2-NILPOTENT AND RIGID FINITE DIMENSIONAL ALGEBRAS

CLAUDE CIBILS

1. Introduction

Let k be a field and let Λ be a finite dimensional k-algebra. We suppose that Λ is Morita reduced and that the endomorphism ring of each simple Λ -module is k. This is equivalent to $\Lambda/r = k \times ... \times k$, where r is the Jacobson radical of Λ .

Let Q be the Gabriel quiver of Λ which is defined as follows: the set Q_0 of vertices is in one-to-one correspondence with the set of isomorphism classes of simple Λ -modules. If a simple Λ -module is denoted by S, we denote by S the corresponding vertex. The number of arrows from S to S is the S-dimension of $\operatorname{Ext}_{\Lambda}^1(S,T)$. The set S of arrows of the quiver is the disjoint union of the set S of loops and the set S of oriented edges.

Let kQ be the quiver algebra. By an observation of Gabriel [4; 5, 4.3] we have an algebra surjection $kQ \to \Lambda$ whose kernel I is admissible, that is, one has $F^n \subset I \subset F^2$, where F is the two sided ideal of kQ generated by the arrows, and n is some positive integer.

In this way each finite dimensional k-algebra Λ such that $\Lambda/r = k \times ... \times k$ is isomorphic to kQ/I with I admissible. The radical r of kQ/I is F/I.

By definition the algebra Λ is 2-nilpotent if $r^2 = 0$. In the previous description this is equivalent to $I = F^2$.

Let $H^*(\Lambda, X)$ denote the Hochschild cohomology groups of Λ with coefficients in the Λ -bimodule X (see [2] for a definition).

In this note we give a description of the algebras $\Lambda = kQ/F^2$ such that $H^2(\Lambda, \Lambda) = 0$. Supposing Q is connected, the precise conditions are that Q does not contain loops nor unoriented triangles

and Q is not the quiver • \longrightarrow •.

Let us recall that for hereditary algebras, $H^2(kQ, X) = 0$ for all quivers Q without oriented cycles and all kQ-bimodules X, see [6, 3].

If k is algebraically closed, the orbit of a k-algebra Λ of dimension n under the natural action of GL_n is open (in the scheme sense) if and only if $H^2(\Lambda, \Lambda) = 0$ and the algebraic group Λ ut Λ of automorphisms of Λ is smooth. When the characteristic is zero, the orbit of Λ is open if and only if $H^2(\Lambda, \Lambda) = 0$, because then the algebraic groups are smooth (see [6]).

In [7] Gerstenhaber shows that if $H^2(\Lambda, \Lambda) = 0$, then Λ is rigid, that is, each

one-parameter family of deformations of Λ is trivial. We shall prove directly that the given conditions on Q imply that $\Lambda = kQ/F^2$ is rigid. I thank the referee for suggesting this proof, which is shorter than the original one.

The converse of the result is proved using the fact that a connecting homomorphism in a long exact sequence of cohomology groups is a cup product with a fixed element.

In [3] we gave sufficient conditions on the quiver Q and the ideal I of a finite dimensional algebra Λ for $H^2(\Lambda, \Lambda)$ to be zero. However these conditions are not necessary as this note shows; see the remark at the end.

Finally we remark that it is not hard to show that

$$\dim_k H^1(\Lambda, \Lambda) = \begin{cases} \sum_{s, t \in Q_0} |tQ_1 s|^2 - |Q_0| + 1 & \text{if char } k \neq 2, \\ \\ \sum_{s, t \in Q_0} |tQ_1 s|^2 - |Q_0| + 1 + |B| & \text{if char } k = 2. \end{cases}$$

One uses the fact that $H^1(\Lambda, \Lambda)$ is the vector space of derivations of Λ modulo the interior derivations.

2. The theorem

Throughout this note k is an arbitrary field, Q is a finite connected quiver and F is the two sided ideal of kQ generated by the arrows of Q.

PROPOSITION. Let $\Lambda = kQ/F^2$. If $H^2(\Lambda, \Lambda) = 0$ then Q does not contain loops nor subquivers of the type

called 'unoriented triangles', and Q is not the quiver •-----

Proof. Let K = k((x)) be the quotient power series field of k[[x]], the power series ring in one variable.

