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We discuss ensemble inhomogeneous states of general two-dimensional magneto-
fluids. A subclass of approximate statistical inhomogeneous states of the model
equation is constructed using the principle of maximum entropy. The fields are
shown to satisfy generalized nonlinear Poisson equations and some limiting cases
are solved analytically. The method is then applied to a pseudo-three-dimensional
model of an electromagnetic filamentation instability. The results illustrate the
general role of the global constants of the motion on the nature of the statistical
profiles for the fields describing the most probable states in magnetofluids.

1. Introduction
The purpose of this paper is to exhibit a class of approximate statistical inhomo-

geneous states for general two-dimensional magnetofluids and to solve analytic-
ally some special limiting cases and thus identify some general properties of the
statistical profiles for the fields. The treatment is adapted here to the case of open
boundary conditions and the present paper follows a first work on the subject
(Calinon & Merlini 1979) in which homogeneous stationary statistical states
(solutions of the associated Hopf equation) were investigated by explicit use of
the Fourier method. It should be recalled here that, besides their intrinsic interest,
states of two-dimensional fluids are of importance since they appear sometimes
as a useful approximation to the more complex three-dimensional situation;
a typical example is the two-dimensional approximation of drift-wave turbulence
recently proposed (Hasegawa & Mima 1978). We are here concerned with the
investigation of states of the fluids defined as those statistical states which are
statistical solutions of the basic equations governing the flow of the magnetofluid
and which, in addition, have maximum entropy. An example of these has been
given recently (Montgomery, Turner & Vahala 1979) where the most probable
states of two-dimensional magnetohydrodynamics with poloidal magnetic field
were investigated. The method bears some similarity to the known one in the
statistical mechanics of point particles where inhomogeneous profiles for the
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96 R. Calinon and D. Merlini

one-body correlation function are computed in the mean field limit. In magneto-
fluids there exists, in general, an infinite number of states to be investigated and
we pay attention here to approximate stationary solutions of the basic equation
which have the property that statistical moments factorize and which are
selected within the whole class by means of an application of the principle of
maximum entropy. The result also exhibits special statistical solutions of the
equations which are associated with the law of conservation of a few global
constants of the motion; an application of the elementary method of variational
calculus to continuous distributions results in a class of nonlinear Poisson equa-
tions, and numerical methods are necessary. In this work we pay more attention
to some limiting cases where a simple analytical solution may be given and
studied in detail so that the effect of the constants of the motion on the nature of
the profiles for the fields is immediate.

The paper is organized as follows. In § 2 we first define the model equation of
general two-dimensional magnetofluids which include four different situations
(Euler fluid, magnetohydrodynamics with pure toroidal and pure poloidal
magnetic fields and two-dimensional drift-wave turbulence) and set out the
problem of stationary states. The principle of maximum entropy is applied with
a detailed treatment of the Euler case, for which an analytical solution is also
constructed (§3). The method is then applied to the drift-wave equation of
Hasegawa & Mima (1978) and to two-dimensional magnetohydrodynamics; in
the case of a pure toroidal magnetic field an analytical solution is given. We then
proceed in §4 with a pseudo-three-dimensional model describing the evolution
of an electromagnetic filamentation instability, and in § 5 we treat in detail a
stationary state of a one-dimensional fluid without neglecting triplets terms. In
§6 we briefly give our conclusions.

2. Two-dimensional magnetofluids: model equation and stationary
states

The basic equations describing the flow of two-dimensional magnetofluids,
which we shall first discuss, are given by

M + V<f>.Vk<f> = Va.VAa + AV. (1)
ot

^ + V-V.Va = 0, (2)

where <j> and a are two scalar fields (the potentials) which depend only on (x, y)
co-ordinates and are written as three-dimensional vectors: 0 = (0,0, <f>(x, y)) and
a = (0,0,a(x,y)). Equations (1) and (2) describe four different and strictly two-
dimensional situations. If A = 0 and a = 0, (1) describes the Navier-Stokes fluid
(Euler Equation), while, if a = 0, (1) describes the evolution of the potential <j>
of a drift-wave turbulence model in the low-beta limit (Hasegawa & Mima 1978);
if A = 0 only, (1) and (2) describe two-dimensional magnetohydrodynamics with
a pure poloidal field (B = {Bx{x, y), B2(x, y), 0); the pure toroidal case is obtained
by setting a = Bz, with Bs{x, y) being the magnetic field pointing in the z
direction perpendicular to the velocity field u = VX0. (Notice that for any scalar
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Two-dimensional magnetofluids 97

