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We prove the Bounded Height Conjecture formulated by Bombieri, Masser, and Zannier:

given an irreducible closed subvariety X ⊂ Gn
m, and after replacing X by a natural and

Zariski open subset; the set of its points contained in the union of all algebraic sub-

groups of codimension at least dim X has bounded absolute Weil height. We proceed

to show some finiteness results related to conjectures stated by Zilber and Pink, if the

codimension of the subgroups is at least 1 + dim X.

1 Introduction

Let G = Gn
m be the algebraic torus and let X ⊂ G be an irreducible closed subvariety

defined over Q, an algebraic closure of Q. In connection with the study of unlikely inter-

sections of subvarieties of G with algebraic subgroups, Bombieri, Masser, and Zannier

[4] stated the so-called Bounded Height Conjecture: the set of points in a natural and

Zariski open subset of X contained in the union of all algebraic subgroups of codimen-

sion at least dim X has bounded height. The height involved is the absolute logarithmic

Weil height (see Section 2). The natural subset is defined later.

The purpose of this paper is to prove the Bounded Height Conjecture for subva-

rieties of arbitrary dimension.
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Let s be an integer, we set

G [s] =
⋃

codim H≥s

H (Q)

where the union runs over all algebraic subgroups H ⊂ G of codimension at least s.

The Bounded Height Conjecture is related to conjectures stated independently by

Zilber [21] and Pink [16] in the more general context of semiabelian varieties and mixed

Shimura varieties, respectively. In the language of algebraic tori, these authors expect

the following conjecture (in fact, it can be formulated more generally for varieties defined

over C, the field of complex numbers).

Conjecture 1.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q, which is

not contained in a proper algebraic subgroup of Gn
m. Then X(Q) ∩ G [1+dim X] is not Zariski

dense in X. �

In order to introduce the aforementioned natural Zariski open subset of X, we

assume for the moment that our variety is defined over C. For a possibly reducible variety

Y containing a point p, we let dimp Y denote the largest dimension of an irreducible com-

ponent of Y passing through p. For an integer s, we define Xoa,[s] to be X(C) deprived of all

p ∈ X(C) such that dimp X ∩ pH ≥ max{1, s + dim H − n + 1} for some algebraic subgroup

H ⊂ G. This definition is interesting only when s ≥ dim X, otherwise, we immediately see

Xoa,[s] = ∅, if X has a positive dimension (consider H = G). Bombieri, Masser, and Zannier

[4] proved that Xoa = Xoa,[dimX ] is Zariski open in X (but possibly empty) and even showed

a structure theorem. They then generalized their results in Lemma 5 [6] and showed that

Xoa,[s] is Zariski open in X. It also follows from their work that if X is defined over Q,

then so is the complement of Xoa,[s]; in this situation we will usually identify Xoa,[s] with

Xoa,[s] ∩ X(Q).

In the abelian case, related sets were defined and studied by Rémond [17]. His

description of Z (s+1)
X,an translates without difficulty to the toric setting and in fact we have

Xoa,[s] = X\Z (s+1)
X,an .

Our main result gives a height bound not only for points on varieties contained

in certain algebraic subgroups, but also for points near such subgroups with respect to

the absolute logarithmic Weil height h. If S is any subset of G(Q) and ε ≥ 0, we define the

truncated cone around S as

C(S, ε) = {p ∈ G(Q); p = ab with a ∈ S and b ∈ G(Q) where h(b) ≤ ε(1 + h(a))}.

We note that a torsion point of G(Q) has height zero, therefore C(S, ε) always contains S.
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Theorem 1.2. Let G = Gn
m, let X ⊂ G be an irreducible closed subvariety defined over Q,

and let s be an integer. There exists an ε > 0 such that the height is bounded from above

on Xoa,[s] ∩ C(G [s], ε). �

If we take s = dim X, the theorem above implies the following statement, which

was conjectured in [4].

Corollary 1.3 Bounded Height Conjecture. Let G = Gn
m and let X ⊂ G be an irre-

ducible closed subvariety defined over Q. Then the height is bounded from above on

Xoa ∩ G [dim X]. �

The codimension of the involved subgroups is best possible, i.e., it is minimal as

a function of dim X, as soon as Xoa 	= ∅. In this case the codimension cannot be reduced

even after replacing Xoa by any nonempty Zariski open subset of X (see Proposition 1

[13]).

Certain instances of this conjecture already exist in the literature. For example,

Bombieri, Masser, and Zannier handled the case of curves [3] and planes [5]. The case of

hypersurfaces, i.e., subvarieties of G of codimension 1, was resolved by Bombieri and

Zannier [20] even before the case of curves.

In Theorem 1 [13], the author derived an effective and explicit height bound for

Xoa ∩ G [s] under the stronger hypothesis s > n − n/ dim X. This result only implies the

corollary above if X is a curve or hypersurface.

The proof of Theorem 1.2 relies on a theorem of Ax (see Section 7) and intersection

theory; thus, it differs from the approach in [13]. Intersection theory forces us to work

in compactifications of Gn
m which will depend on a fixed morphism Gn

m → Gr
m. On the

other hand, we have at our disposal Siu’s theorem, which guarantees the existence of a

nonzero global section of a certain line bundle under a numerical criterion on intersection

numbers. The lack of a suitable theorem of the cube for algebraic tori is compensated

by a multiprojective version of Bézout’s theorem due to Philippon. Further ingredients

include elementary results from diophantine approximation, geometry of numbers, and

a simple compactness argument (see Lemma 6.3). The latter renders the proof ineffective

from a formal point of view, but for the moment we are only interested in the existence of

a height upper bound. Nevertheless, an effective version of Theorem 1.2 using different

methods should not be ruled out and is a possible subject of future work.

We note that the abelian analog to Theorem 1.2 also holds and is demonstrated in

another paper [12]. Of course, the difficulty concerning compactifications of the ambient
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algebraic group disappears. On the other hand, algebraic subgroups become more diffi-

cult to describe; it is the fact that an abelian variety may not have an algebraic subgroup

of any possible dimension which causes most problems.

In the presence of height bounds, it has been known since the work of Bombieri,

Masser, and Zannier [3] on curves that Lehmer-type height lower bounds, together with

algebraic number theory, can lead to finiteness results on the intersection of subvarieties

of G with G [s]. In the meantime, a semirelative Lehmer-type height lower bound has been

proved by Amoroso and David [1]. This lower bound leads to a simplification in finiteness

proofs for curves and facilitates them for arbitrary varieties. As a result of Theorem 1.2

and Bombieri, Masser, and Zannier (see Theorem 8.3 in Section 8), we obtain the following

corollary.

Corollary 1.4. Let G = Gn
m and let X ⊂ G be an irreducible closed subvariety defined

over Q, then Xoa ∩ G [1+dim X] is finite. �

Even though 1 + dim X cannot be replaced by anything smaller in this corollary,

the set Xoa is possibly not optimal. It was conjectured by Bombieri, Masser, and Zannier

(torsion finiteness conjecture [4]) that finiteness holds in Corollary 1.4 when working over

C and with Xoa replaced by the possibly larger Xta. We will not define this subset of X(C)

here; it is also conjectured [4] to be Zariski open in X. The connection between these two

conjectures and the ones by Zilber and Pink for the algebraic torus described further up

has been discussed by Bombieri, Masser, and Zannier [6].

