 2 we have μs ◦ τ1 = μs × τ2, so that α( , μs ◦ τ2) = e(τ2)α( , μs × τ3) (which follows from
Lemma 5.3) implies c( , μs−1 ◦ τ2) = e(τ2)c( , μs−1 × τ3) for all s. Using this result we can treat the
case k = 3 similarly. By an induction argument we then obtain c( , μs−1◦τk) = e(τk)c( , μs−1×τk+1)
for 2 � k � η. We next let w be a tree with s vertices and height s −1, and we choose a tree w̃ of height
s such that w ∈ SP∗(w̃). We apply Theorem 3.6 to the pairs of trees ( , w̃ ◦ τk) and ( , w̃ × τk+1), and
the same induction argument over k yields the statement of the lemma. As in the proof of Lemma 3.3
we decrease the height of the trees one by one, so that (5.6) is proved for the case u = , v = w ◦ τk

and v∗ = w × τk+1 with 2 � k � η and |w| + k < p + r .
We still keep u = , but we consider trees v = x ◦ (w ◦ τk) and v∗ = x ◦ (w× τk+1) with 2 � k � η

and |x |+ |w|+ k < p + r . In this situation the proof proceeds by induction on the number of vertices of
x . For x = the proof is precisely the same as above. For an arbitrary tree x the formula of Theorem 3.6
yields additional summands, where x is replaced by a subtree belonging to SP∗(x) which can be treated
by the induction hypothesis. Up to this point, we have shown the statement of the lemma for u = and
for arbitrary v and v∗.

We next put u = . Here, the application of Theorem 3.6 yields terms where the first argument of
c is (they have already been treated and the statement of the lemma can be used) and terms where
the first argument is . For these terms, the above multiple induction argument has to be repeated. The
same happens for trees u with more than two vertices. This then completes the proof of the lemma. �
REMARK 5.5 The proof of the previous lemma shows that under the simplifying assumption C(η) the
condition (3.6) of Theorem 3.6 (or equivalently condition (4.4) of Theorem 4.2) for a pair of trees (u, v)
is identical to that for (u∗, v∗) if u∗�ηu and v∗�ηv . This considerably reduces the number of additional
order conditions and makes it possible to treat methods of high order.

Lemma 5.4 also shows that not only the number of order conditions for conjugate symplecticity are
reduced but also the number of free parameters in the transformation B(c, y).

5.2 Simplifying assumption D(ζ )

DEFINITION 5.6 A B-series B(a, y) is said to satisfy the simplifying assumption D(ζ ) if

a(τk ◦ v) = e(τk)(a(v) − a(τk+1 × v)) for k � ζ and all v ∈ T, see Fig. 2

69



E. HAIRER AND C. J. ZBINDEN

FIG. 2. Trees involved in the simplifying assumption D(ζ ).

The following result shows the simplification by D(ζ ) of the order conditions for conjugate sym-
plecticity. It is an extension of Hairer (2011, Theorem 3).

LEMMA 5.7 If a B-series integrator B(a, y) satisfies the simplifying assumptions D(ζ ) and C(η), then
we have

a(u, v) = 0 for |u| � min(η, ζ ) and all v ∈ T .

Proof. The simplifying assumption C(η) implies a(v ◦τk) = e(τk)a(v ×τk+1) for k � η. Together with
the simplifying assumption D(ζ ), this yields a(τk, v) = 0 for k � min(η, ζ ). The general statement
then follows from Lemma 5.3 because the simplifying assumption C(η) implies τk�ηu for all trees u
with |u| = k � η. �
LEMMA 5.8 Consider a B-series integrator B(a, y) of order p satisfying C(η) and D(ζ ), and assume
that the change of coordinates z = B(c, y) transforms it into a method that is symplectic up to order
p + r (with 0 � r � p). Then the coefficients of the transformation B(c, y) satisfy

c(u, v) = 0 for |u| � min(η, ζ ) and |u| + |v| < p + r. (5.8)

Proof. The proof is the same as that for Lemma 3.3. We have to stop when the bound min(η, ζ ) is
reached for |u|. �

5.3 Conjugate symplecticity under simplifying assumptions

In view of our application in Section 6 we discuss the reduction and simplification of the order conditions
for conjugate symplecticity for a few typical situations.

