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Numerical solution of boundary integral equations
by means of attenuation factors
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We consider first-kind boundary integral equations with logarithmic kernel such as those
arising from solving Dirichlet problems for the Laplace equation by means of single-layer
potentials. The first-kind equations are transformed into equivalent equations of the second
kind which contain the conjugation operator and which are then solved with a degenerate-
kernel method based on Fourier analysis and attenuation factors. The approximations we
consider, among them spline interpolants, are linear and translation invariant. In view of
the particularly small kernel, the linear systems resulting from the discretization can be
solved directly by fixed-point iteration.
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1. Introduction

Let Γ be a Jordan curve and denote byG the interior ofΓ . Our aim is the numerical
solution of the boundary integral equation with logarithmic kernel

1

2π

∫
Γ

log|z − w|ν(w) dσ(w) = k(z), z ∈ Γ, (1.1)

whereσ is an appropriate measure onΓ . Such an equation arises, for example, when one
seeks the solution of the interior Dirichlet problem

∆U = 0, in G, (1.2)

U = −k, onΓ, (1.3)

as a single-layer potential

U (z) := − 1

2π

∫
Γ

log|z − w|ν(w) dσ(w), z ∈ G.

Indeed, (1.2) is satisfied independently of the choice of the density functionν and, for the
boundary condition (1.3) to be satisfied,ν has to be a solution of equation (1.1). To ensure
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that U (z) is continuous for z → Γ , and that all arising functions can be written as their
Fourier series, we suppose that ν ∈ Lp(Γ ) for some p � 2, and that Γ is a piecewise
regular C1-Jordan curve (Gaier, 1976).

For the theoretical study of (1.1), as well as for some efficient numerical solution
methods, it is useful to split the singular kernel into a singular part independent of the curve
and a regular part. Up until 1975, this splitting was performed in a way that destroyed the
periodicity, namely as

log|z(t) − z(s)| = log|t − s| + log

∣∣∣∣ z(t) − z(s)

t − s

∣∣∣∣
(see Hsiao et al., 1980). Then, Henrici suggested using the kernel for the circle as the
denominator, giving

log|z(t) − z(s)| = log|eit − eis | + log

∣∣∣∣ z(t) − z(s)

eit − eis

∣∣∣∣ (1.4)

(see Henrici, 1979; Reichel, 1984, 1986, independently came up with the same idea),
and used it to analytically solve the equation for the ellipse. In 1975 also, the second
author of the present article (Berrut, 1976) and Reichel independently suggested using
this splitting in the numerical solution of (1.1) with trigonometric polynomials for general
curves (see Henrici, 1986). The method in Berrut (1976) merely uses one-dimensional
FFTs and solves the resulting systems of equations by iteration (see also Berrut, 1986).
Many closely related methods have been suggested since (Hoidn, 1983; Arnold, 1983;
Lamp et al., 1985; Atkinson, 1988). A theoretical study of the method for C∞-curves was
performed in McLean (1986) and McLean et al. (1989).

Starting with Hsiao et al. (1980), the splitting (1.4) was subsequently used by several
authors for the theoretical study of equation (1.1) (see, e.g., (Graham & Yan, 1990; Sloan,
1992, and the literature cited therein, and for example Yan & Sloan, 1988, for polygonal
curves). In Hsiao et al. (1980), the existence of a Fredholm equation of the second
kind derived from (1.1) was first noticed. The kernel and inhomogeneity of this equation
were given in Berrut (1986), where the latter equation was solved with the trigonometric
degenerate-kernel method of Berrut (1976). The advantage of this kernel, as compared
with the Neumann kernel of the double-layer potential (Henrici, 1986), is its smaller size
in many examples, resulting in a faster convergence of the direct application of fixed-point
iteration (see the numerical example in Berrut, 1986).

Other effective methods for solving (1.1) have been presented, among them qualocation
methods (see Chandler & Sloan, 1990; Sloan & Burn, 1992; Sarane & Sloan, 1992, for
smooth curves and Elschner & Graham, 1994, for curves with corners). Another efficient
method for piecewise analytic curves was developed in Hough (1990), where a very
elaborate program package was also given.

The structure of the paper is as follows. After a short reminder in Section 2.1 on the
theoretical analysis of (1.1), the derivation of the equivalent equation of the second kind
mentioned above is outlined in Section 2.2. Since it contains the conjugation operator it
is best solved by Fourier methods. The case where Γ is an open arc instead of a closed
curve is briefly considered in Section 2.3. In Section 3 we present a new degenerate-
kernel Fourier method which makes use of the theory of attenuation factors and covers
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a large class of approximation operators, namely all the linear and translation invariant
ones, like trigonometric and spline interpolation operators. Finally, some convergence and
computational results are given in Sections 4 and 5.