If Q contains a loop b, consider the two sided ideal I of KQ generated by b^2-xb and by all the paths of length two except b^2 . The algebra $\Lambda_x = KQ/I$ is a non-trivial one-parameter family of deformations of $\Lambda = kQ/F^2$, as defined in [7]. In fact Λ_x is a K-algebra isomorphic to KQ'/F^2 , where Q' is obtained from Q by deleting the loop b and taking the disjoint union with a vertex. This algebra is clearly not isomorphic to KQ/F^2 , and so $H^2(\Lambda, \Lambda) \neq 0$ using the result of [7] quoted in the introduction.

If Q contains an unoriented triangle

let I be generated by ba-xc and by all the paths of length two except ba. Again $\Lambda_x = KQ/I$ is a non-trivial one-parameter family of deformations of $\Lambda = kQ/F^2$. The K-algebra Λ_x is isomorphic to KQ'/R, where Q' is obtained from Q by deleting the arrow c and R is generated by all the paths of length two except ba.

If
$$Q = s \cdot \frac{a}{b} \cdot t,$$

let I be the two sided ideal of KQ generated by ba-xs and ab-xt, and let Λ_x be KQ/I. In fact Λ_x is isomorphic to the algebra of 2×2 matrices over K. Notice that we cannot

extend this deformation for $Q = \bullet \longrightarrow \bullet$ and $\Lambda = kQ/F^2$. In fact we shall see that $H^2(\Lambda, \Lambda) = 0$ in this case.

The following lemma computes the dimension of $H^2(\Lambda, r)$ without the assumption that $H^2(\Lambda, \Lambda) = 0$ (but still for a 2-nilpotent algebra).

LEMMA 1. Let $\Lambda = kQ/F^2$. Then

$$\dim_k H^2(\Lambda, r) = \sum_{s, t \in Q_0} \sum_{u \in Q_0} |tQ_1 s| |tQ_1 u| |uQ_1 s|.$$

Proof. Let $\gamma \in Q_1$, and denote by s and t its source and end vertices. The one dimensional vector space $k\gamma$ is a simple Λ -bimodule in the following way: $e\gamma = \delta_{e,\,t}\gamma$ and $\gamma e = \delta_{e,\,s}\gamma$ for all e in the k-basis $Q_0 \cup Q_1$ of Λ .

We see that $r = \bigoplus_{\gamma \in Q_1} k\gamma$ is a direct decomposition of the semisimple Λ -bimodule r, and so

 $H^2(\Lambda, r) = \bigoplus_{\gamma \in Q_1} H^2(\Lambda, k\gamma).$

Each of the simple Λ -bimodules $k\gamma$ is isomorphic to $\operatorname{Hom}_k(S, T)$, where S and T are the simple left Λ -modules corresponding to the vertices s and t. We obtain

$$H^{2}(\Lambda, r) = \bigoplus_{\gamma \in Q_{1}} H^{2}(\Lambda, \operatorname{Hom}_{k}(S, T)).$$

We then use the following result [2, p. 179]. If M and N are left Λ -modules, the Hochschild cohomology of the Λ -bimodule $\operatorname{Hom}_k(M,N)$ can be obtained using the functor Ext over Λ :

$$H^*(\Lambda, \operatorname{Hom}_{k}(M, N)) = \operatorname{Ext}^*_{\Lambda}(M, N).$$

Then $H^2(\Lambda, r) = \bigoplus_{\gamma \in Q_1} \operatorname{Ext}^2_{\Lambda}(S, T)$.

The dimension of this vector space has been computed by K. Bongartz in [1, p. 463] using a particular projective resolution. In our case the ideal of relations is F^2 and so we obtain

$$\dim_k \operatorname{Ext}_{\Lambda}^2(S, T) = \dim_k t(F^2/F^3) s$$
= number of paths of length two from s to t
$$= \sum_{u \in Q_2} |tQ_1 u| |uQ_1 s|.$$

The number of $\operatorname{Ext}^2_{\Lambda}(S,T)$ direct summands in $H^2(\Lambda,r)$ is $|tQ_1s|$, and the formula is proved.

Using this lemma we can prove the converse of the proposition and obtain the following.

THEOREM. Let $\Lambda = kQ/F^2$, where Q is connected. Then $H^2(\Lambda, \Lambda) = 0$ if and only if Q does not contain loops, or unoriented triangles and Q is not the quiver • \longrightarrow •.