THEOREM 5.9 Consider a symmetric B-series integrator of order p = 2s − 2 (s � 2) that satisfies the
simplifying assumptions C(s) and D(s − 2).

– It is always conjugate symplectic up to order 2s.

– For s � 3 it is conjugate symplectic up to order 2s + 2 if and only if

a(τs−1, τs+2) = (s + 1)a(τs−1, [τs+1]). (5.9)

Proof. The condition a(τs−1, τs) = −(s − 1)c(τs−1, τs−1) is the only one that has to be satisfied for
conjugate symplecticity up to order 2s − 1. It can always be satisfied with a suitable choice of B(c, y).
Due to the symmetry of the method, it is automatically conjugate symplectic up to order 2s.
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For conjugate symplecticity up to order 2s + 2 the simplifying assumptions imply that we only have
to consider the conditions

a(τs−1, τs+2) = −(s + 1)c(τs−1, τs+1) −
(

s + 1

3

)
c(τs−1, τs−1),

a(τs−1, [τs+1]) = −sc(τs−1, [τs]) −
(

s

3

)
c(τs−1, [τs−2]),

a(τs, τs+1) = −(s − 1)c(τs−1, τs+1) − sc(τs, τs) − (s − 1)

(
s

2

)
c(τs−1, τs−1).

The last equation can be satisfied by fixing c(τs, τs). By Lemma 5.4, we have c(τs−1, [τs]) =
1
s c(τs−1, τs+1) and c(τs−1, [τs−2]) = 1

s−2 c(τs−1, τs−1) so that the first two relations give the condi-
tion (5.9). �

Note that the conditions of Example 4.4 are automatically satisfied, if the simplifying assumption
C(3) is satisfied.

THEOREM 5.10 Consider a symmetric B-series integrator of order p = 2s − 2 (s � 2) that satisfies the
simplifying assumptions C(s − 2) and D(s).

– It is conjugate symplectic up to order 2s if and only if

a(τs−1, τs) = (s − 1)a(τs−1, [τs−1]). (5.10)

Proof. The conditions for conjugate symplecticity up to order 2s are

a(τs−1, τs) = −(s − 1)c(τs−1, τs−1),

a(τs−1, [τs−1]) = −(s − 2)c(τs−1, [τs−2]).

Since c(τs−1, [τs−2]) = 1
s−2 c(τs−1, τs−1), this proves the statement. �

The first statement of the next theorem is one of the main results in Hairer (2011). The criterion for
conjugate symplecticity up to order 2s + 4 is new.

THEOREM 5.11 Consider a symmetric B-series integrator of order p = 2s (s � 1) that satisfies the
simplifying assumptions C(s) and D(s − 1).

– It is always conjugate symplectic up to order 2s + 2.

– For s � 2 it is conjugate symplectic up to order 2s + 4 if and only if

(s + 2)(s + 1)a(τs, [ , τs+1]) = (s + 1)a(τs, τs+3) + (s + 2)a(τs, [τs+2]),

(s + 2)(s + 1)a(τs+1, [τs+1]) = (s + 2)a(τs+1, τs+2) + s(s + 2)a(τs, [τs+2]) − sa(τs, τs+3).

Proof. The simplifying assumptions imply that for conjugate symplecticity up to order 2s + 2 only

a(τs, τs+1) = −sc(τs, τs)

has to be satisfied. This is always possible with a suitable choice of c(τs, τs).
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The conditions for conjugate symplecticity up to order 2s + 3 are

a(τs, τs+3) = −(s + 2)c(τs, τs+2) −
(

s + 2

3

)
c(τs, τs),

a(τs, [τs+2]) = −(s + 1)c(τs, [τs+1]) −
(

s + 1

3

)
c(τs, [τs−1]),

a(τs, [ , τs+1]) = −sc(τs, [ , τs]) − c(τs, [τs+1]) −
(

s

3

)
c(τs, [ , τs−2]) −

(
s

2

)
c(τs, [τs−1]),

a(τs+1, τs+2) = −sc(τs, τs+2) − (s + 1)c(τs+1, τs+1) − s

(
s + 1

2

)
c(τs, τs),

a(τs+1, [τs+1]) = −sc(τs, [τs+1]) − sc(τs+1, [τs]) − s

(
s

2

)
c(τs, [τs−1]).