The next corollary shows that Conjecture 1.1 holds for sufficiently generic sub-

varieties of Gn
m.

Corollary 1.5. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q with coor-

dinate functions x1, . . . , xn considered as elements of the function field of X. Suppose that

for all (dim X)-tuples of Z-linearly independent vectors (ui1, . . . , uin) ∈ Zn, the functions

xui1
1 · · · xuin

n (1 ≤ i ≤ dim X) (1)

are algebraically independent over Q. Then Conjecture 1.1 holds for X. �

This paper is structured as follows. Heights and notation are introduced in Sec-

tion 2. In Section 3, we construct a suitable compactification of Gn
m with respect to a

fixed morphism Gn
m → Gr

m. Diophantine approximation is applied in Section 4 to derive

an upper bound for a height, which we proceed to bound from below in Section 5 using
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Siu’s theorem. In Section 6, we count periods of Gn
m using geometry of numbers in order

to apply Ax’s theorem in Section 7; this enables us to refine the lower bound from Sec-

tion 5. Finally, the proof of Theorem 1.2 is completed in Section 8 where we also prove

Corollaries 1.4 and 1.5.

2 Notation and Heights

Let r and n be integers with 1 ≤ r ≤ n. We may identify the group of homomor-

phisms of algebraic groups Gn
m → Gr

m with Matrn(Z), the group of r × n matrices in

integer coefficients. Given p = (p1, . . . , pn) with nonzero coordinates in some field and

u = (u1, . . . , un) ∈ Zn, we set pu = pu1
1 · · · pun

n .

We let |·| denote the euclidean or hermitian norm on Matrn(R) or Matrn(C), respec-

tively.

We continue by defining the absolute logarithmic Weil height, or height for short,

on algebraic points of n-dimensional projective space Pn. For any place v of a number

field K, we let Kv denote the completion of K with respect to v. If p = [p0 : · · · : pn] ∈ Pn(Q)

with pi ∈ K for all i we define the projective height of p as

h(p) = 1

[K : Q]

∑
v

[Kv : Qv] log max{|p0|v, . . . , |pn|v},

where the sum runs over all places of K normalized such that they restrict to the usual

complex, respectively p-adic absolute values on Q. Hence, the product formula holds and

our height is independent of the choice of projective coordinates of p in K. Furthermore,

it is well known that h(p) is independent of the choice of a number field K containing the

pi. Therefore, the height is defined on Pn(Q); it is also nonnegative since we can choose

one projective coordinate of p to be 1. Details are contained in Sections 1.4 and 1.5 [7].

There is an open immersion Gn
m → Pn which sends a point (p1, . . . , pn) to

[1 : p1 : · · · : pn]. By abuse of notation we define the height h(p) of p ∈ Gn
m(Q) as the height

of the image of p with respect to this immersion. From the local nature of our definition

of the height, we derive max{h(p1), . . . , h(pn)} ≤ h(p) ≤ h(p1) + · · · + h(pn).

Our height interacts nicely with the group structure on Gn
m(Q). Indeed, if

p, q ∈ Gn
m(Q) then h(pq) ≤ h(p) + h(q). Moreover, if k is a nonnegative integer then the

height is homogeneous in the sense that h(pk) = kh(p). If k is any integer, then a conse-

quence of the product formula is h(pk) ≤ n|k|h(p) and if n = 1, then h(pk) = |k|h(p).
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For the rest of this section all varieties are assumed to be defined over Q. We

will also need the notion of a height hX,L associated to a line bundle L on an irreducible

projective variety X (see Theorem 2.3.8 [7]). The association L �→ hX,L satisfies certain

useful functional properties in connection with the Picard group of X, the group of

isomorphism classes of line bundles on X. In fact, we will usually identify a line bundle

with its isomorphism class. Actually, hX,L is not an honest function X(Q) → R, but an

equivalence class of such where two are called equivalent if their difference is bounded

on X(Q). Since it is not the purpose of this paper to obtain explicit height bounds, we fix

once and for all a representative of each class and denote it with hX,L. The association

L �→ hX,L still satisfies functional properties, but only up to a bounded term. Explicitly,

let M be a second line bundle on X, then the two functions hX,L⊗M and hX,L + hX,M differ

by a bounded function on X(Q). Furthermore, if Y is another irreducible projective variety

and f : Y → X is a morphism, then hY, f∗L and hX,L ◦ f differ by a bounded function. If

we assume that L has a nonzero global section, then there exists a Zariski open and

nonempty U ⊂ X such that hX,L is bounded from below on U (Q). Finally, the height

is gauged in the following way: let O(1) be the dual of the tautological line bundle

on Pn, then hPn,O(1) and the absolute logarithmic Weil height h differ by a bounded

function.

3 Compactifying Gn
m

This section provides a compactification of Gn
m, which is compatible with a fixed ho-

momorphism of algebraic groups ϕ : Gn
m → Gr

m where 1 ≤ r ≤ n. The notation and the

properties described below are used throughout the paper.

We set

�(ϕ) ⊂ Gn
m × Gr

m

to be the graph of ϕ. The product of the open immersions Gn
m → Pn and Gr

m → Pr de-

scribed in Section 2 gives an open immersion Gn
m × Gr

m → Pn × Pr. We will consider

Gn
m × Gr

m as contained in Pn × Pr with respect to this immersion. We let �(ϕ) be the

Zariski closure in Pn × Pr of �(ϕ), it is clearly an irreducible projective variety and we

have �(ϕ) ∩ (Gn
m × Gr

m) = �(ϕ). We also define b as the composition of Gn
m → �(ϕ) given by

p �→ (p, ϕ(p)) with the inclusion �(ϕ) → �(ϕ). Let π1,2 be the projections from Pn × Pr to Pn

and Pr, respectively, and let π = π1|�(ϕ) and ϕ = π2|�(ϕ), these are both proper morphisms.
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We have the following commutative diagram:

Pn π←−−−− �(ϕ)
ϕ−−−−→ Pr

∥∥∥ b

�⏐⏐ �⏐⏐
Pn ←−−−− Gn

m −−−−→
ϕ

Gr
m

Now let X ⊂ Gn
m be an irreducible closed subvariety of dimension r defined over

C. It will be useful to denote X the Zariski closure of X in Pn with respect to the open

immersion Gn
m → Pn, then (X × Pr) ∩ (Gn

m × Gr
m) = X × Gr

m. Let X
ϕ

be the Zariski closure of

b(X) in �(ϕ) ⊂ Pn × Pr. Then X
ϕ

is an irreducible projective variety, and so π |X
ϕ and ϕ|X

ϕ

are proper morphisms. We have the following commutative diagram:

X
π |Xϕ←−−−− X

ϕ ϕ|Xϕ−−−−→ Pr

∥∥∥ b|X

�⏐⏐
�⏐⏐

X ←−−−− X −−−−→
ϕ|X

Gr
m

(2)

For an irreducible variety Y and an irreducible closed subvariety Z ⊂ Y, we let

[Z ] denote the equivalence class of cycles on Y rationally equivalent to Z . Furthermore,

c1(L) is the first Chern class of a line bundle L on Y (see Chapters 1 and 2 [10]).