2. The integral equations

Denote by I the interval [0, 2π ] ⊂ R, by I 2 the square [0, 2π ] × [0, 2π ] ⊂ R2 and let
Γ : z = z(t), t ∈ I, be a Jordan curve. If z ∈ C∞, Γ is said to be smooth. Γ is called
a piecewise regular Cr -Jordan curve if there exists a partition of I into a finite number of
subintervals [ti , ti+1], i = 0, . . . , p − 1, with 0 = t0 < t1 < · · · < tp−1 < tp = 2π, such
that the restriction of the parametrization z(t) to each subinterval is r times continuously
differentiable with z′(t) = 0. The points z(ti ), i = 0, . . . , p − 1, are called corners. We
denote by ε(Γ ) the set of nodes corresponding to the corners of Γ . A regular Cr -Jordan
curve is a piecewise regular Cr -Jordan curve without corners.

Using the notation x(t) := ν(z(t))|z′(t)| and f (t) := k(z(t)), equation (1.1) reads

1

2π

2π∫
0

log|z(t) − z(s)|x(s) ds = f (t), t ∈ I (2.1)

or in operator notation
Ax = f. (2.2)

2.1 Decomposition of the operator A and subsequent theoretical results

As explained in the introduction, we shall decompose the logarithmic kernel of the operator
A into the sum of a singular kernel and a bounded one (Berrut, 1986)

log|z(t) − z(s)| = q(t, s) + r(t, s),

where

q(t, s) := log ρ|eit − eis |, r(t, s) := log

∣∣∣∣∣ z(t) − z(s)

ρ
(
eit − eis

) ∣∣∣∣∣
and ρ ∈ R+\{1}. This means that we subtract from the kernel of A the corresponding
kernel for the circle of radius ρ. This decomposition splits the operator A into the sum of
two operators,

A = Q + R,

with Q := (Int q), R := (Int r), where

(Int h)x(t) := 1

2π

2π∫
0

h(t, s)x(s) ds.

(We have borrowed this notation from Halmos & Sunder (1978): it has the advantage of
simply allowing for composite kernels like those appearing in the following sections.) For
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h ∈ L2(I 2), (Int h) is a linear, bounded and compact operator on L2(I ) called a Hilbert–
Schmidt integral operator (H–S operator).

The analysis of the operators Q and R is carried out in 2π -periodic Sobolev
spaces. Let Hm(I ) be the periodic Sobolev space of order m and denote by ‖ · ‖m the
corresponding Sobolev norm. We denote the two-dimensional tensor products of such
spaces by H(m,n)(I 2). In two dimensions we consider also the space Cm

p (I 2) of all m-

times continuously differentiable functions on R2 that are 2π -periodic in both variables.
Then the two-dimensional 2π -periodic Sobolev space Hm(I 2) is defined as the completion
of C∞

p (I 2) := ⋂
j C j

p(I 2) with respect to the Sobolev norm

‖h‖m :=
( +∞∑

k,�=−∞
(1 + k2 + �2)m |ck�(h)|2

)1/2

,

where ck�(h) denotes the (k, �)th two-dimensional Fourier coefficient of h.
By analysing the Fourier series of Qx, which can be given explicitly, one can easily

see that Q is a bounded operator from Hp(I ) to Hp+1(I ) for any p ∈ R (Sloan, 1992). The
inverse operator Q−1 is a bounded operator from Hp+1(I ) to Hp(I ) and can be written in
terms of the differentiation operator D and the conjugation operator K as (Berrut, 1986)

Q−1 : y ∈ Hp+1(I ) → Q−1 y = c0(y)

log ρ
− 2KDy = Jy − 2KDy ∈ Hp(I ), (2.3)

where Jy := c0(y)/log ρ. The conjugation operator K (or Hilbert transform on the circle)
is the linear and bounded operator from L2(I ) into itself which maps

x(t) =
+∞∑

n=−∞
cn(x)eint ∈ L2(I )

to

Kx(t) =
+∞∑

n=−∞
−i sign(n)cn(x)eint , (sign(0) := 0). (2.4)

Let us now look at the operators R and DR and list some existence/uniqueness results. If
Γ is a piecewise analytic C1-curve or a piecewise C2 regular C1-curve, then (Hoidn, 1983)
Dr is bounded in a neighbourhood of (ti , ti ), ti ∈ ε(Γ ), from which it follows that Dr
belongs to L2(I 2) and DR : L2(I ) → L2(I ) is a Hilbert–Schmidt operator, and is therefore
compact. With (2.3) we can then write A as Q + R = Q(I + Q−1R) = Q(I − 2KDR + JR).
Using the fact that A is injective if the logarithmic capacity γ of Γ is different from one
(Yan & Sloan, 1988), it follows with the Fredholm alternative that for each Jordan curve
Γ with γ = 1 and such that Dr ∈ L2(I 2)

A: H0(I ) → H1(I ) is an isomorphism.

