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ABSTRACT
This tutorial for the statistical processing of reaction times collected through a repeated-measure
design is addressed to researchers in psychology. It aims at making explicit some important method-
ological issues, at orienting researchers to the existing solutions, and at providing them some eval-
uation tools for choosing the most robust and precise way to analyze their data. The methodolog-
ical issues we tackle concern data filtering, missing values management, and statistical modeling
(F1, F 2, F1 + F 2, quasi-F, mixed-effects models with hierarchical, or with crossed factors). For
each issue, references and remedy suggestions are given. In addition, modeling techniques are com-
pared on real data and a benchmark is given for estimating the precision and robustness of each
technique.

The experimental method provides a highly efficient means for confronting the-
oretical models with reality in order to build and improve our understanding of
nature. In an attempt to increase the scientific nature of their young discipline,
psychologists adopted the experimental method as a way to systematically describe
and study human behavior. For this enterprise, they needed to “measure variables
objectively,” and “accurately infer that the observed pattern of results reflects what
typically happens” (Mitchell & Jolley, 2007). In other words, they needed to use
statistical quantitative techniques.

Statistical quantitative techniques are complex mathematical methods mainly
used to draw linear relations between variables. These methods must be han-
dled carefully in order to avoid biased conclusions and the creation of fallacious
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theories. However, the democratization of user-friendly software has trivialized
them and created a hazardous situation, where the conditions necessary for the
applied method may not be known to its users.

Three general issues are essential prerequisites for safely exploiting any sta-
tistical knowledge. First, statistical quantifying techniques themselves do not
allow us to determine the causality between an independent variable and a de-
pendent variable. They only help determine the existence of a relation between
these two types of variables. It is therefore the goal of experimental designs
to guarantee that results are due to systematic changes in the independent vari-
able.

Second, statistical quantifying techniques do not allow us directly to prove
that a treatment has an effect. They only help establish whether any observed
difference between the experimental condition and the control condition can be
due to chance (statistical significance). Based on this probabilistic estimation,
researchers will decide to reject or not to reject the null hypothesis. If they do
not reject the null hypothesis, they cannot draw any conclusion: a nonsignificant
difference between two conditions can be due either to a treatment (Type II error)
or to chance (correct decision). If they reject the null hypothesis, the researcher
estimates that the chance that there was no effect is low enough to conclude that
there was probably an effect (correct decision). However, it may still be possible
that the researcher is mistaken in taking this decision (Type I error), and builds
theoretical knowledge on an incorrect inference (there was actually no treatment
effect behind the measured difference).

Third, statistical significance does not measure an effect size. Small differences
in the dependent variable between experimental and control conditions might be
highly significant, whereas large differences might be nonsignificant. Statistical
significance tells us nothing about the size and importance of the treatment effect.
It is therefore important to provide information about these features (Abelson
et al., 1996).

Additional issues must also be considered to avoid creating fallacious knowl-
edge as much as possible. In this article, we review the most salient and
complex issues that are encountered when filtering the raw data, managing
missing values, and analyzing the filtered data. We subsequently provide so-
lutions and indicate references to help nonspecialists find additional guid-
ance.

Because of text-length restrictions, we only consider the chronometric data
type (reaction times [RTs]) and factorial designs,1 both widely used in cognitive
psychology, and three statistical techniques derived from the general linear model
(GLM): analysis of variance (ANOVA), quasi-F, and multilevel modeling (MLM).
Consequently, this article is a technical tutorial for analyzing RTs obtained through
a repeated-measures factorial design.

The first section reviews issues about filtering, managing missing values, and
statistical modeling. The second section provides a benchmark in which the accu-
racy of each statistical technique is investigated in various situations, defined by
the amount of missing data, their distribution across conditions, and replacement
schemes.
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HOW TO PROCESS RTs OBTAINED WITH A FACTORIAL DESIGN

Raw RTs obtained experimentally contain useful information (related to the vari-
able or variables studied), useless information (due to parasite variables), and
random variations not caused by any variable. Furthermore, not all the measure-
ments may have resulted in data, leading to a data set with missing values. Conse-
quently, before analyzing and extracting any meaning from the data, a researcher
must preprocess the raw data by appropriately treating unrelated information
(filtering or robustness) and by finding a suitable way of managing the missing
data.

Filtering

Filtering is a technical prerequisite imposed first by the use of the GLM to analyze
Gaussian and quasi-Gaussian phenomena,2 and second by the need to consider
only the information related to the studied Gaussian phenomena (or useful infor-
mation). If abnormal values (non-Gaussian values or outliers, corresponding to
unrelated information) are kept, classical methods of analysis might be influenced
to such an extent that they will lead to incorrect inferences. Hence, either the data
must be filtered properly prior to the analysis, or one must use robust methods of
analysis, which are little influenced by outliers (see the Robust Methods Section).
We review various filtering procedures in the following subsections, and more will
be found in Ratcliff (1993) about the filtering of outlier RTs, and in Ulrich and
Miller (1994) about the issue of data truncation.

Standard filtering procedures. One of the standard filtering procedures used by
psychologists consists in using all RTs and blindly eliminating values above and
below the ±2 SD limits around the mean of the general distribution (grand mean).
Although this filter erases some percentage of outliers, it also erases 4.66% of
the Gaussian distribution. Furthermore, this type of filter can bias inferences,
depending on the structure of the data, by not filtering all outliers in the distribution
of a specific experimental condition, as well as by truncating the distribution of
one or several condition(s). Four key scenarios are possible, depending on the one
hand whether the grand mean (general distribution’s mean) is similar or not to the
mean of a specific condition (subdistribution’s mean), and in contrast, whether the
range of a specific condition’s subdistribution tends to be large or small. Two out
of these four scenarios are illustrated in Figure 1 (the mean of a subdistribution A
equals the grand mean of the general distribution G) and Figure 2 (the mean of a
subdistribution B differs from the grand mean). In both cases, subdistributions A
and B have a smaller range than G.

In Figure 1, filtering the overall distribution with a ±2 SD rule results in the
loss of information from the general distribution (extreme left and right parts)
and leaving possible outliers in the condition A subdistribution (center right part).
Although the means of the general distribution and of condition A will not be
modified by the filtering procedure, the variance of the overall distribution or
total variance will be reduced, whereas the variance of condition A or intragroup
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Figure 1. Filtering the general distribution with a ±2 SD filter when the mean of Condition A
equals the grand mean.

variance will remain unchanged. Consequently, the ratio between intragroup vari-
ance and intergroup variance will be altered, and the significance of effects will
be spuriously modified, probably diminished.