Let Y and Z be any irreducible varieties and f : Y → Z be a proper morphism. If f

is dominant, then the function field of Z is via f naturally a subfield of the function field

of Z . If dim Y = dim Z the degree of f , denoted by deg( f ), is the degree of this (finite) field

extension. If dim Y > dim Z we set deg( f ) = 0. If f is not dominant we also set deg( f ) = 0.

We define

�X(ϕ) = deg(ϕ|X
ϕ ),

so �X is nonnegative. We will often abbreviate �X with �.

We collect some facts on � in the next lemma.

Lemma 3.1. The function �X satisfies the following properties:

(i) We have �X(ϕ) = (c1(ϕ∗O(1))r[X
ϕ
]).

(ii) There exists U ⊂ Gr
m Zariski open and nonempty such that the fiber of ϕ|X :

X → Gr
m above any point of U has cardinality equal to �X(ϕ).
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(iii) There exists a function Matrn(Q) → [0, ∞) which extends �X and which

we also denote with �X such that �X(λϕ) = |λ|r�X(ϕ) for all λ ∈ Q and

ϕ ∈ Matrn(Q). �

Proof. For dominant ϕ|X
ϕ the projection formula (see Chapter 2 [10]) implies

�(ϕ) = deg(ϕ|X
ϕ ) = deg(ϕ|X

ϕ )(c1(O(1))r[Pr]) = (c1(ϕ∗O(1))r[X
ϕ
]),

equality also holds if ϕ|X
ϕ is not dominant since then both sides vanish. Part (i) of the

lemma follows.

Generically, the two morphisms ϕ|X : X → Gr
m and ϕ|X

ϕ : X
ϕ → Pr have fibers of

equal cardinality because the second and third vertical morphisms in (2) are birational.

To show part (ii), we may assume that ϕ|X is dominant, and hence has generically finite

fibers. After restricting domain and target of ϕ|X to suitable Zariski open nonempty

subsets, we obtain a finite and hence proper morphism whose fiber above any point of a

Zariski open and nonempty subset of Gn
m is equal to the corresponding fiber of ϕ|X. Since

this restriction of ϕ|X is proper, it makes sense to speak of its degree which equals �(ϕ).

As we are in characteristic zero, the restriction is unramified above a Zariski open dense

subset of the target. The fibers above points of this set have cardinality �(ϕ).

The morphism that takes a point of Gr
m to its λ-th power has fibers of cardinality

exactly |λ|r if λ 	= 0. This and the second claim of the lemma imply that �(λϕ) = |λ|r�(ϕ)

for all λ ∈ Z and ϕ ∈ Matrn(Z). Part (iii) now follows easily. �

It is natural to hope to extend � to a continuous function Matrn(R) → [0, ∞).

Some parts of the proof of Theorem 1.2 would simplify if this were possible. Moreover,

a precise knowledge of � may even render the application of Ax’s theorem in Section 7

obsolete. But, in this paper we are content with � being defined only on Matrn(Q).

We proceed by bounding from above a certain intersection number related to

the one showing up in Lemma 3.1. Our main tool is a Bézout theorem for a product of

projective spaces due to Philippon. For us, it suffices to consider the product of two

projective spaces. For an irreducible closed subvariety V ⊂ Pn × Pr, we set

H (V ; d, e) = (dim V )!
∑

i1+i2=dim V

(c1(π∗
1O(1))i1c1(π∗

2O(1))i2 [V ])
di1ei2

i1!i2!
, (3)
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here the sum runs over integers i1, i2 with 0 ≤ i1 ≤ n, 0 ≤ i2 ≤ r. Then H (V ; d, e), when

considered as polynomial in d and e, is a multiple of the highest degree homogeneous

part of the Hilbert polynomial of V .

Theorem 3.2 (Philippon). Let V be an irreducible subvariety of Pn × Pr and let F be a

set of bihomogeneous polynomials of bidegree bounded by (d, e). Then

∑
Z

H (Z ; d, e) ≤ H (V ; d, e), (4)

where the sum runs over all irreducible components Z of the intersection of V with the

set of common zeros of all polynomials in F . �

Proof. The bound (4) is a consequence of the first statement of Proposition 3.3 [15] where

we take I0 to be the ideal of V . �

We let deg(X) denote the degree of X ⊂ Pn with respect to O(1), i.e., deg(X) =
(c1(O(1))r[X]).

Lemma 3.3. In the above notation, we have

(c1(π∗O(1))c1(ϕ∗O(1))r−1[X
ϕ
]) ≤ C1|ϕ|r−1

with C1 = (4n)rdeg(X). �

Proof. This is an application of Philippon’s theorem; we take F to be the set of poly-

nomials f1, . . . , fr defined in the following manner: say ϕ has rows u1, . . . , ur ∈ Zn with

ui = (ui1, . . . , uin) for 1 ≤ i ≤ r. We set

δi = max

⎧⎨
⎩

n∑
j=1

max{0, uij},
n∑

j=1

max{0, −uij}
⎫⎬
⎭

and

fi = Y0 Xδi
0

n∏
j=1

X
− max{0,uij}
0 X

max{0,uij}
i − Yi X

δi
0

n∏
j=1

X
− max{0,−uij}
0 X

max{0,−uij}
i
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for each 1 ≤ i ≤ r, here X0, . . . , Xn are the homogeneous coordinates of Pn and Y0, . . . , Yr

are the homogeneous coordinates of Pr. The δi are chosen such that each fi is a bihomo-

geneous polynomial of bidegree (δi, 1). Say d = max{δ1, . . . , δr} and e = 1, so (d, e) bounds

the bidegree of each fi.

Let Y denote the set of common zeros of all fi in Pn × Pr. It follows from the

definition of Y that Y ∩ (Gn
m × Gr

m) = �(ϕ) = �(ϕ) ∩ (Gn
m × Gr

m). So (X × Pr) ∩ Y and (X × Pr) ∩
�(ϕ) coincide on the Zariski open set Gn

m × Gr
m ⊂ Pn × Pr and equal (X × Gr

m) ∩ �(ϕ) = b(X)

there. Hence X
ϕ

is an irreducible component of (X × Pr) ∩ Y. We conclude that H (X
ϕ
; d, e)

is a term in the right-hand side of (4) when V = X × Pr.

It is well known that the coefficients of the homogeneous Hilbert polynomial

defined in (3) are nonnegative; in particular H (Z ; d, e) ≥ 0 for admissible Z . By Theorem

3.2 we get H (X
ϕ
; d, e) ≤ H (X × Pr; d, e) and even

r(c1(π∗O(1))c1(ϕ∗O(1))r−1[X
ϕ
])der−1 ≤ H (X × Pr; d, e), (5)

where the left-hand side is the term of H (X
ϕ
; d, e) corresponding to i1 = 1 and i2 = r − 1.