If Γ is a polygon or an arbitrary piecewise regular C2-Jordan curve without cusps, then
Dr is not bounded in a neighbourhood of (ti , ti ), ti ∈ ε(Γ ). The first author has shown
(Reifenberg, 1997) that Dr no longer belongs to L2(I 2) (in fact, Dr ∈ H−ε(I 2), ε > 0)
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and thus that DR can no longer be guaranteed to be a compact operator on H0(I ). For
the case of a polygon with a parametrization proportional to arclength it has been shown
(Yan & Sloan, 1988) that DR = C + B, where C is a compact operator on H0(I ) and
B is a non-compact Mellin convolution operator local to each corner. It follows that, for
such Γ , A is still an isomorphism from H0(I ) to H1(I ). With the help of perturbation
arguments, Elschner & Graham (1995) extend this result to more general parametrizations.
The generalization to arbitrary piecewise analytic Jordan curves without cusps or even to
piecewise regular C2-Jordan curves without cusps should be possible.

On the other hand, if we restrict Γ to a smooth curve, then more general results
hold. Here the kernel Dr(t, s) is a C∞ 2π -periodic function in both variables. Thus
DR : Hm(I ) → Hm(I ) is compact ∀m ∈ R (Yan & Sloan, 1988), and we conclude
that, if γ = 1, A is an isomorphism from Hm(I ) to Hm+1(I ).

2.2 An operator equation of the second kind

In constrast to most other authors (who solve (2.1) with Galerkin, collocation or
qualocation methods) we want to use a degenerate-kernel method. Since (2.1) is not
directly amenable to such a method, we first transform it through multiplication by Q−1

into the equivalent equation of the second kind

(I + Q−1R)x = Q−1 f. (2.5)

For a function of two variables h ∈ L2(I 2) with the Fourier series

+∞∑
n,m=−∞

cnm(h)eint e−ims

we define the conjugate function with respect to the first variable (again denoted by K) by

Kh(t, s) =
+∞∑

n,m=−∞
−i sign(n)cnm(h)eint e−ims . (2.6)

One then verifies that KDR = KD(Int r) = (Int KDr), where Dr is the derivative of r with
respect to the first variable (Berrut, 1986):

Dr(t, s) = ∂

∂t
log

∣∣∣∣ z(t) − z(s)

eit − eis

∣∣∣∣ = Re

{
z′(t)

z(t) − z(s)
− ieit

eit − eis

}
.

Using (2.3) we obtain the operator equation of the second kind (Berrut, 1986)

x − 2(Int KDr)x + c0((Int r)x)

log ρ
= c0( f )

log ρ
− 2KD f. (2.7)

In contrast with the integral equation of the first kind (2.1), (2.7) no longer contains
a singular logarithmic kernel but the better behaved kernel Dr . Moreover, numerical
calculations (Berrut, 1985) show that in most cases the L2 and L∞-norms of this kernel
are smaller than those of the Neumann kernel of the second-kind equation obtained from
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the double-layer representation of the solution (Henrici, 1986). (For instance, for the disc
of radius ρ, one has Dr = 0, whereas Neumann’s kernel is 1/2πρ, (see Henrici, 1986,
p 283).) Also, all the eigenvalues of the integral operator are smaller than one (Stenger
& Schmidtlein, 1998). As a consequence, direct application of fixed-point iteration to the
discretized equation (see Berrut, 1986, and Section 3) always converges as soon as N is
large enough for a good approximation of the kernel, and typically in a small number
of iterations. Numerical experience with the Dirichlet problem of conformal mapping (see
Example 2, Section 5) also demonstrates that, for domains with reentrant corners or similar
smooth domains like reflected ellipses with small parameters (Berrut, 1985), the solution
of the discretized equation is more accurate than that obtained with the Neumann kernel
equation (called Warschawski’s equation in that context (Henrici, 1986)).

2.3 Open arcs

We can also consider the case where Γ is no longer a closed curve, but an open arc
parametrized by v(τ), τ ∈ [−1, 1], with |v′(τ )| > 0. After transforming it to the circle with
the change of variable t = cos−1 τ (Yan & Sloan, 1988) and after defining z(t) := v(cos t),
t ∈ [0, π ], equation (1.1) becomes

1

2π

π∫
0

log |z(t) − z(s)|ν(z(s))|v′(cos s)| sin s ds = k(z(t)), t ∈ [0, π ]. (2.8)

Let x(t) := 1
2ν(z(t))|sin t | |v′(cos t)| and f (t) := k(z(t)). Then x and f are even, 2π -

periodic functions and (2.8) can be written as

1

π

π∫
0

log |z(t) − z(s)|x(s) ds = f (t), t ∈ [0, π ]. (2.9)

Moreover, the integral in the above expression can be replaced by one half of the integral
over a full period; we then again get (2.2) and we can solve it by the same numerical
methods.

The solution of (2.8) as a function of that of (1.1) is given by

ν(z) = ν(z(t)) = 2x(t)

|v′(cos t)|√1 − (v−1(z))2
.