By the simplifying assumption C(s) we have c(τs, [τs−1]) = 1
s−1 c(τs, τs), c(τs, [ , τs]) =

1
s c(τs, τs+2), c(τs, [ , τs−2]) = 1

s−2 c(τs, τs) and c(τs+1, [τs]) = 1
s c(τs+1, τs+1). Elimination of the

four free parameters for the coefficients c from the six relations yields two conditions for conjugate
symplecticity up to order 2s + 4. This completes the proof of the theorem. �

6. Applications

We apply the above criteria for conjugate symplecticity to important classes of integration methods.
Recall that for s-stage Runge–Kutta methods the simplifying assumptions can be written as

C(η):
s∑

j=1

ai j c
k−1
j = ck

i

k
, k = 1, . . . , η, i = 1, . . . , s,

D(ζ ):
s∑

i=1

bi c
k−1
i ai j = b j

k
(1 − ck

j ), k = 1, . . . , ζ, j = 1, . . . , s.

For the computation of the expressions a(u, v), appearing in Section 5, it is convenient to write
the Runge–Kutta coefficients in terms of orthogonal polynomials. This is closely related to the
W-transformation of Hairer & Wanner (1996, Section IV.5).

6.1 Lobatto IIIA methods

Lobatto IIIA methods are Runge–Kutta collocation methods whose nodes c1 = 0, c2, . . . , cs−1, cs = 1
are the zeros of the polynomial Ps(t) − Ps−2(t), where Ps(t) denotes the shifted Legendre polynomial
of degree s (Lobatto quadrature, see Appendix C). They are symmetric methods of order 2s − 2, and
they satisfy the simplifying assumptions C(s) and D(s − 2). The special case s = 2 is the implicit
trapezoidal rule, which is conjugate to the symplectic implicit midpoint rule. We consider here the case
s � 3.
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The Runge–Kutta coefficients ai j can be expressed in terms of Legendre polynomials as follows:

ai j =
s−1∑
l=1

(2l − 1)

∫ ci

0
Pl−1(x) dx b j Pl−1(c j ), (6.1)

where b j are the weights of the Lobatto quadrature. To prove this formula we have to check the condition
C(s), which uniquely determines the coefficients ai j . Details are given in Appendix C. There it is also
shown how the B-series coefficients of the Lobatto IIIA method of order 2s − 2 can be obtained. They
satisfy

a(τs−1, τs+2) = (s2 − 2)s!(s − 1)!((s − 2)!)2

4(2s − 3)((2s − 2)!)2
, a(τs−1, [τs+1]) = s!((s − 1)!)2(s − 2)!

4(2s − 3)((2s − 2)!)2
. (6.2)

Combining these formulas with Theorem 5.9 gives the following result.

THEOREM 6.1 For s � 3 the Lobatto IIIA method of order 2s − 2 is conjugate symplectic up to order
2s, but it is not conjugate symplectic up to a higher order.

6.2 Lobatto IIIB methods

Lobatto IIIB methods are also based on Lobatto quadrature. They are symmetric, of order 2s − 2, and
they satisfy the simplifying assumptions C(s − 2) and D(s). For s = 2 the method is equivalent to the
symplectic implicit midpoint rule. We consider here the case s � 3.

Expressing the Runge–Kutta coefficients in terms of Legendre polynomials yields

ai j =
s−1∑
l=1

(2l − 1) Pl−1(ci )b j

∫ 1

c j

Pl−1(x) dx . (6.3)

These coefficients are uniquely defined by D(s), which is verified in Appendix C. The B-series coeffi-
cients of the Lobatto IIIB Runge–Kutta method of order 2s − 2 satisfy, for s � 3,

a(τs−1, τs) = −
(

(s − 1)!(s − 2)!

(2s − 2)!

)2

, a(τs−1, [τs−1]) = 0. (6.4)

Combining these formulas with Theorem 5.10 gives the following result.

THEOREM 6.2 For s � 3 the Lobatto IIIB method of order 2s − 2 is not conjugate symplectic up to an
order higher than 2s − 2.