We proceed by evaluating the right-hand side of (5). By definition

H (X × Pr; d, e) = (2r)!
∑

i1+i2=2r

(c1(π∗
1O(1))i1c1(π∗

2O(1))i2 [X × Pr])
di1ei2

i1!i2!
, (6)

where the sum runs over all integers i1, i2 with 0 ≤ i1 ≤ n and 0 ≤ i2 ≤r. Commutativity

and the projection formula give

(c1(π∗
1O(1))i1c1(π∗

2O(1))i2 [X × Pr]) = (c1(O(1))i2π2∗(c1(π∗
1O(1))i1 [X × Pr])).

If i1 > dim X = r, then c1(π∗
1O(1))i1 [X × Pr] is the class of cycles on Pn × Pr linearly equiv-

alent to zero. Hence, the intersection number above vanishes. We conclude that all terms

on the right in (6) except possibly the one corresponding to i1 = i2 = r are 0, and so

H (X × Pr; d, e) = (2r)!

(r!)2
(c1(π∗

1O(1))rc1(π∗
2O(1))r[X × Pr])(de)r.
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The intersection number on the right depends only on X. Finally, we can evaluate it using

the projection formula,

(c1(π∗
1O(1))rc1(π∗

2O(1))r[X × Pr]) = (c1(O(1))rπ1∗(c1(π∗
2O(1))r[X × Pr]))

= (c1(O(1))r[X])

= deg(X).

Hence,

H (X × Pr; d, e) = (2r)!

(r!)2
deg(X)(de)r ≤ 4rdeg(X)(de)r.

This inequality together with (5) gives

(c1(π∗O(1))c1(ϕ∗O(1))r−1[X
ϕ
]) ≤ 4rdeg(X)dr−1e.

We conclude the proof because e = 1, and since δi ≤ √
n|ϕ| and so d ≤ √

n|ϕ|. �

4 Auxiliary Morphism and Height Upper Bound

We use a simple result from diophantine approximation to obtain a height upper bound

in Lemma 4.4.

Let s and n be integers with 1 ≤ s ≤ n.

Lemma 4.1. Let Q > 1 be a real number and let ϕ0 ∈ Matsn(R), there exist q ∈ Z and

ϕ ∈ Matsn(Z) such that

1 ≤ q ≤ Q and |qϕ0 − ϕ| ≤
√

sn

Q1/(sn)
. �

Proof. Let ϕ′
i j (1 ≤ i ≤ s, 1 ≤ j ≤ n) be the coefficients of ϕ0. By Theorem 6 ([8], p. 13),

there exist integers q, ϕi j with 1 ≤ q ≤ Q and |qϕ′
i j − ϕi j| < Q−1/(sn) for all 1 ≤ i ≤ s and

1 ≤ j ≤ n. The lemma follows on taking ϕ to be the matrix with coefficients ϕi j. �
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We define Ksn ⊂ Matsn(R) to be the compact set of all matrices whose rows are

orthonormal. All elements of Ksn have rank s.

Lemma 4.2. Say W ⊂ Matsn(R) is an open neighborhood of Ksn. There is Q0 ≥ 1 (which

may depend on W) with the following property. Let Q > Q0 be a real number and let

ϕ0 ∈ Matsn(R) with rank s, there exist q ∈ Z, ϕ ∈ Matsn(Z), and θ ∈ Mats(Q) such that

1 ≤ q ≤ Q,
ϕ

q
∈ W, |qθϕ0 − ϕ| ≤

√
sn

Q1/(sn)
, and |ϕ| ≤ (s + 1)q. (7)

�

Proof. Since Ksn is compact, there exists ε > 0 with the following property: if ϕ′ ∈ Ksn

and ϕ′′ ∈ Matsn(R) with |ϕ′ − ϕ′′| < ε then ϕ′′ ∈ W. We may clearly assume ε ≤ 1. We choose

Q0 such that
√

snQ−1/(sn)
0 = ε/2, so Q0 ≥ 1.

Let ϕ0 be as in the hypothesis. The R-vector space generated by the rows of ϕ0 has

dimension s and admits an orthonormal basis. In other words, there exists an invertible

θ0 ∈ Mats(R) such that θ0ϕ0 ∈ Ksn.

Since Mats(Q) ⊂ Mats(R) lies dense we may find θ ∈ Mats(Q) with

|θϕ0 − θ0ϕ0| <
ε

2
. (8)

Now say Q > Q0. By Lemma 4.1, we approximate θϕ0 to get an integer q with

1 ≤ q ≤ Q and ϕ ∈ Matsn(Z) such that

|qθϕ0 − ϕ| ≤
√

sn

Q1/(sn)
.

In particular, the first three inequalities in (7) hold. Furthermore,

∣∣∣∣θϕ0 − ϕ

q

∣∣∣∣ ≤
√

sn

Q1/(sn)q
<

√
sn

Q1/(sn)
0 q

= ε

2q
. (9)

This inequality and (8) as well as the triangle inequality and q ≥ 1 imply |θ0ϕ0 − ϕ/q| < ε.

So ϕ/q ∈ W since θ0ϕ0 ∈ Ksn.

To prove the last assertion in (7), we apply the triangle inequality to (8) and obtain

|θϕ0| < |θ0ϕ0| + ε/2. The rows of θ0ϕ0 ∈ Ksn have norm 1, hence |θ0ϕ0| = √
s, and so

|θϕ0| <
√

s + ε

2
≤ s + 1

2
. (10)
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The triangle inequality applied to (9) gives |ϕ| ≤ q|θϕ0| + ε/2 ≤ q|θϕ0| + 1/2. We conclude

|ϕ| ≤ (s + 1)q from (10) and q ≥ 1. �

We continue with an easy lemma which gives an upper bound for h(ϕ(p)) if ϕ :

Gn
m → Gs

m is a homomorphism of algebraic groups and p ∈ Gn
m(Q). We recall that ϕ is

identified with an element from Matsn(Z).

Lemma 4.3. Let ϕ : Gn
m → Gs

m and p ∈ Gn
m(Q), then

h(ϕ(p)) ≤ √
sn|ϕ|h(p). �

Proof. We assume that ϕ has rows ui = (ui1, . . . , uin) ∈ Zn and that p = (p1, . . . , pn), then

by the elementary height properties described in Section 2, we deduce

h(ϕ(p)) = h(pu1 , . . . , pus ) ≤ h(pu1 ) + · · · + h(pus ) ≤
∑
i, j

|uij|h(pj) ≤
⎛
⎝∑

i, j

|uij|
⎞
⎠ h(p).

The lemma follows from the Cauchy–Schwarz inequality. �

Next we apply Lemma 4.3 to Lemma 4.2.