field £ = (0,0, £{x,y)), V^g = (-dg/dy, d£/dx,Q).) Let us introduce a bracket
( ), which refers to a statistical average associated with some probability measure
for the fields <f>, a, denoted by /^ a; this is a stationary measure, usually of Gibbsian
type and constructed with the constants of the motion of (1) and (2) which have
a direct physical meaning. The method consists usually in expanding any vector
or scalar field £ by means of a set of stationary states; for example, if a = A = 0,
0 is written as ^ = Siai^i , where the set {^} is usually given by A ^ = A ^ ,
i.e. a particular set of stationary states satisfying the condition A 1 ^ . VA^{ = 0
in (1), and where {aj are the random coefficients appearing in /i^. For periodic
boundary conditions, <j>t = e i k x (Montgomery & Fyfe 1976; Calinon & Merlini
1979), while for open boundary conditions fa = <pmn = eim6Jn(r) (Salmon et al.
1976; Montgomery & Vahala 1979). The results are based on the assumption of
a non-trivial kind of completeness of the set {^J. For the Euler flow in two
dimensions, this problem has been rigorously solved only recently (Albeverio,
Ribeiro de Faria & Haegh-Krohn 1979; Albeverio & Hoegh-Krohn 1979). It
should be mentioned that a more general class of stationary states {0J of (1) with
o = 0is given by those such that A ^ = g(fa), where g denotes any (in general)
nonlinear functional of <pP In fact, if

Afa = g(fa), Ax&. VA& = (ty/ty,) V-L&.VA^ = 0;

then dfii/dt = 0 in (1) and 04 is a stationary state. On the other hand if one
is interested in stationary statistical states for the fields {<j>, a) such that

(d/dt) A<0> = (3/00 A<a> = 0

in (1) and (2) (with respect to some probability measure fi^a, invariant under
time evolution), then the averaged fields <j>,a should satisfy the conditions

<VX9&. VA0> = <Vxa. VAa>, (3)

<VJ-^.Va> = 0. (4)

A class of approximate (not necessarily stationary) statistical solutions will be
determined in the next section. We will carry out in detail the pure Euler case;
with minor modification, the method applies to the general case and the resulting
equations are given.

In the Euler case, the basic equations are given by

^ ^, (5)

V.u = 0. (6)

In view of (6) there is a function 0 such that u = V"1^ = ( — d<f>/dy,d<j)/dx,O);
taking the curl of (5), with V x u = A^ then

I O, (7)

and we obtain (1) with a = A = 0. Notice that, at any time, the pressure is
obtained by taking the divergence of (5), i.e.

- Ap = V. (u. V) u = V((V-V • V) V-1-̂ ). (8)
4 PLA 30
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98 R. Calinon and D. Merlini

I t is known that in the Euler case there are ' two' constants of motion, the
energy E and the vorticity Vf, respectively given by

/being a continuous function; Vf reduces to the enstrophy if/ = (A^)2; if

A(j> = p ^ 0,

S = — jd2xA<f>lnA$ has been proposed for the entropy of the Euler flow
(Montgomery et al. 1979). The energy and the enstrophy are the two constants of
motion which survive standard truncations of the basic equation. The conserva-
tion of E, Vf and also S is ensured by the basic identity V-1- V = 0 applied to any
function (Albeverio et al. 1979). Thus:

dE/dt = - (tPxfV^Vty = StPxiV^ V0) A<j> = 0,

= f d V W ) Vx0VA0 = - fefls/W) ^A^VA^ = 0.

In analogy with mean-field-type theories of point particles we investigate here
approximated statistical states having the factorization property

and the problem is a more tractable one; in particular, for an approximated
stationary statistical state we have from (3) that a class of solution is given by

or (<f>) = A([<A0>]), (9)

where g or h is any functional of the corresponding variable. Thus

since VXV = 0. (This has been already used in the proof of the conservation of
energy and enstrophy.) In order to construct some approximated statistical
states or to select a specific form of g or h in the case of stationary statistical states,
we apply the principle of maximum entropy for continuous distributions and
define the most probable states.