Proof. If Q is a quiver without loops and unoriented triangles, then Lemma 1 gives us that $H^2(\Lambda, r) = 0$. The long exact sequence of cohomology associated to

$$0 \longrightarrow r \longrightarrow \Lambda \longrightarrow \Lambda/r \longrightarrow 0$$

gives

$$0 \longrightarrow H^2(\Lambda, \Lambda) \longrightarrow H^2(\Lambda, \Lambda/r) \xrightarrow{\delta} H^3(\Lambda, r) \longrightarrow \dots$$

CLAIM. For the quivers as in the theorem, the connecting homomorphism δ is injective; thus $H^2(\Lambda, \Lambda) = 0$. If Q is $\bullet \longrightarrow \bullet$ then $1 = \dim_k \operatorname{Ker} \delta = \dim_k H^2(\Lambda, \Lambda)$.

The rest of this note is devoted to the proof of the claim. We shall need a description of $H^2(\Lambda, \Lambda/r)$, $H^3(\Lambda, r)$ and of the homomorphism δ . The following lemma will give a description of δ using cup products. We choose to give it in a more general setting than just for 2-nilpotent algebras.

Let $\Lambda = kQ/I$, where I is an admissible ideal. Let r = F/I be the radical of Λ , and let n be the nilpotence index of Λ , that is, $r^n = 0$ and $r^{n-1} \neq 0$.

The product in Λ gives bimodule homomorphisms

$$r/r^2 \underset{\wedge}{\otimes} r^{n-2}/r^{n-1} \xrightarrow{} r^{n-1}, \qquad r^{n-2}/r^{n-1} \underset{\wedge}{\otimes} r/r^2 \xrightarrow{} r^{n-1},$$

which give cup products

$$H^{i}(\Lambda, r/r^{2}) \otimes H^{i}(\Lambda, r^{n-2}/r^{n-1}) \longrightarrow H^{i+1}(\Lambda, r^{n-1}),$$

 $H^{i}(\Lambda, r^{n-2}/r^{n-1}) \otimes H^{i}(\Lambda, r/r^{2}) \longrightarrow H^{i+1}(\Lambda, r^{n-1}),$

both denoted by U.

A set P of oriented paths of Q can be chosen such that P is a basis of Λ , and such that the subset P^i of oriented paths of length greater than or equal to i is a basis of r^i . The set Q_1 of arrows is always in P, and is a basis of r/r^2 .

To each arrow a we can associate an element $f_a \in H^1(\Lambda, r/r^2)$ defined by $f_a(a) = a$ and $f_a(e) = 0$ for all $e \in P$, $e \neq a$. It is easily checked that f_a is a non-interior derivation. Let us call $\mathcal S$ the element $\sum_{a \in O} f_a \in H^1(\Lambda, r/r^2)$.

LEMMA 2. Let $\Lambda = kQ/I$, where I is an admissible ideal of kQ. Consider the exact sequence $0 \longrightarrow r^{n-1} \longrightarrow r^{n-2} \longrightarrow r^{n-2}/r^{n-1} \longrightarrow 0$

and

$$\delta \colon H^{2i}(\Lambda, r^{n-2}/r^{n-1}) \longrightarrow H^{3i+1}(\Lambda, r^{n-1})$$

the connecting homomorphism.

Then
$$\delta(f) = \mathcal{S} \cup f + (-1)^{i+1} f \cup \mathcal{S}$$
.

Proof. Since P^{n-1} is a k-basis of r^{n-1} and P^{n-2} of r^{n-2} , it follows that $P_{n-2} = P^{n-2} \setminus P^{n-1}$ is a k-basis of r^{n-2}/r^{n-1} . We choose the k-section σ of the exact sequence corresponding to these bases, that is, $\sigma(\gamma) = \gamma$ if $\gamma \in P_{n-2}$.

In fact r^{n-2}/r^{n-1} is a semisimple Λ -bimodule and $\bigoplus_{\gamma \in P_{n-2}} k\gamma$ is its decomposition. Thus, let $f: \Lambda^{\otimes i} \to k\gamma$ be an *i*-cocycle. This means that for all x_1, \ldots, x_{i+1} in P we have

$$\sum_{j=1}^{i} (-1)^{j} f(x_{1} \otimes \ldots \otimes x_{j} x_{j+1} \otimes \ldots \otimes x_{i+1})$$

$$= -[x_{1} f(x_{2} \otimes \ldots \otimes x_{i}) + (-1)^{i+1} f(x_{1} \otimes \ldots \otimes x_{i}) x_{i+1}]. \quad (*)$$