Lemma 4.4. Say W ⊂ Matsn(R) is an open neighborhood of Ksn. Let Q0 be the constant

from Lemma 4.2 and let Q > Q0 be a real number. If p ∈ (Gn
m)[s] there exist q ∈ Z and

ϕ ∈ Matsn(Z) such that

1 ≤ q ≤ Q,
ϕ

q
∈ W, h(ϕ(p)) ≤ sn

Q1/(sn)
h(p), and |ϕ| ≤ (s + 1)q. (11)

�

Proof. Let p ∈ (Gn
m)[s], then by Proposition 3.2.7 and Corollary 3.2.15 [7] there is a ho-

momorphism of algebraic groups ϕ0 : Gn
m → Gs

m with rank s and ϕ0(p) = 1. We apply

Lemma 4.2 to ϕ0, and hence obtain q, ϕ, and θ . Accordingly, it suffices to prove the height

upper bound in (11).

For brevity, we write δ = ϕ − qθϕ0. This matrix has small norm,

|δ| ≤
√

sn

Q1/(sn)
, (12)
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by (7). Since θ has rational coefficients, there is a positive integer N with Nθ ∈ Matsn(Z).

Then also Nδ ∈ Matsn(Z) and so

(Nδ)(p) = ϕ(pN )(q(Nθ )ϕ0)(p)−1 = ϕ(pN ) = ϕ(p)N

because ϕ0(p) = 1. Taking heights and using homogeneity, we get

Nh(ϕ(p)) = h(ϕ(p)N ) = h((Nδ)(p)).

Lemma 4.3 allows us bound

h(ϕ(p)) = N−1h((Nδ)(p)) ≤ √
snN−1|Nδ|h(p) = √

sn|δ|h(p).

We get the height inequality in (11) from (12). �

5 Height Lower Bound

The main tool used to obtain a height lower bound, which rivals the upper bound derived

in Lemma 4.4, is based on a theorem of Siu. This result gives a numerical criterion to

decide when the difference of two line bundles has a nonzero global section after possibly

taking a large power.

A line bundleL on an irreducible projective variety is called numerically effective,

or nef for short, if (c1(L)[C ]) ≥ 0 for all irreducible closed curves C in the said variety. For

example, ample line bundles are nef, nonnegative powers of nef line bundles are nef, and

by the projection formula pullbacks of nef line bundles are nef.

Theorem 5.1 (Siu). Let X be an irreducible projective variety of dimension r ≥ 1 defined

over C. Say L and M are nef line bundles on X. If

(c1(L)r[X]) > r(c1(L)r−1c1(M)[X]),

there exists a positive integer k such that
(
L ⊗ M⊗(−1)

)⊗k
has a nonzero global

section. �

Proof. See Theorem 2.2.15, page 143 [14]. �
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For the rest of this section, all varieties are defined over Q. Let X be an irreducible

closed subvariety of Gn
m of dimension r ≥ 1.

Proposition 5.2. Let C1 be the constant from Lemma 3.3. Say ϕ : Gn
m → Gr

m is a homo-

morphism of algebraic groups with ϕ 	= 0. There exist a Zariski open and dense U ⊂ X

and a constant C7 such that

h(ϕ(p)) ≥ r

2C1
|ϕ|�X(ϕ)

|ϕ|r h(p) − C7 (13)

for all p ∈ U (Q). �

Proof. This proposition is an application of Siu’s theorem and functional properties of

heights associated with line bundles. We use the notation introduced in Section 3.

Since the left-hand side of (13) is nonnegative, we may assume �(ϕ) > 0. Let α

and β be positive integers such that

1

2

r�(ϕ)

C1|ϕ|r−1
≤ β

α
<

r�(ϕ)

C1|ϕ|r−1
. (14)

By Lemma 3.3, we estimate

(c1(ϕ∗O(1)⊗α)
r−1

c1(π∗O(1)⊗β )[X
ϕ
]) = αr−1β(c1(ϕ∗O(1))r−1c1(π∗O(1))[X

ϕ
])

≤ C1α
r−1β|ϕ|r−1.

We have

αr−1β = αr β

α
< αr r�(ϕ)

C1|ϕ|r−1

by the second inequality in (14). Therefore,

(c1(ϕ∗O(1)⊗α)
r−1

c1(π∗O(1)⊗β )[X
ϕ
]) < rαr�(ϕ).

Using Lemma 3.1(i), we can verify the hypothesis on intersection numbers in Siu’s

theorem,

(c1(ϕ∗O(1)⊗α)
r−1

c1(π∗O(1)⊗β )[X
ϕ
]) < rαr(c1(ϕ∗O(1))r[X

ϕ
]) = r(c1(ϕ∗O(1)⊗α)

r
[X

ϕ
]).
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As mentioned in the beginning of this section, the line bundles ϕ|∗
X

ϕO(1)⊗α and π |∗
X

ϕO(1)⊗β

are both nef. So Siu’s theorem provides a positive integer k such that

(
ϕ|∗

X
ϕO(1)⊗α ⊗ π |∗

X
ϕO(1)⊗(−β))⊗k

has a nonzero global section.

By the properties of heights associated with line bundles discussed in Section 2,

there exists U ′ ⊂ X
ϕ

Zariski open and dense such that if p ∈ U ′(Q), then

− C2 ≤ hX
ϕ
,(ϕ|∗

XϕO(1)⊗α⊗π |∗
XϕO(1)⊗(−β))⊗k (p)

≤ khX
ϕ
,ϕ|∗

XϕO(1)⊗α (p) − khX
ϕ
,π |∗

XϕO(1)⊗β (p) + C3

≤ kαhPr ,O(1)(ϕ(p)) − kβhPn,O(1)(π (p)) + C4, (15)

here and in the following C2, . . . , C7 denote constants which are independent of p. Now

hPr ,O(1) and hPn,O(1) differ from the absolute logarithmic Weil height on Pr(Q) and Pn(Q),

respectively, by a bounded function. By canceling k in (15), we obtain −C5 ≤ αh(ϕ(p)) −
βh(π (p)) + C6 on all of U ′(Q). Let U = b|−1

X (U ′), then U is Zariski open and dense in X and

if p ∈ U (Q) we have

h(ϕ(p)) = h(ϕ(b(p))) ≥ β

α
h(π (b(p))) − C7 = β

α
h(p) − C7

on taking (2) into account. The proof follows on using the first inequality in (14). �

While C7 in this last lemma may depend on ϕ, it is essential that the dependency

on ϕ of the factor in front of h(p) is completely explicit and well behaved. Later we will

see lower bounds for this factor, which are uniform in ϕ if Xoa 	= ∅.

6 Counting Periods

In this section, we use geometry of numbers to count periods of Gn
m contained in an

expanding open subset of Cn. All varieties are defined over C. Let X ⊂ Gn
m be an irreducible

closed subvariety of dimension r ≥ 1. For the remainder of this section, any reference to

a topology, for example, on Gn
m(C) or X(C), will mean the usual complex topology, if not

stated otherwise.
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The following lemma, which is applied here and in the next section, is classical.

We give a proof for lack of reference.