Due to the factor
√

1 − (v−1(z))2 it has a singularity at the two extremities of the contour,
even if x is smooth, which reflects the different character of the solutions on closed and
open contours.

The theoretical analysis has been given by Yan & Sloan (1988). All the operators are
considered in even Sobolev spaces Hp

e := {x ∈ Hp|c−n(x) = cn(x)∀n} and equation (2.9)
is split into

(Qe + Re)x = f
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with

Qex(t) := 1

π

π∫
0

log|ρ(cos t − cos s)|x(s) ds

and

Rex(t) := 1

π

π∫
0

log

∣∣∣∣ z(t) − z(s)

ρ(cos t − cos s)

∣∣∣∣ x(s) ds,

for ρ = 1. The kernel re(t, s) := log
∣∣(z(t) − z(s))/(ρ(cos t − cos s))

∣∣ is 2π -periodic and
even in each variable and has the same properties as r . For an even function x one has
cn(x) = c−n(x) for all n, from which the cosine Fourier series representation of x

x(t) = a0(x) +
∞∑

n=1

an(x) cos nt

follows, where an(x) = cn(x) + c−n(x) = 2cn(x). Making use of the fact that Qex =
Qx for x even, we easily obtain the cosine Fourier series of Qex, from which it follows
immediately that Qe is a bounded and invertible operator from Hp

e to Hp+1
e for every p ∈ R.

Consequently, (2.9) is equivalent to the equation of the second kind

(I + Q−1
e Re)x = Q−1

e f. (2.10)

For y even we still have Q−1
e y = c0(y)/log ρ − 2KDy and thus (2.10) can be written as

x − 2(Inte KDre)x + c0((Inte re)x)

log ρ
= c0( f )

log ρ
− 2KD f, (2.11)

which corresponds to (2.7) with r replaced by re and Int replaced by Inte, where

(Inte h)x(t) := 1

π

π∫
0

h(t, s)x(s) ds.

If x is even then (2.11) is equivalent to (2.7).

3. The numerical method

In this section we describe the numerical solution of the equation of the second kind (2.7)
by a degenerate-kernel method making use of attenuation factors. In order to simplify the
notation, we shall from now on set ρ := e, i.e., log ρ := 1.

Let {tk}, tk := k2π/N , k = 0, . . . , N − 1, be the equidistant mesh on I and {(tk, s�)},
(tk, s�) := (k2π/N , �2π/N ), k, � = 0, . . . , N − 1, be the equidistant mesh on I 2. For a
2π -periodic function f ∈ L2(I ) defined everywhere, we denote by f̃ the N -periodic bi-
infinite real sequence { fk}+∞

k=−∞, where fk := f (tk), k = 0, . . . , N − 1, and fk+N = fk

for all k. Similarly, for a function of two variables h, we define h̃ := {hk,�}+∞
k,�=−∞, where

hk,� := h(tk, s�), k, � = 0, . . . , N − 1, and where the other values are obtained through
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N -periodic repetition in k and �. As in Henrici (1986), we denote the space of such one-,
respectively two-dimensional sequences by ΠN , resp. Π

(2)
N . We approximate f and h by

f̂ := P f̃ , respectively ĥ := Ph̃, where P : ΠN → Π and P : Π
(2)
N → Π(2) are

linear and translation invariant approximation operators, Π and Π(2) denoting the spaces
of 2π -periodic real one-, respectively two-dimensional functions. (Since all functions are
2π -periodic, characterizing approximations by a ‘ ̂ ’ does not create any confusion with
the Fourier transform.) These operators have the property

cn(P f̃ ) = τnĉn( f ) for all n ∈ Z, f̃ ∈ ΠN , f ∈ Π, (3.1)

where cn(x) stands for the nth exact, ĉn(x) for the nth discrete Fourier coefficient of
x and τn is the nth attenuation factor corresponding to the operator P. Thus P f̃ =∑∞

n=−∞ τnĉn( f )eint . If P has the additional property

P({. . . , 1, 1, 1, . . . , 1, . . .}) = 1, (3.2)

and if
P preserves central symmetry, (3.3)

then τ0 = 1, τj N = 0 for all j ∈ Z∗ := Z \ {0} and τ−n = τn ∈ R for all n ∈ Z (see
Gautschi, 1972).

Moreover, if P is the tensor-product of P by itself, one has

cnm(Ph̃) = τn τmĉnm(h), (3.4)

where cnm(h) and ĉnm(h) are respectively the (n, m)th two-dimensional exact and discrete
Fourier coefficients of h (Gutknecht, 1987).