3. Most probable states
In the statistical mechanics of point particles, if P is a probability measure on

the phase space of the system, i.e. (PdQ. = 1, then following Gibbs one can define
a generalized Jf function given by:

= <lnP>P. (10)
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Tivo-dimensional magnetofluids 99

Let E(<j>) be the energy of the fluid and let /i((j>) be a time-invariant probability
measure for the Euler flow with density dfi((j>) = P((j>)d<j). If i/r(t, x) is a solution
of the Euler equation with ^(0, x) = <j>{x), then

(E) =

Taking into account the conservation of the energy alone, the most probable
statistical state is defined as the state which has the maximum entropy compatible
with a given mean value of the constant of the motion E. Let E be the only
constant of the motion which is taken into account and let us denote by a the
Lagrange multiplier associated with E; the principle of maximum entropy for
P(<fr) is given by

s(- [p(<t>)\nP{<j>)d<j> + a iE{<}))P{(j))d^\ = 0.

Variational calculus (Hildebrand 1952) gives then the equilibrium canonical
measure /i($) = ce~E{^)a.

Equilibrium measures as above have in fact been used earlier (Montgomery &
Fyfe 1976; Calinon & Merlini 1979) to compute fluctuation spectra in various
situations of inviscid two-dimensional magnetohydrodynamics and are station-
ary solutions of the Hopf equation.

Other computations may be done by considering different density in the
entropy function. If the entropy of the fluid is taken as 8 = — jdzxp Inp (Mont-
gomery et al. 1979) and introducing the Greens's function 6(x, x') associated
with the equation A0 = p, the problem is to find a solution for the independent
field p, such that

d(- U*xp\np + a (d2xp(x) (d2x'G(x,x')p(x')\ = 0.

Variational calculus gives then the solution

In this case'/o = f(<j)) and p is a stationary solution of the Euler equation (1). The
above equation bears analogies to some approximations in the statistical
mechanics of point particles in the mean field limit (nonlinear Debye-Hiickel
equation) and is an analytically tractable case. Clearly the equation satisfied by
the most probable state depends on the choice of the entropy function (see §4).
We now apply this method to construct a statistical solution of the Euler flow
having the factorization property discussed above.

Let a, P, y be respectively the Lagrange multipliers associated with the con-
servation of the energy, the ' particle' number and the enstrophy of the Euler
fluid and let us take as entropy the function 8 = - jd2x(p)ln(p). Then varia-
tional calculus gives

f f f
— dzx(p)ln(p) + p d2x(p) + a d%xd%x'G(x,x')p(x)p(x')

J J J
if J J

= (/}> = exp(—/? — a(^) — y(A^». (11)
4-2
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100 B. Calinon and D. Merlini

The functional g in (9) is thus selected. In particular, (p), the solution of (11), is
an approximate statistical inhomogeneous state and is a stationary solution of
the Euler equation.

As stated above, an analytically tractable case is given by setting y = 0 in
(11); then

A<0> ?<*<£». (12)

On a circular domain, the rotationally invariant solution of (12) ia standard and
given by

(</>)(r) = a + bln(l+c(r/r0)*)

with ab = 2 and + 8c/arg = e^-"a, so that the two temperatures a, /?, are given by
p pfi-aa

N=\d*x(p)(x)= V

E = fd 2 z -
J

where V = itr\ is the volume of the domain and <j>{rQ) = 0. Eliminating a and fl
and introducing £ = 16nE/N2, the equation for c is given by

(13)

Equation (13) possesses always one solution in the range — 1 < c < oo. Here
negative temperature a means c < 0 ; a > 0 i f c > 0 and the homogeneous case
c = 0 is obtained for £ = 1. The result illustrates the general effect of a global
constant of the motion like £ on the structure of the statistical density profile for
the field <f>. From (8), we may now compute the pressure and obtain

The constant K may be chosen such that at the wall p(r0) = arxp{r0). This
concludes the analysis of (11) in the special case y — 0.