Lemma 6.1. Let Z1, Z2, . . . be countably many Zariski closed subsets of X. If Z1(C) ∪
Z2(C) ∪ · · · contains a nonempty open subset of X(C), there exists i with X = Zi. �

Proof. By the Baire category theorem, we may reduce to the case where the set of

complex points of one Z = Z1 contains a nonempty open subset U . Say p ∈ U , the di-

mensions of the complex analytic spaces X(C), U , and Z (C) at p coincide. By GAGA, we

obtain dimp X = dimp Z for the corresponding varieties. But X with the Zariski topology

is irreducible, hence X = Z . �

Let exp : Cn → Gn
m(C) denote the n-fold product of the usual exponential map. It

is a locally biholomorphic map between two complex manifolds and as such open.

For the remainder of this section we assume that 1, the unit element of Gn
m, is a

nonsingular point of X. Now some open neighborhood U ⊂ X(C) of 1 is an r-dimensional

complex manifold. After replacing U by a smaller open subset, we may assume that there

is a complex manifold M ⊂ Cn of dimension r containing 0 such that

exp |M : M → U

is biholomorphic.

We consider ϕ ∈ Matrn(C) as a linear map Cn → Cr. Its restriction ϕ|M is a holo-

morphic map between two r-dimensional complex manifolds. In particular, for each

z ∈ M we have a C-linear differential map

dz(ϕ|M) : TzM → Tϕ(z)Cr = Cr

between the respective tangent spaces.

The next lemma is based on the following simple result from geometry of num-

bers. If � ⊂ Cn is a discrete subgroup of rank ρ and B ⊂ Cn is an open neighborhood of

0, there exists a constant C > 0, which depends on B and �, such that

|� ∩ λB| ≥ Cλρ for all λ ≥ 0. (16)
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Lemma 6.2. Let ϕ0 ∈ Matrn(C) such that dz0 (ϕ0|M) is an isomorphism of C-vector spaces

for some z0 ∈ M. There exist C8 > 0 and an open neighborhood W ⊂ Matrn(R) of ϕ0 such

that

�X(ϕ) ≥ C8

for all ϕ ∈ W ∩ Matrn(Q). �

Proof. Consider the holomorphic map

� : Matrn(C) × M → Matrn(C) × Cr,

(ϕ, z) �→ (ϕ, ϕ(z)).

Its differential map at (ϕ0, z0) is an isomorphism by hypothesis. By the inverse function

theorem, � is locally biholomorphic at (ϕ0, z0). In particular, there exist neighborhoods

W and V of ϕ0 and ϕ0(z0), respectively, such that �(Matrn(C) × M) ⊃ W × V . So

for ϕ ∈ W and y ∈ V there is z ∈ M with ϕ(z) = y. (17)

We may even assume that V equals Bδ(ϕ0(z0)), an open ball in Cr around ϕ0(z0) of radius

δ > 0 with respect to the hermitian norm. Let y ∈ Bδ/2(0), then

V − ϕ0(z0) − y ⊃ Bδ/2(0). (18)

Let � be the kernel of the exponential map Cr → Gr
m(C), it is a discrete subgroup

of rank r. By (16) there exists C8 > 0 such that

|� ∩ λBδ/2(0)| ≥ C8λ
r for all λ ≥ 0.

Therefore, by (18) we have

|� ∩ λ(V − ϕ0(z0) − y)| ≥ C8λ
r. (19)

Let ϕ ∈ W and λ ≥ 0, by (17) we have

λϕ(M) ⊃ λV ,
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and so (19) implies

|� ∩ λ(ϕ(M) − ϕ0(z0) − y)| ≥ C8λ
r.

We note that C8 is independent of λ, ϕ, and y.

We now assume that ϕ has rational coefficients, i.e., ϕ ∈ W ∩ Matrn(Q), and choose

a positive integer λ such that λϕ has integer coefficients; we also fix y ∈ Bδ/2(0). As ob-

served above, there are distinct ω1, . . . , ωN ∈ � with

N ≥ C8λ
r (20)

such that

ωi = λ(ϕ(zi) − ϕ0(z0) − y) (21)

for some zi ∈ M. Here, the ωi and zi may depend on y. If we apply the exponential map to

the equality above, we get 1 = exp(ωi) = exp(λϕ(zi)) exp(λϕ0(z0) + λy)−1, and so

(λϕ)(pi) = exp(λϕ0(z0) + λy)

with pi = exp(zi) ∈ X(C) since the exponential map commutes with λϕ ∈ Matrn(Z).

All pi lie in a common fiber of (λϕ)|X and they are also pairwise distinct: indeed,

since exp |M is injective it suffices to show that the zi are pairwise distinct. Now, if zi = zj,

then ωi = ω j by (21), and so i = j since the ωi are distinct by construction.

We have shown that the fiber

(λϕ)|−1
X (exp(λϕ0(z0) + λy))

has cardinality at least N for any y ∈ Bδ/2(0). Since the exponential map is open

exp(Bδ/2(0)) ⊂ Gr
m(C) is open. Certainly, exp(λϕ0(z0) + λBδ/2(0)) is also open, and thus Zariski

dense by Lemma 6.1 applied to Gr
m. It follows from Lemma 3.1(ii) that �(λϕ) ≥ N. Inequal-

ity (20) implies �(λϕ) ≥ C8λ
r. Since �(λϕ) = λr�(ϕ) by homogeneity, we deduce

�(ϕ) ≥ C8 for all ϕ ∈ W ∩ Matrn(Q).
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We recall that C8 > 0 is independent of ϕ and replace W by W ∩ Matrn(R) to

conclude the proof. �

In order to prove Theorem 1.2, we shall consider morphisms Gn
m → Gs

m for an

integer s with r ≤ s ≤ n. We define �rs to be the finite set of morphisms Gs
m → Gr

m defined

by projecting to r distinct coordinates of Gs
m. As usual, elements of �rs are identified

with elements of Matrs(Z). The next lemma relies on a simple compactness argument.

Lemma 6.3. Let K ⊂ Matsn(R) be compact. One of the following cases holds:

(i) There exists ϕ0 ∈ K such that for all z ∈ M the differential

dz(ϕ0|M) : TzM → Cs

is not injective.

(ii) There exists C9 > 0 and an open neighborhood W ⊂ Matsn(R) of K such that

for each ϕ ∈ W ∩ Matsn(Q) there is π ∈ �rs with �X(πϕ) ≥ C9. �

Proof. We will assume that case (i) does not hold and will show that case (ii) does.

Let ϕ0 ∈ K. There exist π ∈ �rs and z ∈ M such that dz(πϕ0|M) is injective, and

hence an isomorphism of C-vector spaces. By Lemma 6.2, we may find an open neighbor-

hood of πϕ0 in Matrn(R) with the stated properties. It follows that we may find Wϕ0 , an open

neighborhood of ϕ0 in Matsn(R), and Cϕ0 > 0 with �(πϕ) ≥ Cϕ0 for all ϕ ∈ Wϕ0 ∩ Matsn(Q).