For situations as depicted in Figure 2, filtering the overall distribution with a
±2 SD rule will result in asymmetrically losing genuine values on the left side
of the B subdistribution and asymmetrically leaving outliers on its right side.
Consequences are numerous and much more serious than in the situation depicted
in Figure 1: the filtering procedure not only spuriously reduces the variance of
condition B but it also biases its mean toward the grand mean, turns its distribution
non-Gaussian, reduces its area, and asymmetrically leaves outliers. Theoretically,
each one of these five modifications is sufficient in itself to influence the inferential
tests done on the filtered data. Their combined influence is highly unpredictable,
and the resulting p values might be unreliable. The aforementioned biases are
probably increased for the interaction terms. Because a ±2 SD blind filtering
procedure applied on the overall distribution does not take into account the general
distribution’s composition into its subparts, thus leaving the possibility to keep
outliers, eliminate information, and distort the distribution, it should be avoided
or handled with great care. The minimum requirement would be to have all these
points in mind and doublecheck them. A possible adjustment could be to increase
the filtering precision by applying it to finer levels (each subject’s distribution and
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Figure 2. Filtering the general distribution with a ±2 SD filter when the mean of Condition B
differs from the grand mean.

item’s distribution) instead of applying it to the grosser levels (whole distribution
or distribution per condition). However, doing so requires a large number of
measurements per item as well as per subject, in order to be able to correctly
define the characteristics of the distribution and find out precisely which values
must be filtered.

Because it is legitimate to wonder if results are an undesirable consequence of
incorrect filtering procedures, a sensitivity analysis should be performed to check
if the application of a filter is correct, necessary, or problematic. The principle
of sensitivity analysis is to run the same analysis (ANOVA, regression, etc.) on
the unfiltered data set as on the filtered data, for instance, with a ±2 SD rule,
or preferably with a by subject and by item ±3 SD rule. If the significance tests
yield similar results with the unfiltered and the filtered data sets, one can be
more confident that the findings are not produced by filtering. Results should be
reported for one of these analyses, mentioning that they were confirmed with
a sensitivity analysis. By contrast, if results differ between analyses, one must
investigate more thoroughly the reason why. Is it due to the elimination of outliers
from the original data set, in which case the filter has correctly fulfilled its role,
or is it because some distributions have been truncated, in which case the filter
has introduced a bias? In this last situation, one should not interpret any result
before a more careful analysis has been carried out, for instance through robust
methods.
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Robust methods

Robustness is a general term encompassing a complete methodology providing
all the steps needed for an analysis: diagnostic, estimation, inference, and testing.
Robust methods are procedures that are not or little influenced by outlying ob-
servations, or more generally by the misspecification of a model. They correctly
describe the bulk’s structure of data without requiring a prior filtering, by automat-
ically downweighting the problematic observations (Courvoisier & Renaud 2010;
Maronna, Martin, & Yohai, 2006; Wilcox, 2005).

This methodology has several additional advantages. First, diagnostic plots
provide subtle information showing which points were downweighted and to which
extent. Second, it helps detect multidimensional outliers that are not detected by
a unidimensional filter, like the ±2 SD rule (Maronna et al., 2006).

A full robust methodology exists for regression, variable selection, simple, and
factorial ANOVA (no repeated measure), and methods based on the variance–
covariance matrix (principal component, factor analysis). It is implemented in
some statistical software, like TIBCO Spotfire S+ (formerly S-Plus, TIBCO Soft-
ware Inc., 2008), R (R Development Core Team, 2010) and SAS (SAS Publishing,
2000). In SPSS, there is no build-in robust procedure. However, a general SPSS
plug-in to run R functions, including all robust procedures, can be downloaded
from the company website. For repeated-measure and mixed-effects models, the
full robust methodology is not yet available. However, robust procedures can still
be used for the restricted sake of outlier detection. Actually, filtering data by
using the arithmetic mean as a center estimator of a distribution and standard
deviation as a measure of variability around the mean creates its own paradox:
outliers have an enormous influence on the tools used to detect them, that is, mean
and standard deviation. It is therefore much safer to proceed with measures of
center and variability, little influenced by outliers, which are respectively known
as robust estimates of center (M-estimators, e.g., the median; called rob-center
here), and robust estimates of variability or scale (e.g., the median of the abso-
lute deviation, MAD3; called rob-scale here). Research and applied work have
provided estimates, called M-estimators, that keep the precision properties of the
mean/variance in pure Gaussian data and the robustness of the median/MAD in
the presence of outliers (Maronna et al., 2006).

In a practical sense, it is recommended to use both robust and efficient M-
estimators, like the Huber type and Tukey bisquare. Their only disadvantage is
that a computer program is needed to handle them.

Filtering with rob-center ± 2 rob-scale or rob-center ± 3 rob-scale (global fil-
tering or filtering by subject and by item) through a robust estimator will therefore
more securely detect outliers than a classical ±2 SD or ±3 SD filter. Figure 3
illustrates this issue by comparing the outliers’ detection performance of a mean
±2 SD filter and of a rob-center ±2 rob-scale filter in three RT distributions.
The left distribution is the reference data set prior to any addition of outliers, and
the second and third distributions are respectively added with a small number of
outliers and with a medium number of outliers.

Because the initial distribution is loosely symmetric, the robust estimates (rob-
center = 335.9, rob-scale = 117.5)4 are very close to the classical estimates
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Figure 3. A comparison of classical and robust filtering. Solid vertical lines = mean ±2 SD
filter. Dotted lines = rob-Center ±2 rob-scale filter.

(mean = 336.6, SD = 111.7). Because the robust filter is less influenced by
outliers than the classical filter, it rejects outliers more efficiently (second and
third distributions) and is not dramatically changed between the three graphs.

For more on the general theory of robust statistics and its applications, the reader
is referred to Maronna et al. (2006) and Wilcox (2005). The software described
above allows for robust methods, and their user manuals, which are available on
the Internet, are also good references.

Summary: How to filter data

We have shown that blindly filtering a data set can be as harmful as leaving outliers
in a distribution. To strengthen the results’ reliability, a minimum requirement is
to adjust the level of filtering from the whole distribution or from the distribution
per condition to the distribution by item and by subject. It is even better to run
a sensitivity analysis, which will let you know if filtering was necessary and if
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filtering did not introduce a bias. Another possibility is to use a robust method for
filtering data before running the analysis. However, it is preferable to use fully
robust methods, if they are available for the type of analysis that is planned (e.g.,
regression), for diagnosing, estimating, inferring, and testing the data set. Analyses
might then be run without the need to filter extreme observations.