In the case of two types of 'charges' (p1(x), p2(x) ^ 0), such that

equation (11) is easily generalized to

A<0> = sinh(a<0>+/?+y<A0». (15)

On the other hand, if one species of 'charge' is represented by a homogeneous
neutralizing background (p2 = 1), we obtain

A<0> = exp(a<9i>+y? + y < A 0 » - l (16)

in suitable units. To compare with previous work on systems of point particles,
we notice that as y->0, and depending on the signature of a, equation (15)
reduces respectively to the shielding or anti-shielding Poisson equation for two-
component plasmas (Choquard 1976; Calinon & Merlini 1979); it also reduces to
the guiding centre equation (Montgomery & Joyce 1974); if y = 0, (11) reduces
to the one considered in a recent treatment of a system of point vortices (Lundgren
& Pointin 1977) and possesses a wide range of solutions (Williamson 1977).
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Two-dimensional magnetofluids 101

4. Drift-wave turbulence and two-dimensional magnetofluids
We now apply the method to some two-dimensional and pseudo-three-di-

mensional models.

4.1. Drift-wave equation

We begin with a model of drift-wave turbulence proposed recently (Hasegawa &
Mima 1978); the evolution of the potential <fi is governed by (1) with a = 0.
Notice that such an equation is a nonlinear form of the general drift equation
(Biskamp & Horton 1980) recently studied. The three constants of motion which
come into play here are given by

= f

=

= (

The natural candidate for the entropy function is given by 8 = — jdzxp\np
since p = A$6 — \2<j) plays a role analogous to the charge density in the Euler case
treated in §3. (We suppose p ^ 0.) Then <f> = jdzxG(x,x')p(x') where G(x,x')
is the Green's function of the equation (A — A2) ^ = p; let ft, a and y be the three
temperatures associated with Slt S2, S3; applying the principle of maximum
entropy we obtain

(17)

The above equation differs from (11) by the presence of the screening term
clearly the procedure is not unique; in fact another possibility is to associate the
entropy 8' = — jd2xA<fi\n&<fi; this would result in a non-local Poisson equation
given by

A0 = exp [/?(A2 - 1 ) + a(A V - 4>) + 7 (A V - A0)] (*8)

with A^ = (j>, which still reduces to(l l)asA->0;(17) seems to us more appro-
priate and the numerical solutions will be reported elsewhere.

4.2. Two-dimensional magnetohydrodynamics

As A-* 0, (1) and (2) describe two-dimensional magnetohydrodynamic flows. We
limit ourselves to discussing the pure toroidal case where a = B; the constants of
motion are known (Calinon & Merlini 1979); they are the energy and the en-
strophy of the fluid, the magnetic energy and a quantity which plays the same
role as the cross-helicity in the pure poloidal case. They are
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102 B. Calinon and D. Merlini

Let a, y, 8, ft be the four temperatures associated with Sit i = 1,...,4. The
entropy functional now takes the form

F = - z p i l n ^ - jd2xp2lnp2- \c

dd*x (f>(p1-p2) + i y J<ftB(Pi - /o2)
2 + 4* td*x B2 + ft(d*x (Pl -p2)B,

where we assume two types of' charges' such that A0 = p1—p2 (pt ^ 0) and £,(B)
is some functional of B. We will limit ourselves to the case in which the magnetic
field lines point only in one direction. Then pv p2, B may be taken as the three
independent fields and a natural choice is £,(B) = B; in this case 8F = 0 if

(19)

B = exv(8B+ftA<f>). (20)
If we choose the scalar AS = <o as an independent field instead of B, then it is
natural to set £([£]) = £(A2?) = w; this choice gives rise as before (§4.1) to a
non-local Poisson equation since, with AS = w, B = fd*x'G(x,z')(o(x'), and
8F = 0 if

(21)

(22)

with A^ = B; in the particular case where ft = 0, the profile for ^ is given by the
solution of a generalized nonlinear biharmonic equation

A(A^) = e*̂ . (23)

An analytical solution is not available and numerical work is necessary. The
situation is different if we consider the ' mixed' choice such that Ai? = (o is
regarded as independent field but where the entropy function is still given by
i([E\) = B, i.e. i([B]) = B = jd2xG(x,x')oj(x'). Let G(x,x') be the Green's
function associated with the equation AB = o). Variational calculus gives (19)
as before while (20) transforms into

(24)

with A r̂ = B. In the particular case ft = 0, (24) is still analytically tractable as
in the Euler case (§3) and the statistical profile for the magnetic field follows
from the solution for xjr given by

2 1 + c
rv'-'S l + c(r/ro)