The open cover
⋃

ϕ0∈K Wϕ0 contains K. Since K is compact, we may pass to a

finite subcover and conclude that there exist C9 > 0 and an open subset W of Matsn(R)

containing K such that for each ϕ ∈ W ∩ Matsn(Q) there is π ∈ �rs with �(πϕ) ≥ C9. �

7 Applying Ax’s Theorem

In Proposition 7.3, the main result of this section, we apply a theorem of Ax to replace

case (i) in Lemma 6.3 by a condition connected to the set Xoa,[s] defined in the introduction.

All varieties in this section will be defined over C. Let X ⊂ Gn
m be an irreducible

closed subvariety of dimension r ≥ 1. Furthermore, let s be an integer with r ≤ s ≤ n.

Unless stated otherwise, any reference to a topology in this section will mean the complex

topology.

Before proving Proposition 7.3, we need a lemma.
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Lemma 7.1. Let H ⊂ Gn
m be an algebraic subgroup and let k ∈ Z, then

Z (H , k) = {p ∈ X(C); dimp X ∩ pH ≥ k} (22)

is Zariski closed in X. �

Proof. By Corollary 3.2.15 [7], there is an morphism of algebraic groups ϕ : Gn
m → Gn′

m

whose kernel is precisely H . Then we have Z (H , k) = {p ∈ X(C); dimp ϕ|−1
X (ϕ(p)) ≥ k} and

the lemma follows from semicontinuity theorem of Chevalley (second theorem on page

228 [9]). �

The following theorem is a consequence of Ax’s theorem 1 ([2], see also

Corollary 1). Ax’s original result applies to general algebraic groups over C.

Theorem 7.2 (Ax). Let A be a connected analytic subgroup of Gn
m(C), i.e., the image of a

C-vector space under the exponential map. Let K be an irreducible analytic subvariety of

an open subset of Gn
m(C) with 1 ∈ K and K ⊂ A. If V is the Zariski closure of K, there exists

an algebraic subgroup H ⊂ Gn
m containing V with dim H ≤ dim V + dim A− dim K. �

This result is applied in the following proposition.

Proposition 7.3. Let K ⊂ Matsn(R) be compact and such that all its elements have rank s.

One of the following cases holds:

(i) There exists an algebraic subgroup H ⊂ Gn
m such that

dimp X ∩ pH ≥ max{1, s + dim H − n + 1}

for all p ∈ X(C).

(ii) There exists C10 > 0 and an open neighborhood W ⊂ Matsn(R) of K such that

for each ϕ ∈ W ∩ Matsn(Q) there is π ∈ �rs with �X(πϕ) ≥ C10. �

Proof. It follows from Lemma 3.1(ii) that the function � is invariant under translation

of X. Hence, it is no restriction to assume that 1 is a nonsingular point of X as in Section

6. Moreover, we let U and M be as in said section, so M ⊂ Cn and U ⊂ X(C) are complex

manifolds with exp |M : M → U biholomorphic and U is open in X(C) containing 1.



Bounded Height Conjecture 881

If case (ii) of Lemma 6.3 holds, then case (ii) of this lemma holds. Hence, we may

assume that we are in case (i) of Lemma 6.3; we will show that case (i) of this lemma

holds.

Let us assume there exists ϕ0 ∈ K such that for all z ∈ M the differential dz(ϕ0|M)

fails to be injective. We consider ker ϕ0, the kernel of ϕ0, as a C-vector subspace of Cn.

It follows from Corollary 7F, page 314 [19] that after replacing M by a nonempty open

subset, the fiber

ϕ0|−1
M (ϕ0(z)) = (z + ker ϕ0) ∩ M

is a complex submanifold of M with positive dimension for any z ∈ M; we may still as-

sume U = exp(M). By our hypothesis onK we have dim ker ϕ0 = n − s and so the connected

analytic subgroup A = exp(ker ϕ0) ⊂ Gn
m(C) has dimension n − s. Applying the exponential

map, we see that for each p ∈ exp(M) the intersection

A∩ p−1 X(C)

contains a connected complex submanifold Kp of an open subset of Gn
m(C) with dim Kp ≥ 1

and 1 ∈ Kp.

Let Vp ⊂ Gn
m be the Zariski closure of Kp. It is certainly contained in p−1 X and is

irreducible in the Zariski topology by the theorem on page 168 [11]. By Ax’s theorem, Vp

is contained in an algebraic subgroup Hp with dim Hp ≤ dim Vp + dim A− dim Kp. Since

dim Vp ≥ dim Kp ≥ 1 we have dim Vp ≥ max{1, dim Hp + s − n + 1}, and hence

p ∈ Z (Hp, max{1, dim Hp + s − n + 1})

using the notation introduced in (22).

Because the above statement holds for all p ∈ exp(M) = U , we conclude

U ⊂
⋃
H

Z (H , max{1, dim H + s − n + 1}), (23)

where the union is taken over all algebraic subgroups H ⊂ Gn
m. By Lemma 7.1, each set in

the union on the right of (23) is Zariski closed in X. By construction U ⊂ X(C) is open and

nonempty. Finally, Gn
m only has countably many algebraic subgroups, and so the proof

follows from Lemma 6.1. �
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In our application, we will take K to equal Ksn, the set defined in Section 4. We

note that case (i) of this proposition implies Xoa,[s] = ∅.

8 Proof of the Bounded Height Theorem and Corollaries 1.4 and 1.5

All varieties in this section are assumed to be defined over Q. We set G = Gn
m. For the

moment, let X be an irreducible closed subvariety of G of dimension r ≥ 1.

Before proceeding further, we make the following easy observation: say s is an

integer and 0 < ε ≤ 1/(2n) with p ∈ C(G [s], ε), so there is a ∈ G [s] and b ∈ G(Q) with p =
ab and h(b) ≤ ε(1 + h(a)). Then h(a) = h(pb−1) ≤ h(p) + h(b−1) ≤ h(p) + nh(b) ≤ h(p) + (1 +
h(a))/2 by the elementary height properties stated in Section 2. We easily deduce

h(a) ≤ 1 + 2h(p) and h(b) ≤ 2ε(1 + h(p)). (24)

Lemma 8.1. Let Y ⊂ X be an irreducible closed subvariety of positive dimension and let

s be an integer with dim Y ≤ s ≤ n. If Y ∩ Xoa,[s] 	= ∅, there exist ε > 0 and U ⊂ Y which is

Zariski open and dense such that the height is bounded from above on U (Q) ∩ C(G [s], ε). �

Proof. The condition Y ∩ Xoa,[s] 	= ∅ implies that we are in case (ii) of Proposition 7.3

applied to Y and K = Ksn, the latter set was defined in Section 4. Therefore, there exists

an open set W ⊂ Matsn(R) containing Ksn and C10 > 0 such that for each ϕ ∈ W ∩ Matsn(Q)

there is π ∈ �dim Y,s with �Y(πϕ) ≥ C10.

We suppose Q0 is as in Lemma 4.4 and that Q > Q0 is a fixed parameter and

depends only on X and Y. We will see later how to choose Q properly.

Let � denote the set of all matrices ϕ ∈ Matsn(Z) such that there exists an integer

q with 1 ≤ q ≤ Q, ϕ/q ∈ W, and |ϕ| ≤ (s + 1)q (see Lemma 4.4). Clearly, � is a finite set.