Setting T := Q−1R and g := Q−1 f, equation (2.5) reads

x + Tx = g. (3.5)

In Berrut & Reifenberg (1997) we solved Fredholm integral equations of the second kind
x + Hx = f by approximating the operator H := (Int h) for h ∈ L2(I 2) by Ĥ := (Int ĥ) =
(Int Ph̃) and the inhomogeneity f ∈ L2(I ) by f̂ = P f̃ . Applying this to equation (3.5)
would mean approximating (Int KDr ) by (Int K̂Dr) = (Int PK̃Dr ) and KD f by K̂D f =
PK̃D f . To achieve these approximations we would have to compute the discrete Fourier
coefficients of KDr and KD f, which would require knowledge of the values of KDr at
the N 2 points (tk, s�), k, � = 0, . . . , N − 1, and of KD f at the points tk . But, except for
special curves such as the ellipse and the circle, these values are not available: one cannot
obtain the values KDr(tk, s�) and KD f (tk) from those of Dr and D f . For this reason we
first approximate the known functions r , Dr , f and D f by r̂ = P r̃ , D̂r = PD̃r , f̂ = P f̃
and D̂ f = PD̃ f , respectively, and we conjugate afterwards, making use of formulas (2.4)
and (2.6). This yields the operator

T̂ : x ∈ L2(I ) → T̂x := −2(Int KD̂r)x + c0
(
(Int r̂ )x

) = K
(− 2

(
Int D̂r

)
x
) + c0

(
(Int r̂ )x

)
(3.6)

as an approximation of T, and the approximate inhomogeneity

ĝ = −2KD̂ f + c0( f̂ ). (3.7)
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We observe that T̂x and ĝ are both in the form Kŷ for some function y ∈ L0
2(I ), plus

some constant term, where L0
2(I ) is the subspace of those functions in L2(I ) whose zeroth

Fourier coefficient equals 0. Therefore the same is true for the solution x̂ of the approximate
equation

x̂ + T̂ x̂ = ĝ (3.8)

and we have the following theorem.

THEOREM 3.1 The solution of (3.8), if it exists, can be expressed as

x̂ = KPỹ + α

for some ỹ ∈ ΠN and some α ∈ C. Moreover, with ŷ := Pỹ, (3.8) can be written explicitly
as

Kŷ + α − 2(Int KD̂r)Kŷ + c0
(
(Int r̂ ) Kŷ

) − 2(Int KD̂r)α + c0
(
(Int r̂ ) α

)
(3.9)

= −2KD̂ f + c0( f̂ ).

Conditions guaranteeing the existence of x̂ will be given in Theorem 4.1. We do not need
to know the value of ĉ0(ŷ ) since we apply the conjugate operator K to ŷ whenever the
latter occurs, which multiplies ĉ0(ŷ ) by zero. We can therefore set ĉ0(ŷ ) = 0. Expanding
all the terms of (3.9) into their Fourier series, using the orthogonality of the trigonometric
functions as well as the properties (3.1) and (3.4) and equating on both sides the coefficients
of eint , n ∈ Z∗, we obtain the infinite system

α − i
+∞∑

m=−∞
sign(m)τ 2

mĉ0m(r )̂cm(ŷ ) + ĉ00(r)α = ĉ0( f ),

τnĉn(ŷ ) + 2iτn

+∞∑
m=−∞

sign(m)τ 2
mĉnm(Dr )̂cm(ŷ ) − 2τnĉn0(Dr)α = −2τnĉn(D f ).

(3.10)

For the existence of a unique solution (α, ĉ1(ŷ ), . . . , ĉN−1(ŷ ))T the infinite system
(3.10) should be equivalent to N distinct equations. Making use of the N -periodicity
of the discrete Fourier coefficients ĉnm(Dr) and ĉm(ŷ ), we get the following finite N -
dimensional system for the N − 1 unknown coefficients cn(ŷ ), n = 1, . . . , N − 1, and
α: 

α − i
N−1∑
m=1

ρmĉ0m(r )̂cm(ŷ ) + ĉ00(r)α = ĉ0( f ),

ĉn(ŷ ) + 2i
N−1∑
m=1

ρmĉnm(Dr )̂cm(ŷ ) − 2̂cn0(Dr)α = −2̂cn(D f ),

(3.11)

where

ρm :=
+∞∑

�=−∞
sign(m + �N )τ 2

m+�N , for m = 1, . . . , N − 1.

REMARK 3.1 If log ρ = 1, then log ρ appears merely in the first equation as a factor of
the first term α. It could be used numerically to balance this equation when its terms are
very different in size.
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REMARK 3.2 Instead of solving Symm’s integral equation (1.1) or (2.1), Henrici made
use of his splitting (1.4) and solved the equation

Qx = −Rx + f

by developing the given functions and the unknown x into their Fourier series, which yields
the corresponding infinite linear system

− 1

2|n|cn(x) = −
+∞∑

m=−∞
cnm(r)cm(x) = cn( f ), n = 0.