MANAGING MISSING VALUES

Correctly managing incomplete data sets is not an easy task. It cannot be automated
because the procedure to be applied will depend on the reasons behind missing
values. However, depending on these reasons and on the statistical technique
chosen for analyzing the data, researchers may find themselves unable to escape
this issue. They will generally need to apply a replacement procedure or use a
statistical technique that allows for the given incompleteness.

Incomplete data sets are found in two situations: when the experimenter has
decided not to use a complete experimental design in his study (incomplete by de-
sign: complex designs, technical constraints, inclusion of continuous independent
variables), and when the researcher has planned a complete experimental design
but ended up with some missing outcomes (missing values: measuring problems on
some items, nonresponding of a participant on some trials, filtering). This section
will focus on the management of missing values. First, the possible causes of the
missing values will be presented. Second, the different replacement methods will
be explored. Third, further details will be given concerning the situations where
missing values can and must be replaced.

Possible causes of missingness: Missing completely at random (MCAR),
missing at random (MAR), and not MAR (NMAR)

Data may be missing for various reasons, and therefore the appropriate solution
will vary. Data are said to be MCAR when missingness is not systematically related
to any variable (e.g., a random problem in the recording device or a momentary
distraction of a participant), that is, any reason unrelated to the difficulty of the
item, the experimental condition, or the quality of the participant. If a pattern exists
in the distribution of missing values (i.e., more filtered values in an experimental
condition or with an item), values are not MCAR and are either MAR5 or NMAR;
the difference is that MAR values can be predicted from the information at one’s
disposal, that is, available data and covariates. For instance, if the items with
the largest amount of filtered data are also the items with the longest RTs, it is
likely that the probability of missingness depends on the items’ difficulty. Just as
for MAR values, NMAR values are caused by some systematic process, but the
missingness pattern cannot be recovered from the available data. For instance, this
might be the case in a clinical survey that tests sick patients on a regular basis:
it often happens that people will abruptly opt out of the testing if their health
deteriorates, and thus the reason for not participating, which produces a missing
value, is directly related to an unobserved increase of the dependent variable. If an
additional predictor could be added to model health deterioration, the missingness
mechanism would be described and therefore would become a MAR type. The
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seminal reference for missingness types is Little and Rubin (1987; see also Schafer
& Graham, 2002).

The suitability of a given replacement method depends on two aspects: the
type of missingness (MCAR, MAR, or NMAR) and the type of analysis that
will be carried out (ANOVA type or multilevel). In case of MCAR values, four
solutions are valid. The first and easiest solution is to delete any subject and any
item with at least one missing value in order to allow a complete-case analysis.
This is, for example, the default strategy used in SPSS for repeated-measure
ANOVAs. The second solution is to use an accurate replacement procedure like
the expectation–maximization (EM) algorithm and the multiple imputation (MI)
algorithm. Replacing missing values with a mean by subject and item, a third
possible solution, will probably lead to similar results. The fourth and final so-
lution is to work directly on the data likelihood, as in the MLM, which does
not require complete designs (see the MLM Section). Note that even though all
of the above solutions are correct regarding the Type I errors in case of MCAR
values, some of these solutions are much more powerful regarding Type II er-
rors. For instance, deleting subjects or items will result in a proportional loss of
information, making this solution less powerful than replacement methods and
MLM.

MAR encompasses a large number of situations in psychology. The complete-
case analysis is not valid in these situations. For instance, in a study comparing
an experimental group of cognitively impaired patients with a control group of
normal individuals, the task might be slightly too difficult for the experimental
group but not for the control group. Consequently, the weakest patients might be
more likely to answer incorrectly more often than the healthier patients. In this
situation, removing subjects with at least one missing value will result in erasing
the data from the weakest patients, therefore artificially modifying the mean for
this group and biasing the information of the study. In contrast, the other three
solutions given for processing MCAR values are still valid for processing MAR
values.

In case of NMAR values, none of the methods discussed in this article are
suitable. The only correct approach is to model the probability of a nonresponse,
which goes beyond the scope of this article (see Little & Rubin, 1987).

Methods for missing values replacement

Five methods for missing values replacement are examined in this section: re-
placement by the grand mean of the data set, by a mean per condition, by simple
extrapolation using a “by item” and “by subject” mean, by extrapolation with
linear regression, and by extrapolation with EM and MI algorithms.

To better illustrate the impact of a replacement scheme on the results of a
study, visual representations will be used in the following sections. The first type
of representation (Figure 4a–c) uses abstract concepts from physics (center of
gravity and area) as a metaphor of statistical concepts (respectively mean and
variance), in order to give to the reader an intuitive picture of the distortions that
replacement methods may cause on means and variances, therefore on statistical
results.6
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Figure 4. The influence of replacement schemes on the mean and dispersion of conditions
around the grand mean. C, conditions; N, amount of missing values per condition; crosses,
grand mean; squares, means of conditions; circles, dispersion of the data around the mean of
a condition. (a) Original distribution and (b) dispersion before (gray dotted circles) and after
(black solid circles) the replacement of missing values by the grand mean. Arrows show the
drift of the means toward the grand mean for the conditions having missing values (C1, C3, and
C4). (c) Dispersion before (gray dotted circles) and after (black solid circles) the replacement
of missing values by the mean per condition. Only the dispersion is modified here.

In Figure 4a, each one of the four represented conditions (C1–C4) should
contain the same amount of measurements, that is, 200. However, three conditions
(C1, C3, and C4) have N values missing (20, 140, and 50, respectively), as is
likely to be the case in a real experimental situation. Depending on the proportion
of missing values per condition, some conditions (like C3, a high proportion
of missing values) are likely to be affected more than others (like C1, a small
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proportion of missing values) by the replacement procedure, depending on the
procedure (Figure 4b and c). By contrast, the condition C2 will not be influenced
by any replacement procedure because it has no missing values.

The second type of representation (Figure 5a–c and Figure 6a–b) uses a classical
scatter plot to illustrate how the replacing values will modify the distribution. This
representation is based on psychological data (RTs), distributed in one condition
according to another.