For each ϕ ∈ �, there is a π ∈ �dim Y,s such that �Y(ϕ′/q) ≥ C10 where ϕ′ = πϕ. In

particular, ϕ′ 	= 0 since C10 > 0. By homogeneity we have

�Y(ϕ′) = qdim Y�Y(ϕ′/q) ≥ C10qdim Y.

Now ϕ′ 	= 0 implies |ϕ′| ≥ 1 so we obtain the following lower bound for the factor in front

of h(p) in (13):

C11|ϕ′| �Y(ϕ′)
|ϕ′|dim Y

≥ C10C11|ϕ′| qdim Y

|ϕ′|dim Y
≥ C10C11

qdim Y

|ϕ′|dim Y
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with

C11 = dim Y

2(4n)dim Ydeg(Y)
> 0.

Because |ϕ′| ≤ |ϕ| ≤ (s + 1)q we have

C11|ϕ′| �Y(ϕ′)
|ϕ′|dim Y

≥ C10C11

(s + 1)dim Y
.

We denote this last quantity by C12; it is positive and independent of Q and ϕ ∈ �.

We fix

Q = max
{
Q0 + 1,

(
8snC −1

12

)sn}
> Q0 and ε = min

{
1

2n
,

√
sn

s + 1

1

Q1+1/(sn)

}
∈

(
0,

1

2n

]
. (25)

Let Uϕ be the Zariski open and dense subset of Y supplied by Proposition 5.2

applied to ϕ′. The intersection

U =
⋂
ϕ∈�

Uϕ

is Zariski open and dense in Y since � is finite. We deduce that

h(ϕ′(p)) ≥ C12h(p) − C (Q) for all p ∈ U (Q) and all ϕ ∈ �, (26)

here C (Q) depends neither on p nor on ϕ (but possibly on Q).

Now let us assume that p ∈ U (Q) ∩ C(G [s], ε), that is, there are a ∈ G [s] and b ∈ G(Q)

with p = ab and h(b) ≤ ε(1 + h(a)).

By Lemma 4.4, there exists ϕ ∈ � with h(ϕ(a)) ≤ snQ−1/(sn)h(a) and so

h(ϕ(a)) ≤ 2snQ−1/(sn)(1 + h(p)) (27)

by (24).

We apply Lemma 4.3 in order to bound h(ϕ(b)) ≤ √
sn|ϕ|h(b). Now (24) gives

h(ϕ(b)) ≤ 2ε
√

sn|ϕ|(1 + h(p)). But |ϕ| ≤ (s + 1)q ≤ (s + 1)Q, so

h(ϕ(b)) ≤ 2ε
√

sn(s + 1)Q(1 + h(p)). (28)
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Using an elementary height property and (27), (28) gives

h(ϕ(p)) = h(ϕ(ab)) ≤ h(ϕ(a)) + h(ϕ(b))

≤ (2snQ−1/(sn) + 2ε
√

sn(s + 1)Q)(1 + h(p)).

The choice of ε made in (25) implies h(ϕ(p)) ≤ 4snQ−1/(sn)(1 + h(p)) and the choice of Q

gives h(ϕ(p)) ≤ C12(1 + h(p))/2. Furthermore, we have h(ϕ′(p)) ≤ h(ϕ(p)), hence

h(ϕ′(p)) ≤ C12

2
(1 + h(p)). (29)

If we compare (26) and (29), we immediately get the desired h(p) ≤ 1 + 2C −1
12 C (Q).

�

For brevity, we set � = Xoa,[s] ⊂ X(Q). If � 	= ∅, then Lemma 8.1 applied with X = Y

shows that there exists U ⊂ X Zariski open and dense such that U (Q) ∩ G [s] has bounded

height. This is already close to Theorem 1.2, and the following simple argument shows

how to deal with the points in (�\U (Q)) ∩ G [s].

Lemma 8.2. Let s be an integer with r ≤ s ≤ n and say there is a proper subset S � �

and an ε > 0 such that the height is bounded from above on S ∩ C(G [r], ε). There exists a

subset S′ ⊂ � containing S with �\S′ � �\S and an ε′ > 0 such that the height is bounded

from above on S′ ∩ C(G [r], ε′). �

Proof. By assumption �\S is nonempty. Hence, its Zariski closure �\S has an irre-

ducible component Y with Y ∩ � 	= ∅; in particular, �\S = Y ∪ Z with Z Zariski closed

and Y 	⊂ Z . If Y has positive dimension we may apply Lemma 8.1 and find a Zariski open

dense U ⊂ Y and ε′ > 0 such that the height is bounded from above on U (Q) ∩ C(G [s], ε′). If

Y is a point, then the existence of U and ε′ is obvious.

Clearly, we may assume ε′ ≤ ε. We set S′ = S ∪ (U (Q) ∩ �). By hypothesis and

the previous paragraph the height is bounded from above on S′ ∩ C(G [s], ε′). Of course

�\S′ ⊂ (Y\U ) ∪ Z and even �\S′ ⊂ (Y\U ) ∪ Z . So �\S′ = �\S is impossible and the lemma

follows. �

Proof of Theorem 1.2: Let X be as in the hypothesis. We may assume dim X ≥ 1, s ≥ dim X

because otherwise Xoa,[s] = ∅, and finally s ≤ n. We set S0 = ∅ and ε0 = 1. Let k ≥ 1. By

induction we assume Sk−1 is a subset of � and εk−1 > 0 such that Sk−1 ∩ C(G [s], εk−1) has
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bounded height. The theorem follows if Sk−1 equals �, so let us assume Sk−1 � �. In this

case we apply Lemma 8.2 to find a subset Sk ⊂ � containing Sk−1 and an εk > 0 such that

the height is bounded on Sk ∩ C(G [s], εk).

We obtain a chain

X ⊃ �\S0 � �\S1 � · · · � �\Sk.

But X, being a noetherian topological space, satisfies the descending chain condition for

Zariski-closed sets. In our situation, this means Sk = � for some k, the theorem follows

with ε = εk. �

Corollary 1.4 follows immediately from Corollary 1.3 and the following result by

Bombieri, Masser, and Zannier.

Theorem 8.3 (Bombieri, Masser, Zannier, Lemma 8.1 [5]). Let G = Gn
m and let X ⊂ G

be an irreducible closed subvariety defined over Q. If B ∈ R then {p ∈ Xta ∩ G [1+dim X];

h(p) ≤ B} is finite. �

We remark that although we have not stated the definition of Xta, it can be found

in the paper just cited, the above theorem holds with Xta replaced by Xoa since Xoa ⊂ Xta.

Finally, we come to the proof of Corollary 1.5. We know from the work of Bombieri,

Masser, and Zannier (Theorem 1.4(b) [4]) that Xoa is Zariski open in X, so by virtue of

Corollary 1.4 it suffices to show Xoa 	= ∅. But Theorem 1.4(b) even gives a structural

description of Xoa; in particular if this set is empty, it shows that there are monomi-

als as in (1) which, as elements of the function field of X, are algebraically dependent

over Q. �
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