We know that $\delta(f) = d(\delta f)$, where d is the Hochschild coboundary from $\operatorname{Hom}_k(\Lambda^{\otimes i}, r^{n-2})$ to $\operatorname{Hom}_k(\Lambda^{\otimes i+1}, r^{n-2})$. In fact $d(\sigma f) \in \operatorname{Hom}_k(\Lambda^{\otimes i+1}, r^{n-1})$ and so we consider its cohomology class to obtain $\delta(f)$. Then we have

$$d(\gamma f)(x_1 \otimes \ldots \otimes x_{i+1}) = x_1(\sigma f)(x_2 \otimes \ldots \otimes x_i)$$

$$+ \sum_{j=1}^{i} (-1)^j (\sigma f)(x_1 \otimes \ldots \otimes x_j x_{j+1} \otimes \ldots \otimes x_{i+1})$$

$$+ (-1)^{i+1} (\sigma f)(x_1 \otimes \ldots \otimes x_i) x_{i+1}.$$

Applying σ to the relation (*) and substituting in the expression of $d(\sigma f)$, we obtain

$$d(\sigma f)(x_1 \otimes \ldots \otimes x_{i+1}) = x_1 \sigma(f(x_2 \otimes \ldots \otimes x_{i+1})) - \sigma(x_1 f(x_2 \otimes \ldots \otimes x_{i+1}))$$
$$+ (-1)^{i+1} [\sigma(f(x_1 \otimes \ldots \otimes x_i)) x_{i+1} - \sigma(f(x_1 \otimes \ldots \otimes x_i) x_{i+1})]$$

for all x_1, \ldots, x_{i+1} in P.

Notice that the second and fourth terms of this sum are often zero: indeed, f takes values in the simple Λ -bimodule $k\gamma$. But γ is an oriented path of length n-2 from, say s to t. Hence the only basis element with a non-zero action from the right is s, and from the left is t.

The first and third terms can only be non-zero if x_1 is an arrow or the vertex t and x_{i+1} is an arrow or the vertex s. Recall that $r^n = 0$, thus if x_1 (or x_{i+1}) is of length greater than two then $x_1 \gamma = 0$ (or $\gamma x_{i+1} = 0$), because the length of γ is n-2.

If $x_1 = t$, the value of the first term is equal to the value of the second term. If $x_{t+1} = s$, the second is equal to the fourth.

With these facts in mind, we can conclude the following:

$$d(\sigma f)(x_1 \otimes \ldots \otimes x_{i+1}) = 0$$

if both x_1 and x_{i+1} are not arrows,

$$= x_1 \sigma(f(x_2 \otimes \ldots \otimes x_{i+1})) + (-1)^{i+1} \sigma(f(x_1 \otimes \ldots \otimes x_i)) x_{i+1}$$

if both x_1 and x_{i+1} are arrows,

$$=x_1\,\sigma(f(x_2\otimes\ldots\otimes x_{i+1}))$$

if x_1 is an arrow but not x_{i+1} ,

$$= (-1)^{i+1}\sigma(f(x_1 \otimes \ldots \otimes x_1)) x_{i+1}$$

if x_{i+1} is an arrow but not x_1 .

This description of δf on the basis elements of $\Lambda^{\otimes i+1}$ coincides with the description of $\mathcal{S} \cup f + (-1)^{i+1} f \cup \mathcal{S}$, directly as cochains. In fact,

$$(\mathcal{S} \cup f)(x_1 \otimes \ldots \otimes x_{i+1}) = \sum_{a \in Q_1} f_a(x_1)(\sigma f)(x_2 \otimes \ldots \otimes x_{i+1})$$

$$= \begin{cases} x_1(\sigma f)(x_2 \otimes \ldots \otimes x_{i+1}) & \text{if } x_1 \text{ is an arrow,} \\ 0 & \text{otherwise.} \end{cases}$$

(Recall that $f_a(a) = a$ and $f_a(e) = 0$ for all $e \in P$, $e \neq a$.)

We return now to the case of 2-nilpotent algebras, and give a description of $H^2(\Lambda, \Lambda/r)$ and $H^3(\Lambda, r)$. We assume that the quiver Q does not contain loops or unoriented triangles. We could give a description without these assumptions, but it is simpler to work with them.

Let E be the set of oriented paths of length two with same source and end vertex. More precisely $E = \coprod_{s, t \in Q_0} (sAt) \times (tAs)$, since Q has no loops.

For each arrow a from s to t, let L_a be the set of length-three oriented paths from s to t, and $L = \coprod_{a \in A} L_a$.