Figure 5a shows the simulated distribution of subjects’ averaged RT during the
recognition of isolated words. Averages are plotted according to two conditions
(RT for rare words vs. RT for frequent words), each cross-corresponding to the
average performance of one subject in both conditions. In this example, missing
values existed only in the Rare Words Condition. They are represented as triangles
on the x axis. Figure 5b and c shows how the replaced values are distributed after
applying simple replacement schemes, respectively, a replacement by the grand
mean and a replacement by the mean per condition.

Replacing the missing values by the grand mean. Figure 4b shows that replacing
missing values by the grand mean compresses the intragroup variances: for each
condition, the dispersion around the mean (solid circles) is reduced compared to
the original distribution (dotted circles). It also shows some compression of the
intergroup variances: in each condition, the center of gravity has drifted toward
the grand mean (arrows), distorting the relation between conditions. Therefore,
replacing the missing values by the grand mean not only distorts the main effects,
it also distorts interactions. Figure 5b shows that replacing missing values by the
grand mean artificially lowers the correlation between conditions and introduces
observations outside of the initial distribution. The consequences of this replacing
scheme are an increased risk of Type II error (losing existing main effects) as well
as of Type I error (nonexistent interactions become significant). Although replacing
missing values by the grand mean is a common procedure, technically simple, and
offers the advantage of eliminating weak main effects, we do not recommend
using it, especially if the study intends to make theoretical conclusions about
interactions. See the benchmark section for a test of this replacement scheme.

Replacing the missing values with a mean per condition. Replacing missing val-
ues with a mean per condition compresses the intragroup variance (dispersion
around means is reduced) without compressing the intergroup variances (no drift-
ing of the means toward the grand mean; see Figure 4c). Looking at the relationship
between two experimental conditions (Figure 5c), this replacement scheme allows
for replaced observations that are outside the bulk of the initial distribution. Al-
though this type of replacement may appear to be superior to a replacement by the
grand mean, it is actually not the case: it can create main effects as well as inter-
actions, and therefore lead to Type I errors; consequently, it should be disregarded
as well. See the benchmark section for a test of this replacement scheme.

Extrapolating the missing values with means by subject and item. Any missing
value can be replaced by a mean extrapolated from all the responses of the subject
showing this specific missing value and all the responses for the item showing
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Figure 5. The influence on the conditions’ distribution of simple replacement schemes.
(a) Initial distribution before applying a replacement scheme, (b) replacement by the grand
mean, and (c) replacement by the mean per condition. Scatterplots show the distribution of
subjects’ averaged reaction times in one condition (rare words) depending on the other (fre-
quent words). Triangles represent missing values in (a) and the replacing values in (b) and (c).
To simplify the graph, values were only missing in the “rare words” condition.
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Figure 6. The influence on the conditions’ distribution of more advanced replacement schemes.
(a) Replacement by regression prediction and (b) replacement by extrapolation with the multiple
imputation algorithm.

the same specific missing value. This extrapolation is computed according to
Equation 1:

∑
valuesitem + ∑

valuessubject

Nvaluesitem+subject
. (1)
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Replacing missing values by a mean will always cause variance reduction and
a distortion of the original distribution. However, the distortion of information in
the data set is often less important with extrapolated means than with the grand
mean or the means per condition. See the benchmark section for a test of this
replacement scheme.

Extrapolating the missing values with a linear regression. A more sophisticated
method to extrapolate the missing values from existing observations is to use a
regression analysis, in order to predict the missing values existing in one condition
from the values existing in another condition. This situation is depicted in Fig-
ure 6a.

Replacing the missing values with a regression estimate artificially increases
the overall correlation between two conditions. This leads to an overestimation
of the effect, reducing the p value (Type I error artificially low), and finally causing
the test procedure to be too liberal. Hence, another solution must be considered.

Extrapolating the missing values with the EM and MI algorithms. Two gold stan-
dards for completing data sets with missing values are based on algorithms: the
EM algorithm (Dempster, Laird, & Rubin, 1977) and the MI algorithm (Rubin,
1987). We will sketch only the principles behind each method, referring the reader
to Schafer and Graham (2002) for an excellent and detailed review.

The EM algorithm internally replaces the missing values and applies the analysis
procedure, providing new values with optimal properties for the testing procedure
(i.e., see the SPSS Missing Value add-on module, the SAS STAT base package,
or the S-Plus Missing Base Library). The MI algorithm also completes data sets
based on the characteristics of the existing data (mean, scale, skewness). Fig-
ure 6a showed that extrapolating the missing values based on a linear regression
underestimated or overestimated their correlation with the existing data. Therefore,
the missing values must be predicted by adding to the regression estimate the same
amount of imprecision that exists in the real data (Figure 6b). Analyzing data sets
completed with this procedure results in an optimal inferential test, that is, neither
too conservative nor too liberal. Formally, the bias of the test procedure is accurate.
However, the imprecision (random perturbations) artificially added to the predicted
values increases the variance of the estimators. This problem is corrected with the
MI procedure of the MI algorithm, which runs the same algorithm T times on
the initial data set (typically T = 20). Because of the imprecision added to the
predictions and the different tests at each run, an average of all runs provides
a more reliable estimate by neutralizing noise. After data set completion, usual
analysis procedures (like ANOVA) can be applied. All of these strategies for
missing values replacement will be benchmarked in a later section, together with
some methods that do not require replacing missing values, also described below.

STATISTICAL MODELING

The structure of information in factorial designs: An introduction to levels

In the discussed factorial designs, the same subject will process a series of items,
which are themselves presented to a set of subjects. Such a situation includes
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L2a - Subjects A B C

L1 - Trials              1    2    3 4    5    6 7    8    9

L2b - Items 1 2 3

Figure 7. The structure of information with two crossed random factors (here with three
subjects [A, B, and C] and three items [1, 2, and 3]).

one or several fixed sources of variance: the experimental factors, and possibly
additional factors that need to be controlled statistically. Usually, there are two
random factors: subjects and items. These two random sources of variance can
be crossed or nested. If, for example, items are words, items, and subjects can be
considered as crossed because all the members of a linguistic community share the
same words to communicate. In this case, one accepts the hypothesis that every
subject will react the same way to the same word. The design of this cross-level
structure is depicted in Figure 7: the two random factors are at the same level (2a
and 2b), and their crossing is the experimental measurement or trials (Level 1,
experimental factors are not represented). In this situation, the characteristics of
both the subjects and the items influence the experimental measurement (trials).