2>

with (1 + c)2 = - 8c/8rl and at the boundary f(r0) = 0. Then

The magnetic energy is given by 08 = %jd2xB2 = F(l +c) and the temperature 8
by

4 (J/F)2
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Two-dimensional magnetofluids 103

The magnetic field is thus obtained as

B(r) = ( f t i + W^WFDF (26)

The above result still illustrates the general role of global constants such as
3§/V; if the energy density ^?/F is greater than 1 (8 < 0), the profile for B is
monotonic decreasing away from the central region, while if 8 > 0 it is increasing.
The case 8$/V = 1 corresponds to the infinite temperature limit 1/8 ->oo, with
the constant magnetic field normalized to B = 1. This concludes the discussion
of the toroidal case for /? = 0. The poloida] case where V x a = B has been treated
previously (Montgomery et al. 1979); in that case, a particular analytical solution
for a has already been found and the profile for a is given by (12) with (j> replaced
by a.

4.3. Model of an electromagnetic filamentation instability

We now consider a pseudo-three-dimensional model proposed recently (Mont-
gomery & Liu 1980) describing the nonlinear evolution of an electromagnetic
filamentation instability which is a variety of the Weibel instability (Weibel
1959); approximated energy spectra for the homogeneous situation have been
computed; nevertheless, statistical stationary inhomogeneous states have not
been investigated in a configuration space formulation of the problem even
approximately. The principle of maximum entropy provides such a treatment.
Let us start with the equation governing the evolution of the two-beam density,
potentials and velocities given by (Montgomery & Liu 1980):

= 0, (27a)

V<j>-v£VA), (276)

A0 = -4:ne(2no-n+-n_) = p, (27 c)

AA = (ine/c) (n+v++n_v^) = y, (27d)
where v± = v^ + esvf.

Notice that the velocities of the two beams in the z direction have been given
as vf = ±u + eA/mc; the superscript ± means velocity component in the (x,y)
plane perpendicular to the z axis and 2w0 is the constant charge density of a
neutralizing homogeneous background. All quantities vary only in the (x, y)
directions. Since the conservation of momentum in the z direction has been taken
into account, the only constant of motion which comes into play here is the
energy:

j j (n+ v2
+ + n_vl) + ^

It should be noticed that the equation for <f> is linear in the densities unlike that
for A. In fact,

u& 4tireu. . 4ne2A . „ . /fto.
()+ ( + -2»o). (28)=T5

fill/
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104 R. Calinon and D. Merlini

where w2. = 8nnle/m; if eA/mc <^ u (which is the condition tha t the fractional
slowing down of the electron streams shall be small) then the nonlinear term may
be neglected, (28) becomes linear and the problem is a more tractable one. Then

We look at approximated states having the factorization property

Part of an entropy functional may be given explicitly in terms of the basic
independent variables n+, n_ (which form their definition are non-negative) and
<v2/> as

F = - (d2x{n+lnn+ + n_lnn_)- (d2x(f{(y2
+

±))+f((\2J-))-ae1.

f((v)^-) remains unspecified. Then with

<j> = dzx Gt(x, x') (n+ + n_) and A = d%x G2(x, x') (n+ - n_)

where Gv G2 are respectively the Green's function associated with (27c) and
(27 d) with y2 = 0, variational calculus may be performed for n±, yielding 8F = 0
if

n± = exp [a(±m((\2J-) + tfi)-<j>± (u/c) A)] (29)

(V±X) remains unspecified but, since we look at a stationary state, the equation
<(v^.V)v^> = (e/m)(V<f>-v£VA) should be satisfied so that (v2^) may be
computed. Here we restrict the analysis to the case where cubic terms in the
expression for et may be neglected, i.e.

v^) + v?)

writing Sn± = n± — n0.

Then the equations for 0 and A (in appropriate units where n0 = 1) are simplified
further:

A0 = ine U cosh (a- A\ *-* - 2\, (30)

2 / \
AA-^A = 4ne-'2 sinh (a- A\ e~*+. (31)

c2 c \ c /

Equations (30) and (31) are to be solved with appropriate boundary conditions
and a is to be determined, by requiring that the total energy has a given value ev

The above equations may possess a rich variety of solutions depending on the
values of ev and numerical computations are in progress. To conclude this work,
we shall treat in detail a one-dimensional model without neglecting cubic terms.
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Two-dimensional magnetofluids 105