We consider the vector spaces kE and kL with bases E and L. Define a linear map $D: kE \to kL$ in the following way: for each $(b, a) \in (sAt) \times (tAs) \subset E$,

$$D(b,a) = \sum_{x \in As} (xba)_x - \sum_{y \in sA} (bay)_y,$$

where the index arrow means that $(xba)_x \in L_x$; if there is a parallel arrow x' to x (same source, same end) we have to make a distinction between elements of L_x and $L_{x'}$.

The D we have just defined is the right model for δ , as we see in the following.

LEMMA 3. There is an isomorphism between $H^2(\Lambda, \Lambda/r)$ and kE, and between $H^3(\Lambda, r)$ and kL such that the diagram

$$H^{2}(\Lambda, \Lambda/r) \xrightarrow{\delta} H^{3}(\Lambda, r)$$

$$\downarrow \qquad \qquad \downarrow$$

$$kE \xrightarrow{D} kL$$

commutes.

Proof. Since $\Lambda/r = \bigoplus_{s \in Q_0} ks$ as bimodules, $H^2(\Lambda, \Lambda/r) = \bigoplus_{s \in Q_0} H^2(\Lambda, ks)$. Let $(b, a) \in (sAt) \times (tAs)$, and consider $f_{(b, a)} : \Lambda \otimes \Lambda \to ks$ defined by

$$f_{(b,a)}(b\otimes a)=s$$

and $f_{(b,a)}$ gives zero when evaluated in any other tensor product of two basis vectors of Λ . These linear maps are easily checked to be 2-cocycles and they are linearly independent modulo coboundaries: if g: $\Lambda \rightarrow ks$ is a linear map, then

$$(dg)(b \otimes a) = bg(a) - g(ba) + g(b) a = 0$$

because each term in the sum is zero (ks is a semisimple bimodule and $ba \in r^2 = 0$);

thus if $\sum \lambda_{ba} f_{(b,a)} = dg$, we obtain $\lambda_{ba} = 0$ for each $(b,a) \in sAt \times tAs$. Moreover, the set $\{f_{(b,a)}\}_{(b,a) \in E}$ is a basis of $H^2(\Lambda, ks)$ because its cardinality is the dimension of $H^2(\Lambda, ks)$. Indeed,

$$H^2(\Lambda, ks) = H^2(\Lambda, \operatorname{Hom}_k(S, S)) = \operatorname{Ext}^2_{\Lambda}(S, S);$$

the dimension of $\operatorname{Ext}^s_{\Lambda}(S,S)$ is the number of paths of length two from s to s by Bongartz's result [1, p. 463].

Thus the left vertical isomorphism is obtained by sending $f_{(b,a)}$ to (b,a).

To obtain the one on the right consider $r = \bigoplus_{a \in A} ka$ as a bimodule. Hence $H^3(\Lambda, r) = \bigoplus_{\alpha \in A} H^3(\Lambda, k\alpha).$

Let $(c_3 c_2 c_1)_a \in L_a$ be a path of length three from the source s of a to its end t. Define $f^a_{c_3 c_2 c_1} : \Lambda^{\otimes 3} \to ka$ by $f^a_{c_3 c_2 c_1} (c_3 \otimes c_2 \otimes c_1) = a$ and to be zero evaluated in any other tensor product of three basis elements of Λ . These linear maps are 3-cocycles, and linearly independent modulo coboundaries: if $g: \Lambda \otimes \Lambda \to ka$ is a linear map,

$$dg(c_3 \otimes c_2 \otimes c_1) = c_3 g(c_2 \otimes c_1) - g(c_3 c_2 \otimes c_1) + g(c_3 \otimes c_2 c_1) - g(c_3 \otimes c_2) c_1$$

= 0,

again because ka is a semisimple bimodule and $r^2 = 0$. Thus if a k-linear combination of the $f_{c_3 c_2 c_1}^a$ is equal to a coboundary, then all the coefficients are zero.

The $f_{c_3 c_2 c_1}^a$ are in the right number to be a basis of $H^3(\Lambda, ka)$, because

$$\dim_k H^3(\Lambda, ka) = \dim_k \operatorname{Ext}^3_{\Lambda}(S, T) = \dim_k t(F^3/F^4) s$$

(the last equality is derived from [1, p. 462, last line] with n = 1, J = F, $I = F^2$). But $\dim_k t(F^3/F^4)$ s is the number of length-three oriented paths from s to t, which is $|L_a|$.