It is also possible that each individual builds his/her own mental representation
of words, or has a different organization of his/her mental lexicon than any other
individual, for instance, because of personal history. In this case, every subject may
have a different reaction to the same word. Items, which are not words but rather
mental representations of words, are nested within subjects. The design of this
hierarchical-level structure is depicted in Figure 8: the experimental measurement
(trials) is now confounded with the items level (Level 1), items are considered
as different for each subject (nesting), and subjects compose the upper level
(Level 2).

Statistical models are approximations of reality, even for simple designs: “All
models are wrong, but some are useful” (Box, 1979). Therefore, in this example
with words, the reality probably lies in between cross-level and hierarchical-level
structures, as words are crossed with subjects whereas their representation is both
crossed with subjects (universal properties) and nested within subjects (personal
experience of words).

Processing levels with statistical techniques: Quasi-F and MLM

An important characteristic of factorial designs in psychology, multiple ran-
domness, is caused by the simultaneous existence of items and subjects in the
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L2 - Subjects A B C

L1 - Items & Trials    1    2    3 4    5    6 7    8    9

Figure 8. The structure of information with two hierarchical random factors (three subjects
and three items).

experimental situation, which will correspond to levels of random variance in
the data. Analyzing data with multiple levels of random variance can be handled
with the quasi-F approach or with the MLM technique. By contrast, a repeated-
measure ANOVA and a classical F1 + F2 testing procedure are not directly able
to handle multiple random factors in the data. Therefore, this last approach is not
recommended for analyzing factorial designs. Quasi-F and MLM are presented in
the following two sections. Issues with the use of ANOVA coupled with a classical
F1 + F2 testing procedure will be discussed in the Quasi-F Section.

F ′, F1 + F2, and minF ′ procedures. In a situation where two random factors
exist, running two separate ANOVAs on the same set of data (F1 + F2 procedure),
with each analysis modeling one random factor at a time, will result in conflating
the variance of the remaining unmodeled random factor with the modeled random
factor as well as with the fixed variance. This happens because the statistical model
is underspecified. The danger in such a case, as already pointed out in the early
1970s (Clark, 1973), is an increased risk to underestimate a Type I error, the F1 +
F2 procedure not guaranteeing that the fixed effects can be generalized both to all
the possible subjects and all the possible items at the same time. The only proper
way to process data containing two random factors like items and subjects is to
specify correctly the statistical model by including all the sources of variation in
the equation.

A first way to solve the limitations of the repeated-measures ANOVA is to
compute a quasi-F ratio instead of an F ratio (Clark, 1973; Kirk, 1968; Winer,
Brown, & Michels, 1991). Actually, in a situation where two random factors are
present simultaneously, the test for the fixed effects cannot be obtained with an
exact F ratio. Equation 2 models a simple situation where subjects and items are
crossed and one experimental factor is manipulated:

Yijk = µ + αk + β j(k) + πi + απjk + πβij(k) + ε0(ijk), (2)

where i is subjects, i = 1, . . . , r; j is items, j = 1, . . . , q; k is treatments, k =
1, . . . , p; µ is the grand mean; α is the main effect of the treatment (T ); βj(k) is the
main effect of the word in the treatment [W(T )]; πi is the main effect of the subject
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(S); απjk is the Treatment × Subject (TS) interaction; πβij(k) is the Subject × Word
interaction in treatment (W(T )S); and ε0(ijk) is the experimental error.

Computing a quasi-F ratio or F ′ implies decomposing the total variance into its
source components, in the form of sums of squares and mean squares (MS). In the
design corresponding to Equation 2, these mean squares are MST for treatment,
MSW(T ) for word (embedded or nested within treatment), MSS for subject, MSTS
for the Treatment × Subject interaction, and MSW(T )S for the Word × Subject in-
teraction. No regular F test as would be computed in a factorial ANOVA with
repeated measures can be built from these MSS (Clark, 1973), precisely because
two random factors (Subject and Word) are in the design. However, an F ′ ratio
(Equation 3) proves to be a good alternative to measure the importance of a
treatment effect:

F ′ = MST + MSW (T )S

MSTS + MSW (T )
. (3)

Although the distribution of F ′ is not an exact F distribution because it is
composed of four MS rather than two, it is close to an F distribution (hence,
the term quasi-F ).7 Its degrees of freedom (df ) are approximated by Equations 4
and 5.

df num =
(
MST + MSW (T )S

)2

MS2
T /df T + MS2

W (T )S/df W (T )S

, (4)

df denom =
(
MSTS + MSW (T )

)2

MS2
TS/df TS + MS2

W (T )/df W (T )

. (5)

Some authors have criticized this method as being too conservative (Wike &
Church, 1976), but it seems to be an unfair statement, as shown by Forster and
Dickinson (1976), Raaijmakers et al. (1999), and our own experience (see the
benchmark section). However, a first disadvantage is that this method cannot be
applied directly with unbalanced designs or missing values. Inevitably, a replace-
ment scheme must be used. A second disadvantage is that this method becomes
more complex for more advanced designs, and is not available in the popular sta-
tistical packages. Renaud and Ghisletta (2007) provided a formula for all designs
with more than one factor, together with an S-Plus library, to compensate for this
flaw.

A significant quasi-F means that a treatment would also be significant in another
experiment with both a different set of subjects and a different set of items. In other
words, a significant effect obtained with quasi-F can be generalized to any group
of subjects and to any set of items, which is yet the milestone of statistical tests.
However, because of the two drawbacks described above, the F1 + F2 testing
method was adopted as a consensual custom in some fields of psychology.8 It
consists of running two separate ANOVAs on the same set of data, each analysis
considering a different random source of variance, by subjects (F1) or by items
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(F2). It is easy to show that this double testing procedure may not systematically
lead to the correct generalization. It can only demonstrate that another experiment
with a different set of subjects and the same set of items would yield the same
results, and another experiment using the same set of subjects and a different set
of items would yield the same results. The F1 + F2 procedure alternatively denies
the existence of one random source of variance, and conserves only one random
source in the analysis, instead of modeling both of them simultaneously. Note that
the F1 + F2 testing procedure acknowledges the existence of two random factors
but is not structured to analyze the situation appropriately.

According to Forster and Dickinson (1976, p. 135), Type I errors because of this
procedure would occur more frequently than suspected in the scientific literature:
“In extreme cases, the Type I error rates for F1 and F2 can exceed the desired
rate by a factor of at least 10.” For technical issues and a complete discussion, see
Clark (1973, 1976), Raaijmakers et al. (1999), Forster and Dickinson (1976), or
Wike and Church (1976).