6.3 Energy-preserving collocation methods

The energy-preserving variant of collocation methods was introduced in Hairer (2011). It can be in-
terpreted as an implicit Runge–Kutta method with a continuum of stages. For a differential equation
ẏ = f (y) it can be written as

Yτ = y0 + h
∫ 1

0
Aτ,σ f (Yσ ) dσ, y1 = y0 + h

∫ 1

0
Bτ f (Yτ ) dτ. (6.5)
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We have Bσ = A1,σ so that y1 = Y1, and the coefficients Aτ,σ are polynomials of degree s − 1 in

σ , defined by the simplifying assumption
∫ 1

0 Aτ,σ σ k−1dσ = τ k

k , k = 1, . . . , s, which is equivalent to
C(s). An explicit formula for these coefficients (see Brugnano et al., 2010) is given with the help of the
shifted Legendre polynomials as follows:

Aτ,σ =
s∑

l=1

(2l − 1)

∫ τ

0
Pl−1(α) dα · Pl−1(σ ), Bτ = 1, Cτ =

∫ 1

0
Aτ,σ dσ = τ.

The method is a B-series integrator y1 = B(a, y0) that is of order 2s, symmetric and satisfies the
simplifying assumptions C(s) and D(s − 1). We know from Hairer (2011) that the method is conjugate
symplectic up to order 2s + 2. Can it be conjugate symplectic up to a higher order? For this purpose we
compute the B-series coefficients (see Appendix B). For the method of order 2s we have, for s � 1,

a(τs, τs+3) = (s + 2)2(s + 1)(s!)4

4(2s + 3)(2s + 1)s((2s)!)2
, (6.6)

a(τs, [τs+2]) = (s + 1)2(s!)4

4(2s + 1)2s((2s)!)2
,

a(τs, [ , τs+1]) = (s2 + 2s − 1)(s!)4

4(2s − 1)(2s + 1)s((2s)!)2
.

These formulas show that the first condition of Theorem 5.11 is violated. We thus have the following
result (note that the statement for s = 1 was proved in Celledoni et al., 2009).

THEOREM 6.3 The energy-preserving collocation method of order 2s is conjugate symplectic up to
order 2s + 2, but it is not conjugate symplectic up to a higher order.

7. Summary of results

In Table 2 we summarize the results of the present article, and we put them into the context of further
classes of implicit Runge–Kutta methods. The last two columns indicate whether the method is sym-
plectic and what is the order of conjugate symplecticity. The ‘Gauss’ methods are collocation methods
of maximal order 2s, and they are known to be symplectic (Hairer et al., 2006, Section VI.4).

TABLE 2 Overview on the order of conjugate symplecticity

Method Order Simplifying assumptions Symplecticity Conjugate symplecticity

Gauss 2s C(s), D(s) Yes ∞
Radau IA 2s − 1 C(s − 1), D(s) No 2s − 1
Radau IIA 2s − 1 C(s), D(s − 1) No 2s − 1
Trapezoidal rule 2 C(2) No ∞
Lobatto IIIA, s � 3 2s − 2 C(s), D(s − 2) No 2s
Implicit midpoint rule 2 C(1), D(1) Yes ∞
Lobatto IIIB, s � 3 2s − 2 C(s − 2), D(s) No 2s − 2
Lobatto IIIC, s � 2 2s − 2 C(s − 1), D(s − 1) No 2s − 2
Energy-preserving 2s C(s), D(s − 1) No 2s + 2

collocation
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For the harmonic oscillator ẏ = iy, the numerical solution of a Runge–Kutta method is given by
yn+1 = R(ih)yn , where R(z) is its stability function. This linear mapping is symplectic if and only if
R(z)R(−z) = 1. It is conjugate symplectic up to order r if and only if R(z)R(−z) = 1 + O(zr+1).
For the simple differential equation ẏ = iy the composition of B-series integrators commutes, so that
the stability functions of Φh and χ ◦ Φh ◦ χ−1 are identical. The fact that the stability function of the
methods ‘Radau IA’, ‘Radau IIA’ and ‘Lobatto IIIC’ are subdiagonal Padé approximations proves that
these methods are neither symplectic nor conjugate symplectic up to an order higher than that of the
stability function.