Writing this equation for trigonometric interpolants, as in Berrut (1976), one gets a finite
linear system which can be written as an approximate functional equation

Qx̂ = −R̂ x̂ + f̂ , (3.12)

for the unknown

x̂ :=
N/2∑

−N/2

′′
ĉn( x̂ )eint ,

where R̂ := (Int P r̃ ) and f̂ := P f̃ , P and P denoting respectively the one- and two-
dimensional trigonometric interpolation operators. The approximate equation (3.12) looks
simpler than the equation of the second kind (2.7). Suppose however that, instead of
being trigonometric interpolation operators, P and P are spline, respectively tensor product
spline interpolation operators. Assuming x̂ = Px̃, one sees that R̂x̂ is also a spline but
unfortunately this is not true for Qx̂ . Hence, one cannot solve the equation corresponding
to (3.12) for arbitrary linear and translation invariant approximation operators.

REMARK 3.3 Since the corresponding matrices are large and dense, in practice we do
not solve the linear system (3.11) by Gaussian elimination, but we directly apply the fixed-
point iteration described in Berrut & Reifenberg (1997). This means that at the ( j + 1)th
iteration step, j = 0, 1, . . . , we compute the values

α( j+1) := i
N−1∑
m=1

ρmĉ0m(r )̂cm(ŷ ( j)) + ĉ00(r)α( j) − ĉ0( f ),

ĉn(ŷ ( j+1)) := − 2i

N

N−1∑
k=0

[
N−1∑
m=1

ρmĉm(Dr (k))̂cm(ŷ ( j))

]
w−kn

+2̂cn0(Dr)α( j) − 2̂cn(D f ),

(3.13)

for n = 1, . . . , N − 1, where w := e2π i/N and where the ĉm
(
Dr (k)

)
are the coefficients of

the trigonometric polynomial interpolating the function Dr (k)(s) := Dr(tk, s) between
the points s�, � = 0, . . . , N − 1. These values are the same at every interpolation
step and therefore are computed only once through N one-dimensional fast Fourier
transforms (FFTs) in about 1

2 (N 2 log N ) (complex) flops. (For real functions the practical
computations are obviously more efficient in real arithmetic, see Berrut (1985).) The
coefficients ĉ0m(r), m = 0, . . . , N − 1, can be calculated simultaneously by a single
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one-dimensional FFT, so that this iterative method does not require any two-dimensional
FFTs. If N is a power of 2 then the total number of flops needed for the FFTs is about
1
2 (N + M + 1)N log2 N , where M denotes the number of iterations. Since the matrix–
vector products require M N 2 flops, for N large the iterative solution is faster than Gaussian
elimination as long as the number of iterations is less than about N/3. The iterative method
is equivalent to that using the two-dimensional FFT, and converges as soon as N is large
enough for a good approximation of the kernel of the integral operator.

REMARK 3.4 Let us come back to the case where Γ is an open arc and consider the
approximate equation

x̂ + T̂e x̂ = ĝ,

where T̂e is defined as T̂ in (3.6) with r replaced by re and Int replaced by Inte. Considering
that f̂ is even (odd) if f is even (odd), and that the derivative and the conjugate function
of an even, respectively odd function are odd, respectively even, we see that for x even,
T̂ex and ĝ are both of the form K ŷ plus a constant term, where ŷ is an odd function
in L0

2. We thus set x̂ := Kŷ + α for an odd function ŷ ∈ L0
2 and α ∈ C. Since all

the functions involved in the approximate equation are either even or odd, expansions
in cosine, respectively sine series instead of exponential Fourier series can be used. The
resulting system is then equivalent to (3.10).

3.1 Examples of the use of some interpolation operators

We derive here formulas for ρm in some of the most important cases. Indeed, the
presence of the sign function in ρm makes them all quite different from the corresponding
expressions for the general Fredholm equation in Berrut & Reifenberg (1997). The same
is true also for the evaluation of the approximate solution in the following paragraph.

EXAMPLE 1 Trigonometric interpolation
Here only a finite number of attenuation factors are non-zero and the factors ρm can be
computed in an easy way. They are given by ρm = 1 if 1 � m < N/2, ρm = 0 if m = 0 or
N/2 and ρm = −1 if N/2 < m � N − 1. The method is then equivalent to that in Berrut
(1986).

EXAMPLE 2 Spline interpolation
(a) Spline interpolants of even order 2d (d � 1).
Since

τm+�N =
(

m

�N + m

)2d

τm,

we can write for m = 1, . . . , N − 1

ρm = τ 2
m

[
−

−1∑
�=−∞

(
m

�N + m

)4d

+ 1 +
+∞∑
�=1

(
m

�N + m

)4d
]

.

Let us set as in Gutknecht (1986)

ψp(z) :=
+∞∑
�=1

(
z

� + z

)p+1

for z ∈ C \ {−1, −2, . . .}, p = 1, 2, . . ..
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Then
ρm = τ 2

m

[
−ψ4d−1

(
− m

N

)
+ 1 + ψ4d−1

( m

N

)]
.