Finally, Clark (1973) introduced a lower bound for F ′, hence called minF ′. It
implies that if minF ′ is significant, one is sure that F ′ will be significant as well,
however, if minF ′ is not significant, one cannot infer on F ′. The advantage of
minF ′ is that Clark (1973) has shown that it is easily computed:

minF ′ = F1 F2

F1 + F2
. (6)

Its degrees of freedom are given by dfnum = p − 1 and dfdenom is the same as
Equation 5, but it can be computed alternatively as

df denom = (F1 + F2)2/(F2
1 /df TS + F2

2 /df W (T )).

Therefore, if minF ′ is used as a criterion, it will be more conservative than F ′.
Clark (1973) advises that it should be used only when F ′ cannot be computed, and
explicitly states (p. 348) that it is “far preferable” than F1 + F2.

MLM. “Multilevel analysis is a methodology for the analysis of data with complex
patterns of variability, with a focus on nested sources of variability: e.g. pupils in
classes, employees in firms, . . .” (Snijders & Bosker, 1999). The MLM technique
is an extension of the regression technique, for which the ANOVA is a particular
case. Its development in the 1980s (Goldstein, 2003) was mainly initiated by
the need for modeling mixed effects and the influence of context in the field of
social sciences. “Historically, multilevel problems have led to analysis approaches
that move all variables by aggregation or disaggregation to one single level of
interest, followed by an ordinary multiple regression, analysis of variance, or
some other ‘standard’ analysis method. . . . Analyzing variables from different
levels at one single common level creates two different sets of problems” (Hox,
2002). These two problems are the aggregation and the disaggregation of data.
From a statistical point of view, aggregating data (merging information from Level
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1 in Level 2) will result in a loss of information and in a decrease of power of the
analysis. Using the F1 + F2 procedure, for instance, drives to aggregate levels
by averaging over items or over subjects. On the contrary, disaggregating results
from ignoring the existence of a Level 2; therefore, conflating information from
Level 2 with information from Level 1, for example, allocating subject variability
to the measurement level (Level 1) can possibly lead to significant effects that do
not exist.

MLM allows for specifying the different sources of variance in the model, for
fixed factors as well as for random factors. Researchers can therefore draw a more
exact schema of variance sources in the situation they are studying, from any level
as well as between levels: main effects, simple and complex interactions, covariates
effects. MLM offers enough flexibility to elaborate complex and realistic math-
ematical models and do not require balanced designs. It therefore automatically
accommodates to MCAR and MAR situations by simply using all the available
data. The necessary amount of data, even to analyze complex situations, is not
excessive compared to other techniques like structural equation modeling. Finally,
an important asset of the technique for psychologists is its ability to separate
precisely and accurately the variance because of an experimental factor, from the
variance due to unknown, and therefore unmodeled, parasite factors (cross-level
models).

Software that models mixed effects (R, S-Plus, SAS, SPSS) and software ded-
icated to MLM (MLwiN) can be used; see the MLwiN manual for further infor-
mation or one of the following references (Baayen, 2008; Goldstein et al., 1998;
Rasbash, Steele, Browne, & Prosser, 2005; Renaud & Ghisletta, 2007; Snijders &
Bosker, 1999).

Comparing the structure of multilevel models: Cross-level models and
hierarchical-level models

In a cross-level model with two random factors, the two random factors locate
at the second level in the structure, and the first level results from the crossing
of the two random factors, as shown in Figure 7. Therefore, the variance at
Level 2 is caused by the differences existing between items and between subjects.
The variance at Level 1 is due to measurement errors and any other source of
variation not included in the model (residual error).

In a hierarchical-level model, items are located at Level 1 in the structure
and are nested within subjects at Level 2, as shown in Figure 8. The variance
at Level 1 is due to the differences between items, measurement errors, and
residual error. The variance at Level 2 is due to the differences between sub-
jects. Fixed factors like “Treatment” are included in these models as covari-
ates.

While comparing the performance of cross-level and hierarchical-level models
on a set of real data (taken from a lexical decision task experiment investigating
the recognition of isolated spoken words) we found that the fit of a model to the
data, estimated with the iterative generalized least squares algorithm (Rasbash,
1992), was better with cross-level models than with hierarchical-level models.
However, if enough covariates were added in the model for explaining the items,
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Table 1. Terms included in each model

F1 F2 F ′/minF ′ Cross Cross2 Hiera Hiera2

T � � � � � � �
W(T) � � � �
S � � � � � �
T × S � � � �
W(T) × S � � � � � �

Note: W(T) × S is (confounded with) the residuals. Cross and Hiera are cross-level
and hierarchical-level models. Cross2 and Hiera2 are the corresponding models
including the interaction term T × S.

like word frequency, word length, concreteness, and so forth, the fit of the two
types of models tended to converge.

Performance of the different statistical analysis methods

Behavioral data from a real experiment studying the perception of language
according to the factorial design described in the example above (two random
factors and one fixed factor) were used to compare the outputs provided by the
various techniques described above: ANOVA by subjects (F1), ANOVA by items
(F2), quasi-F (F ′), minF ′ (minF ′), cross-level model (Cross), and hierarchical-
level model (Hiera). It is important to note that even in this very simple design,
MLM allows adding a “hybrid” term, the T × S interaction. This term, which can
be understood as a random slope, is traditionally not incorporated in multilevel
models, although it is incorporated in ANOVAs and quasi-F.9 Consequently, to
allow a direct comparison between MLM and quasi-F, two additional multilevel
models were also tested: Cross2 and Hiera2. These two models were obtained
by adding the interaction term T × S respectively to the Cross and Hiera models.
Methods F ′ and Cross2 are based on the same model, but they vary in their
ways to test significance. Terms in the equation of each model are given in
Table 1.

The dependent variable was the time needed to recognize a word (RT). RTs were
measured from the beginning of the word’s presentation. Stimuli were 60 words
varying according to the factor A (fixed factor or treatment, two modalities: A1 vs.
A2). Forty subjects were tested. Each item was presented once to each subject, and
each subject was tested with all the items (2,400 measurements). Results obtained
for each model are given in Table 2.