It is interesting to mention that the underlying one-step method of linear multistep methods cannot
be symplectic, but it is conjugate symplectic up to an arbitrarily high order (cf. Hairer, 2008) if the
method is symmetric.

A natural question is the investigation of energy-preserving integrators that are conjugate symplectic
(up to arbitrarily high order). Their existence as formal B-series is known and follows from the fact
that symplectic integrators conserve a modified Hamiltonian and modified quadratic first integrals (see
Chartier et al., 2006). It is still a challenge to find a computational method (i.e., an integrator that can
be implemented) that exactly preserves the energy and is conjugate symplectic at the same time. The
methods of Section 6.3 do not share these properties.
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Appendix A. Shifted Legendre polynomials

We consider Legendre polynomials shifted to the interval [0, 1]. By abuse of notation, we continue to
write Pk(τ ) for the polynomial of degree k. The polynomials are normalized by Pk(1) = 1, they satisfy
the orthogonality relations ∫ 1

0
Pk(x)Pj (x) dx =

{
0 if k �= j,

(2 j + 1)−1 if k = j,
(A.1)

and they can conveniently be computed from Rodrigues’ formula,

Pk(x) = (−1)k

k!

dk

dxk
(xk(1 − x)k). (A.2)

The integral of the Legendre polynomial satisfies, for k � 1,∫ x

0
Pk(t) dt = 1

2(2k + 1)
(Pk+1(x) − Pk−1(x)), (A.3)

and repeated integration by parts gives the relation∫ 1

0
Pj (x)xkdx = k(k − 1) · · · (k − j + 1)

k!

(k + j + 1)!
. (A.4)

To express the product x Pk(x) as a linear combination of Legendre polynomials, we use the three-term
recurrence relation

(k + 1)Pk+1(x) = (2k + 1)(2x − 1)Pk(x) − k Pk−1(x). (A.5)

Appendix B. Technical details for the energy-preserving collocation method

We explain the verification of formula (6.6). The other formulas can be checked with the same tech-
niques. The B-series coefficients of a Runge–Kutta method (6.5) with a continuum of stages are obtained
as for classical Runge–Kutta methods with sums replaced by integrals. In this way we get

a(τs+3 ◦ τs) =
∫ 1

0

∫ 1

0
Bτ Cs+2

τ Aτ,σ Cs−1
σ dσdτ = 1

s(2s + 3)
, (B.1)
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where we have exploited the simplifying assumption C(s). Using explicit formulas for the coefficients
Aτ,σ , Bτ and Cτ , we obtain

a(τs ◦ τs+3) =
∫ 1

0

∫ 1

0
Bτ Cs−1

τ Aτ,σ Cs+2
σ dσdτ

=
∫ 1

0
τ s−1

s∑
l=1

(2l − 1)

∫ τ

0
Pl−1(α) dα

∫ 1

0
Pl−1(σ )σ s+2dσdτ.

With the expansion of αs+2 into a series of Legendre polynomials,

αs+2 =
s+3∑
l=1

(2l − 1)Pl−1(α)

∫ 1

0
Pl−1(σ )σ s+2dσ, (B.2)

we obtain

a(τs ◦ τs+3) =
∫ 1

0
τ s−1

∫ τ

0

⎛⎝αs+2 −
s+3∑

l=s+1

(2l − 1)Pl−1(α)

∫ 1

0
Pl−1(σ )σ s+2dσ

⎞⎠ dα dτ

= 1

(s + 3)(2s + 3)
− R(s),

where

R(s) =
s+3∑

l=s+1

(2l − 1)

(∫ 1

0
τ s−1

∫ τ

0
Pl−1(α) dα dτ

)(∫ 1

0
Pl−1(σ )σ s+2dσ

)
.

From (A.3) and the orthogonality relation, the expression in the first parentheses vanishes for l > s + 1.
Only the term with l = s + 1 remains and yields

R(s) = − ((s − 1)!(s + 2)!)2

4(2s − 1)!(2s + 3)!
.

Since the quadrature conditions a(τk) = 1/k, k � 1, are satisfied for all energy-preserving B-series
integrators, we obtain a(τs, τs+3) = a(τs ◦ τs+3) + a(τs+3 ◦ τs) − a(τs)a(τs+3) = −R(s). This proves
formula (6.6). The other expressions are obtained in a similar way.