The function ψp(z) can be expressed in terms of the polygamma function ψ(p)(z), the pth
derivative of the psi function ψ(z) = (d/dz) log Γ (z) = Γ ′(z)/Γ (z), where Γ denotes the
gamma function (Gutknecht, 1986):

ψp(z) = (−1)p+1

p!
z p+1ψ(p)(z + 1).

In order to calculate ρm we have to evaluate ψ4d−1 in zk = k/N , k = 0, . . . , N − 1, i.e.,
ψ(4d−1) at the values zk + 1, k = 0, . . . , N − 1; these all lie in the interval [1, 2) which
does not contain the pole of ψ(4d−1). Following Luke (1978, vol 1, p 2; vol 2, p 301), we
can write

ψ(p)(x + 1) = ψ(p)(x + 3) + (−1)p+1 p!
[
(x + 1)−p−1 + (x + 2)−p−1

]
,

for x ∈ [0, 1]. This formula allows us to use Luke’s expansions for ψ(p) in the interval
[3, 4] in terms of C̆ebys̆ev polynomials. Luke lists the coefficients of these C̆ebys̆ev
polynomials for p = 0, . . . , 6. We evaluate ψp at the negative values −zk, k = 1, . . . ,

N − 1, by using the relation ψp(−z) = σp(z) − 1 − ψp(z), where σp denotes the sigma
function defined by

σp(z) :=
+∞∑

j=−∞

( z

j + z

)p+1 =
{

π z cot π z, for p = 0,

SINC−(p+1)(π z)qp−1(cos π z), for p ∈ N\{0},
and qp−1 is the polynomial of degree p − 1 defined recursively by

q0(t) = 1, q�(t) = tq�−1(t) + 1 − t2

� + 1
q ′
�−1(t), � = 1, 2, . . ..

For the linear spline interpolant (d = 1) we get

ρm = τ 2
m [−σ3(zm) + 1 + ψ3(zm) + 1 + ψ3(zm)] = τ 2

m [2 − σ3(zm) + 2ψ3(zm)] ,

whereas for the cubic spline (d = 2)

ρm = τ 2
m [2 − σ7(zm) + 2ψ7(zm)] .

(b) Spline interpolants of odd order 2d + 1(d � 0).
Here

τm+�N = (−1)�
(

m

m + �N

)2d+1

τm

and thus

ρm = τ 2
m

+∞∑
�=−∞

sign(m + �N )

(
m

m + �N

)4d+2

= τm
(
2 − σ4d+1(zm) + 2ψ4d+1(zm)

)
.
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For the piecewise constant spline interpolant (d = 0) this yields

ρm = τ 2
m

(
2 − σ1(zm) + 2ψ1(zm)

)
.

Since the evaluation of each of the σp and ψp necessitates O(1) flops, their evaluation at
all zm requires O(N ) flops, and so does the calculation of all ρm .

3.2 Evaluation of the approximate solution

Once α and ĉ1(ŷ ), . . . , ĉN−1(ŷ ) have been calculated by solving the linear system (3.11)
(directly or by the iterative method (3.13)), one needs to evaluate the approximation x̂ to
x . We have

x̂(t) = α + Kŷ(t) = α − i
+∞∑

n=−∞
sign(n) τnĉn(ŷ )eint .

This can again be written as a finite sum by collecting the factors of each of the different
ĉn :

x̂(t) = α − i
N−1∑
n=0

ĉn(ŷ )eint

[ +∞∑
�=−∞

sign(n + �N )τn+�N ei�Nt

]
.

Let

δn(t) :=
+∞∑

�=−∞
sign(n + �N )τn+�N ei�Nt .

If property (3.2) holds, then δ0(t) = 0.

If we consider splines of even order 2d (d � 1), then for n = 0

δn(t) = τn

[
−

+∞∑
�=1

(
zn

−� + zn

)2d

e−i�Nt + 1 +
+∞∑
�=1

(
zn

� + zn

)2d

ei�Nt

]
,

where zn := n/N , n = 1, . . . , N − 1. This can be expressed in terms of the generalized
zeta-function, which figures among the predefined special functions in some programming
languages (e.g. Mathematica, where it is known under the name LerchPhi), and which is
defined by

ζ
(
s, a, z

)
:=

∞∑
k=0

zk

(k + a)s

for any complex number s with Re(s) > 0 if |z| � 1, z = 1, and for s with Re(s) > 1 if
z = 1, a ∈ R (see, e.g., Hansen, 1975, p 142). From this definition we see that δn(t) can
be written as

δn(t) = τn

[
1 + z2d

n

(
ζ(2d, zn, eiNt ) − ζ(2d, −zn, e−iNt )

)]
.