In this example, the conclusion in terms of significance of the effect derived
from F ′ is similar to that derived from the two cross-level models, from F1, and
from minF ′, whereas the conclusion derived from the hierarchical-level model
is similar to that derived from F2. This similarity between models is due to the
simplicity of the experimental design. Because we did not use any variable to
describe the items in the hierarchical models, the variance of the items is conflated
with the residual error at Level 1, as is the case with F2.
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Table 2. Results given by each model for the significance of the fixed factor

F1 F2 F ′ minF ′ Cross Cross2 Hiera Hiera2

df (1, 58) (1, 39) (1.04, 64.64) (1, 64.64) 1 1 1 1
F or χ2 2.39 40.92 2.31 2.26 2.4 2.39 32.22 27.46
p .13 <.01 .13 .14 .12 .12 <.01 <.01

In conclusion, for this example, F1 + F2, F ′, minF ′ and the cross-level models
reached the same and correct conclusion about the significant effect of the treat-
ment. The benchmark study below shows however that in several cases the F1 +
F2 procedure leads to an inflated Type I error.

BENCHMARKING THE TECHNIQUES

To compare the statistical accuracy of the different methods reviewed in this
article and their robustness to a degradation of the data set, a benchmarking study
is now presented. It is restricted to the simple design of Equation 2 and consists in
estimating the real Type I error rate of each method. These benchmark results can
be used for RTs as well as for other behavioral measurements following similar
distribution properties.

Methodology

The simulation procedure consisted mainly of two parts: generating data sets and
running the statistical analysis to evaluate Type I errors.

Generating data sets. We generated data sets according to the underlying model
described in Equation 2, where both subjects and words are crossed random factors
and where treatment (two modalities) is a fixed factor within subjects and between
words. Standard deviation (σ) values (ms) were set to σS = 20, σTS = 17, and
σW(T) = 29, and σe = 7. The recent literature argues that within a subject, RTs
may be skewed, possibly ex-Gaussian; see, for example, Fagot, Dirk, Ghisletta,
and de Ribaupierre (2009) for a review of the literature and several (real) data sets
that support this assertion. For this reason, the last term was generated either as
coming from a Gaussian distribution with the stated standard deviation (σe = 7)
or as coming from an ex-Gaussian distribution with the variance shared in two
equal parts between the exponential and the Gaussian component (roughly the
proportion estimated in various conditions for the data analyzed in Fagot et al.,
2009). To estimate Type I error rates, we generated data with no mean difference
between the two treatment values. We varied the total sample size by changing
the number of subjects and words. We specified four total sample sizes: 10–10
(i.e., 10 subjects and 10 items), 15–15, 10–15, and 15–10. The results of the
eight settings (two distributions [Gaussian or ex-Gaussian] by four sample sizes)
are surprisingly highly similar. For the sake of text clarity, we present only two
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settings, which are those obtained for the 15–15 sample size, with the ex-Gaussian
and with the Gaussian distribution.

We imitated MCAR missingness by randomly erasing values with probabilistic
rules defined by two factors: the total amount of missing values in the data set
(20%, 40%, or 60%), and their distribution across the two treatment conditions
(balanced vs. unbalanced, respectively, half of the amount of missing values in
each condition, vs. two-third and one-third). Both factors were fully crossed to
define six missingness patterns (20 and 50–50, 20 and 33–67, 40 and 50–50, 40 and
33–67, 60 and 50–50, 60 and 33–67), the “experimental design” being completed
with a no missing value control condition. We therefore used seven types of data
sets for this investigation.

For F ′, minF ′, F1, F2, and F1 + F2, the incomplete data sets were first
completed by applying three of the missing value replacement schemes pre-
sented in the Missing Values Section: grand mean, mean per condition, and
means per subject and item. Conversely, because multilevel methods can be used
with unbalanced designs, the incomplete data sets were directly tested with these
methods.

Statistical analysis. For each of the 56 simulations (7 types of data sets × 8
statistical techniques), the procedure for generating data sets was repeated 10,000
times. The goal in repeating this procedure a large number of times is to obtain
a more reliable estimate of the Type I error rate. The benchmarking procedure
was programmed and run on S-Plus, and it produced an estimation of the true
Type I error rate for each simulation, which is the expected or targeted rate of
0.05.

RESULTS

Figure 9 and Figure 10 show the percentages of null hypothesis rejection (the
estimated Type I error rates) when the targeted decision criterion is α = 5%
for the 15 items–15 subjects sample size. Figure 9 shows the results with F ′,
minF ′, F1, F2, and F1 + F2. Figure 10 shows the results with the four multilevel
models presented in Table 1: the cross-level model (Cross), the cross-level model
with the additional interaction term T × S (Cross2), the hierarchical-level model
(Hiera), and the hierarchical-level model with the additional interaction term
T × S (Hiera2). The closer to the targeted 5% a method is, the more reliable
it is.

DISCUSSION

A method is too conservative if it rejects fewer than 5% of the cases. It is too liberal
if it rejects more than 5% of the cases. The estimated Type I error rate varies from
simulation to simulation, depending on the different factors manipulated. For
example, an estimated Type I error rate of 30% indicates that the corresponding
method would yield a significant result in 30% of the cases, while 5% is expected.
A correct method is neither conservative nor liberal, and will reject the null
hypothesis 5 times out of 100 with the α criterion set to 0.05.
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Figure 9. Real Type I error rates depending on the F technique (F ′, F1, F 2, F1F 2, minF ′), the amount of missing values (0%, 20%,
40%, and 60%), the distribution of missing values across conditions (balanced, unbalanced), the replacement scheme applied to the
data set (MGen, MCond, MSuIt), and the distribution type (Gaussian, ex-Gaussian). The percentages of missing values are indicated
by 0, 20, 40, and 60; Balanced 50–50, the same number of missing values per condition; Unbalanced 67–33, two-thirds of the missing
values in one condition, one-third in the other; MGen, the replacement of the missing values by the grand mean; MCond, replacement
of the missing values in one condition by the mean for that condition; MSuIt, replacement of each missing value by a mean for this
specific item and this specific subject; F ′, quasi-F; F1, F test by subjects; F 2, F test by items; F1F 2, F1 + F 2 procedure; minF ′,
lower bound for F ′.

term
s of use, available at https:/w

w
w

.cam
bridge.org/core/term

s. https://doi.org/10.1017/S0142716410000457
D

ow
nloaded from

 https:/w
w

w
.cam

bridge.org/core. U
niversity of Basel Library, on 30 M

ay 2017 at 19:00:43, subject to the Cam
bridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0142716410000457
https:/www.cambridge.org/core