Appendix C. Lobatto methods

The nodes of the Lobatto quadrature are the zeros of the polynomial Ps(x) − Ps−2(x), and they satisfy
c1 = 0 and cs = 1. The quadrature formula is of order 2s − 2, which means that polynomials of degree
� 2s − 3 are integrated without error. The dominant error term is given by

s∑
i=1

bi c
2s−2
i − 1

2s − 1
= s!(s − 1)!(s − 1)!(s − 2)!

(2s − 1)!(2s − 2)!
. (C.1)
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Further useful formulas are
s∑

i=1

bi Pl−1(ci )Pk−1(ci ) = 0 if l + k is odd,

s∑
i=1

bi Ps−1(ci )Ps−1(ci ) = 1

s − 1
,

s∑
i=1

bi Ps(ci )Ps(ci ) = 1

2s − 3
,

s∑
i=1

bi Ps−1(ci )Ps+1(ci ) = 2s − 1

(2s − 3)(s + 1)(s − 1)
,

which can be obtained by using properties of the Legendre polynomials (see Appendix A) and by using
the fact that the nodes of the Lobatto quadrature satisfy Ps(ci ) = Ps−2(ci ) for all i .

C.1 Lobatto IIIA methods

For the verification of formula (6.1) we compute

s∑
j=1

ai j Pk−1(c j ) =
s−1∑
l=1

(2l − 1)

∫ ci

0
Pl−1(x) dx

s∑
j=1

b j Pl−1(c j )Pk−1(c j ) =
∫ ci

0
Pk−1(x) dx .

The second equality holds for k � s because the quadrature formula is exact for polynomials of degree
� 2s − 3 and because we have

∫ ci
0 Ps−1(x) dx = 0 as a consequence of (A.3). This proves the identity∑s

j=1 ai j p(c j ) = ∫ ci
0 p(x) dx for all polynomials of degree s − 1. Putting p(x) = xk−1 verifies the

condition C(s) that uniquely determines the coefficients ai j of the method.
For the computation of the B-series coefficients (6.2) we use the relation

s∑
i=1

bi c
s−2
i ai j − b j

s − 1
(1 − cs−1

j ) = (s − 1)!(s − 2)!

(2s − 2)!
b j Ps−1(c j ),

which permits a simplification similar to that with the condition D(s − 1). This formula can either
be proved with the help of (6.1) or by writing the left-hand expression as a linear combination of
P0(ci ), P1(ci ), . . . , Ps−1(ci ) and computing the coefficients with help of the orthogonality relations.
A direct calculation then gives

a(τs−1, τs+2) = (s − 1)!(s − 2)!

(2s − 2)!

s∑
j=1

b j Ps−1(c j )c
s+1
j ,

a(τs−1, [τs+1]) = (s − 1)!(s − 2)!

(2s − 2)!

s∑
j=1

b j Ps−1(c j )

s∑
k=1

a jkcs
k .

Writing cs+1
j

(
respectively

∑s
k=1 a jkcs

k

)
as a linear combination of P0(c j ), . . . , Ps−1(c j ) finally yields

the relations (6.2). Note that only the coefficient of Ps−1(c j ) is relevant.
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C.2 Lobatto IIIB methods

To prove formula (6.3) we compute, for k = 1, . . . , s,

s∑
i=1

bi Pk−1(ci )ai j =
s−1∑
l=1

(2l − 1)

s∑
i=1

bi Pk−1(ci )Pl−1(ci )b j

∫ 1

c j

Pl−1(x) dx = b j

∫ 1

c j

Pk−1(x) dx .

The same argument as before proves that the coefficients (6.3) verify condition D(s).
Most of the B-series coefficients for the Lobatto IIIB methods, needed in Section 6.2, can be reduced

via the simplifying assumption D(s) to the bushy trees τk, k � 2s−1. For the remaining tree [τs−1, τs−1]
we use the relation

s∑
j=1

ai j c
s−2
j − cs−1

i

s − 1
= − (s − 1)!(s − 2)!

(2s − 2)!
Ps−1(ci ),

which has a similar effect to the simplifying assumption C(s − 1). It can be proved in the same way as
its analogue for the Lobatto IIIA methods. This relation enables formulas (6.4) to be obtained.
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