5. One-diftiensional model
We shall treat the one-dimensional owe-fluid model described by the equations

t | (32a)

y x + vyx= -E = Vj>, A<f> = p . (326, c)

For the sake of simplicity we will assume only one species of charges (p(x) > 0);
this has the advantage that an analytical solution may be given. The constants
of motion are here the total energy e = \\dx(pv2 + E2) and the total charge
N = jdxp(x). (Strictly speaking e = e1 + e2, where ex and e2 are both constants
of motion; e^^ is the energy for the mode k = 0, e2 that of the modes k 4= 0 in a
Fourier space formulation of the problem; we will nevertheless consider here
only a temperature a associated with e and /? associated with N.) p(x) and v(x)
are the two independent fields. Notice that E contains cubic terms like pv2,
which are usually neglected in a Fourier space formulation for similar models
(Fyfe & Montgomery 1978). Here we will not discard cubic terms, but look at
states such that (v(x)) = cx (cx constant), (v2(x)) is not constant and such that
(pv2) = <jo) (v2). Using the condition of stationary states such that

(\v2) = (</>) + c2

(equation (326), c2 constant), we may eliminate the velocity field and consider
a functional for p(x) alone:

F = - \dxp(x)\np(x) + \a I dx{-<j>p + 2p(fi + c2)) + fi \dxp(x).

Variational calculus gives then the equation

A0 = exp (/? + ac2 + a<j>) (33)

which still possesses an analytical solution; in fact p(x) is a static 'soliton'
given by

p(x) = -- ( i : V _ — l _ - (34)
a\Lj cosh2 (kx/L)

since <fi(x) = (2/a) In [cosh k/co&h (kx/L)] is the solution of (33) with <j>( ± L) = 0,
and V = 2L is the volume of the domain. Moreover

(35)

Notice that a may be positive (k pure imaginary) or negative (k real). The two
additional relations which allow us to fix a, /? and k are given by

f tanh k
N = dxp(x) = exp (p + ac2) cosh2 Jb —7— F, (36)

J v *
hM 1 .„_.

) - . (37)
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Eliminating a and /?, k is finally given by

e N* I 1 1
c» — — = — I -iV 8po\tanh.2/fc ktsmhkj

where/>„ = iV/F. Equation (38) possesses real or pure imaginary solutions for k,
depending on the values of the parameters c2, N and e. We will discuss the
particular case where the potential energy is equal to the kinetic energy; in this
case c2N = fe. Since (%v2) = (</>) + c2 should be non-negative, the additional
inequality which k has to satisfy is given by

c2 + {2fa) In [cosh &/cosh (kx/L)] ^ 0, V|as| < L.

Introducing e' = e 4po/iV
3, one then has to solve the equation

g' (39)
tanh2& kt&nhk

with the constraint

£ ^ 3 fctanh/fc • ( 4 0 )

From the numerical solution, if k is real, e'(k) is monotonic increasing in the
range k < 0-2; if k = ik is pure imaginary, e'(£) is monotonic decreasing in the
same domain, k < 0-2 and inequality (40) is fulfilled in the same range for k
either real or pure imaginary. e'(&-s-O) = e'(Jc->0} = £; e'(k = 0-2) ~ 1-2 and
e'(k = 0-2) ~ 006. Thus, for a given e' > 0, such that 0-06 < e' < 1-2, there is a
unique solution for a, /?, k, k. The density profiles are given by

k 1
P{X) =

p{x]'=p^k^km- (42)

In the first case (k < 0 and a < 0), the density is peaked at the origin while if
k > 0 and a > 0 the density is greater at the boundary. As k, k-> 0, e' = £ and
p(x) = />„.

6. Conclusion
A method has been followed for selecting approximate inhomogeneous time-

asymptotic statistics of general two-dimensional magnetofluids, whose states
have maximum entropy and are associated with the law of conservation of some
global constants of the motion. The statistical profiles for the fields have been
found to be the solution of a rich class of nonlinear generalized Poisson equations,
which are simple in structure but which will in general require a numerical
solution, and they are similar to mean field equations in the statistical mechanics
of point particles. Some limiting cases have been discussed analytically and in all
cases it has been shown that a qualitative change in the structure of the profiles
in a finite container arises as some parameters, related to the constants of the
motion, exceed certain critical values. Work is in progress on the numerical
solution of some of the non-trivial nonlinear equations which appeared in this
work.
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