The isomorphism between $H^3(\Lambda, r)$ and kL is obtained sending $f_{c_3 c_2 c_1}^a$ to $(c_3 c_2 c_1)_a$.

By composing these isomorphisms and δ , and using the description of δ in terms of cup products, we get exactly the defined D. We need only check that

$$f_x \cup f_{(b,a)} = f_{xba}^x$$

which is already true at the level of cochains.

We can now return to the claim which proves the theorem. Namely $D: kE \to kL$ is injective when Q is connected, does not contain loops or unoriented triangles, and Q is not the quiver • \longrightarrow •.

Suppose that $\dot{\Sigma}_{(b,a)\in E} \lambda_{(b,a)} D(b,a) = 0$. Recall that

$$D(b,a) = \sum_{x \in As} (xba)_x - \sum_{y \in sA} (bay)_y$$

if $(b, a) \in sAt \times tAs$.

The central remark is the following: for each (b, a) there exist $x \in As$, $x \neq a$ (or $y \in sA$, $y \neq b$). Indeed, Q is not the quiver • and Q is connected. Thus $(xba)_x$ (or $(bay)_y$) is a component of D(b, a), but not a component of any other D(d, c): if it were, then $(xba)_x = (zdc)_z$ or $(xba)_x = (dcz)_z$ for some arrow z. The first equality is impossible since we suppose that $(b, a) \neq (d, c)$. The second would imply that x = z = a, and so x = a, which is a contradiction. The argument is the same if $(bay)_y$ is a component of D(b, a).

Using this remark we see that replacing each D(b, a) by its value in the linear dependence relation, we get a linear combination of the basis L, such that for each $(b, a) \in E$ there exists x (or y) with the coefficient of $(xba)_x$ (or $(bay)_y$) equal to $\lambda_{(b, a)}$. Hence $\lambda_{(b, a)} = 0$ and D is injective.

In contrast with this, the matrix of D for $Q = \bullet \Longrightarrow \bullet is$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix},$$

and so $\dim_k H^2(kQ/F^2, kQ/F^2) = 1$ in this case.

We conclude this note with a remark.

In [3] we gave sufficient conditions on a basic and connected finite dimensional algebra Λ for the vanishing of $H^2(\Lambda, \Lambda)$. Let Q be a connected quiver, let I be an admissible ideal of kQ, and let $\Lambda = kQ/I$. If for all couples of vertices (s, t) such that $t\Lambda s \neq 0$ we have tIs = t(FI + IF)s then $H^2(\Lambda, \Lambda) = 0$.

These conditions are not necessary: when

$$Q = \bullet \longrightarrow \bullet$$
, $I = F^2$, and $\Lambda = kQ/F^2$,

we have $s\Lambda s \neq 0$, and $sF^2s \neq sF^3s$. At the same time we know from this note that $H^2(\Lambda, \Lambda) = 0$.

But if Q has no oriented cycles and $I = F^2$, the conditions of [3] are equivalent to the fact that Q does not contain unoriented triangles. From the above theorem we know that this is necessary and sufficient for $H^2(kQ/F^2, kQ/F^2)$ to be zero, when Q has no oriented cycles.

References

- 1. K. Bongartz, 'Algebras and quadratic forms', J. London Math. Soc. (2) 28 (1983) 461-469.
- 2. H. CARTAN and S. EILENBERG, Homological algebra (University Press, Princeton, 1956).
- 3. C. Cibils, 'Cohomologie de Hochschild d'algebres de dimension finie', Comm. Algebra to appear.
- 4. P. Gabriel, 'Indecomposable representations II', Symposia Matematica 2 (Istituto Nazionale di alta Matematica, Roma, 1973) 81-104.
- P. Gabriel, 'Auslander-Reiten sequences and representation finite algebras', Representation theory I, proceedings, 1979, Lecture Notes in Mathematics 831 (Springer, Berlin, 1980) 1-71.
- P. Gabriel, 'Finite representation type is open', Representations of algebras, Ottawa 1974, Lecture Notes in Mathematics 488 (Springer, Berlin, 1975) 132-155.
- 7. M. GERSTENHABER, 'On the deformations of rings and algebras', Ann. of Math. 79 (1964) 59-103.

Section de Mathématiques Université de Genève C.P. 240 CH-1211 Genève 24 Switzerland Ecole Normale Supérieure Equipe des groupes finis 1 rue Maurice Arnoux F-92140 Montrouge France