Figure 10. The real Type I error rates depending on the multilevel model type (Cross, Cross2, Hiera, Hiera2), the amount of missing
values (0%, 20%, 40%, and 60%), the distribution of missing values across conditions (balanced, unbalanced), and the distribution
type (Gaussian, ex-Gaussian). The percentages of missing values are indicated by 0, 20, 40, and 60; Balanced 50–50, the same
amount of missing values per condition; Unbalanced 67–33, two-thirds of the missing values in one condition, one-third in the other;
Cross, cross-level model; Cross2, cross-level model corresponding to F ′; Hiera, hierarchical-level model corresponding to F1; Hiera2,
hierarchical-level model Hiera augmented with the interaction term T × S.
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Accuracy of statistical techniques

We first note that the two simulated distributions (Gaussian and ex-Gaussian)
give highly similar results. This might be attributable to the relative robustness
of regression and ANOVA to skewed data, as long as the skewness is similar in
all conditions (Miller, 1997). Simulations reveal that the F ′ method is the most
reliable technique among those tested here. It gives the closest simulated Type I
error to the expected 5% in the situation of no missing values. It has been said that
F ′ is too conservative, but this investigation clearly refutes such a point of view: F ′
is accurate. In this study, minF ′ gives almost the same results as F ′. Comparatively,
the F1 + F2 procedure used in psychology is always too liberal. This was expected
from the theoretical aspects presented above. The MLM-crossed structure with
the interaction term (Cross2) lies in between F ′ and F1 + F2, offering a relatively
good accuracy, although being more liberal than expected. It is however important
to note that the other MLMs (Cross, Hiera, and Hiera2) are on the contrary too
liberal. Because two hierarchical models are related to the model for F1 (see
Table 1), and are therefore incomplete, this result was to be expected. Concerning
the cross-level models, it shows the importance of modeling all terms, including
the T × S interaction.

Impact of replacement scheme on the robustness of statistical techniques

These simulations show that the replacement scheme plays an important role for
the accuracy of each technique. Replacing with a mean per condition will result in
the poorest accuracy of Type I Error rate, followed by a replacement with means by
subject and item. Replacing with the grand mean results in an excellent accuracy,
which remains stable despite an augmentation of missing values, balanced as
well as unbalanced. Note that accuracy refers here to the significance test, and
the size effect will be affected by any replacement scheme. Combined with F ′, the
grand mean replacement scheme allows one to obtain the highest accuracy for
the significance test. However, this conclusion is probably restricted to simple
designs, such as the one we used for creating this benchmark. With two treatment
factors, and with their interaction, we expect the precision, in the case of replace-
ment by the grand mean, to deteriorate seriously, as explained in the Replacing
the Missing Values by the Grand Mean Section. In such cases, the MLM approach
will reveal its advantages, because it does not rely on any replacement scheme.
Therefore, cross-level models with the interaction term (Cross2) can be considered
as the best compromise between accuracy, performance, and ease of use. Moreover,
in the case of missing values, one can argue that this method is somehow the EM
algorithm version of F ′. Because the underlying models for F ′ and Cross2 are
the same (see Table 1), using the EM algorithm with F ′ or using Cross2 (with no
replacement scheme) will give similar results.

Note that this benchmark is restricted to a situation where all methods apply.
Multilevel models have the additional advantage of being applicable to a wider
range of designs.

Finally, the results of this simulation are not restricted to chronographic data
and can be applied to non-RT data, as long as the distribution is relatively close

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0142716410000457
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:00:43, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0142716410000457
https:/www.cambridge.org/core


Applied Psycholinguistics 32:2 414
Lachaud & Renaud: Tutorial for statistical analysis of reaction times

to Gaussian. We encourage researchers to use and report either F ′ or cross-effect
model results in all fields where they apply.

Summary and conclusion: F ′ and cross-level multilevel models

In the case of no or few missing values, F ′ appears to be the best statistical
technique to use for its accuracy as a statistical test. This accuracy is preserved with
an increasing number of missing values if missing values are replaced by the grand
mean. However, the estimates provided for the experimental variables will become
distorted, a drawback that is not found with MLM. Therefore, this simulation
study reinforces the cross-level multilevel model as an excellent compromise: it
is reasonably accurate, it does not rely on a missing value replacement scheme
that can distort estimates and hamper accuracy, and it allows one to analyze more
complex designs.

There are a few limitations to this simulation study. First, only one simple design
(one fixed factor with two conditions) has been tested. Second, only MCAR types
have been simulated. In the presence of a MAR type, some replacement schemes
are expected to bias the results, as is expected with the averaging done in F1,
F2, and thus F1 + F2 procedures. In this situation, MLM may even be more
useful.

CONCLUSION

We have reviewed the different steps for processing RTs obtained through a
repeated-measure design: filtering, missing values management, and choice of the
statistical technique for significance testing. This tutorial has pointed out some
common misconceptions and misuses of statistical techniques in the fields of
scientific psychology. Resulting in statistical biases, these misconceptions and
misuses can affect the results’ validity.

Although no universal recommendation can be made to counter these risks, F ′
and cross-level models appear to fit better the experimental settings in our tests,
especially in terms of statistical accuracy (Type I error rate).

Box (1979) said that “All models are wrong, but some are useful.” With today’s
huge computing abilities and the growing request to analyze properly each ex-
periment, statisticians are stimulated to look for new models and approaches that
will better capture data complexity. Because this process is not at its end, we hope
that our article will encourage psychologists to use and investigate more efficient
methods and models for analyzing their data.

NOTES
1. Testing a set of participants with the same set of items.
2. Although RT distributions are not normal (bounded on their inferior side and exhibiting

some skewness), psychologists have agreed to consider these distributions normal
enough to be processed with these methods. A logarithmic transformation can also be
applied to improve Gaussianity.
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3. If xi, i = 1, . . . , N are RTs, the median is written as Mdn = medi(xi), and MAD =
1.4826 × medj(abs(xj) − Mdn)).

4. Values from S-Plus 7 location.m and scale.tau functions with all settings to the default
values.

5. The term random is somewhat misleading here. It is more important to focus on the
definition and the example.

6. These schemas do not correspond to a bivariate representation of a real or imaginary
data set, contrary to the second graphical view.

7. According to Winer et al. (1991), this point was demonstrated several decades ago by
Satterthwaite (1946).

8. See the evolution of the ratio between the use of F1 + F2 and quasi-F in the reviews
from Journal of Verbal Learning and Verbal Behavior and Journal of Memory and
Language in Raaijmakers et al. (1999).

9. In the current design, Words are embedded within Treatment, so no interaction between
these two factors is allowed.
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