At the interpolation points tk = k2π/N this yields

δn(tk) =
+∞∑

�=−∞
sign(n + �N )τn+�N = τn

[
1 + z2d

n

(
ζ(2d, zn, 1) − ζ(2d, −zn, 1)

)]
.
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Using the definition of ψp(z) we see that z2d
n ζ(2d, zn, 1) = ψ2d−1(zn) and so δn(tk) can

be expressed as

δn(tk) = τn
[− ψ2d−1(−zn) + 1 + ψ2d−1(zn)

] = τn
[
2 − σ2d−1(zn) + 2ψ2d−1(zn)

]
,

where ψ2d−1(zn) is computed through the polygamma function ψ(2d−1), as in the previous
section.

For odd orders 2d + 1 (d � 0),

δn(t) =
+∞∑

�=−∞
sign(n + �N )(−1)�

(
n

�N + n

)2d+1

τnei�Nt

= τn

[+∞∑
�=1

(−1)�
( −zn

� − zn

)2d+1

ei�Nt + 1 +
+∞∑
�=1

(−1)�
(

zn

� + zn

)2d+1

ei�Nt

]

and in terms of the zeta-function

δn(t) = τn

[
−1 + z2d+1

n

(
ζ(2d + 1, −zn, −e−iNt ) + ζ(2d + 1, zn, −eiNt )

)]
.

At the interpolation points, δn can again be expressed in terms of the polygamma function.
For this purpose, let us define

ψ̃p(z) :=
+∞∑
�=1

(−1)�
(

z

z + �

)p+1

.

Then we have
δn(tk) = τn

[−ψ̃2d(−zn) + 1 + ψ̃2d(zn)
]

and making use of the relation ψ̃p(−z) = σ̃p(z) − 1 − ψ̃p(z), where σ̃p is defined by

σ̃p(z) :=
+∞∑

j=−∞
(−1) j

(
z

j + z

)p+1

= SINC−(p+1)(π z)̃qp(cos π z)

and q̃� is a polynomial defined recursively by

q̃0(t) := 1, q̃�(t) := t q̃�−1(t) + 1 − t2

�
q̃

′
�−1(t), � = 1, 2, . . . ,

δn(tk) becomes
δn(tk) = τn

[
2 − σ̃2d(zn) + 2ψ̃2d(zn)

]
. (3.14)

If t is one of the midpoints between the interpolation points, i.e., t = tk + π/N for some
k ∈ {0, . . . , N − 1}, then we have to evaluate

δn(tk + π/N ) =
+∞∑

�=−∞
(−1)�sign(n + �N )τn+�N .
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In the case of spline interpolation of even order 2d (d � 1) we get by similar calculations
as for δn(tk)

δn(tk + π/N ) = τn[2 − σ̃2d−1(zn) + 2ψ̃2d−1(zn)] (3.15)

and for the splines of odd order 2d + 1 (d � 0)

δn(tk + π/N ) = τn[2 − σ2d(zn) + 2ψ2d(zn)].

The functions ψ̃p appearing in (3.14) and (3.15) are absent from most libraries, in contrast
to the polygamma function ψ(p)(z), which is available as an intrinsic function in many
programming languages (e.g., Mathematica, Maple, MATLAB, etc). In order to express
the series ψ̃p(zn) in terms of the functions ψ(p) we define the series

β(z) :=
+∞∑
�=0

(−1)�

(z + �)
.

It can easily be verified that

β(z) = 1

2

[
ψ

(
z + 1

2

)
− ψ

( z

2

)]
.

With the above notation and formulas, we have

ψ̃p(z) = z p+1(−1)p

p!
β(p)(z) − 1 = z p+1(−1)p

2p+1 p!

[
ψ(p)

(
z + 1

2

)
− ψ(p)

( z

2

)]
− 1.

To avoid the pole at z = 0 we finally transform the last equation using ψ(p)(z + 1) =
ψ(p)(z) + (−1)p p!z−p−1 into

ψ̃p(z) = z p+1(−1)p

p!2p+1

[
ψ(p)

(
z + 1

2
+ 1

)
− ψ(p)

( z

2
+ 1

)]
−

(
z

z + 1

)p+1

.

Thus, after the ĉn(ŷ) have been determined through the linear system (3.11), O(N ) flops
are needed to evaluate x̂ at the N interpolation points and/or intermediate points.

4. Rates of convergence of the approximate solution

As noted in the literature (see, e.g., Atkinson, 1997), one advantage of degenerate-kernel
methods is the simplicity of their analysis. Consider the approximate equation x̂ + T̂ x̂ = ĝ
with T̂ and ĝ defined in (3.6) and (3.7). We can use a convergence theorem of Schleiff
for such operator equations of the second kind in L2(I ) (see Schleiff, 1968, p 480, for the
proof) or the theorems on operator approximations in Kress (1989, Chapter 10).

THEOREM 4.1 Suppose that (I + T)−1 exists and that the following two conditions are
satisfied:

‖T − T̂‖ → 0 in the L2-norm (4.1)

and
‖g − ĝ‖ → 0 in the L2-norm. (4.2)
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Then for some N0 ∈ N the approximate equation x̂ + T̂ x̂ = ĝ is uniquely solvable in
L2(I ) for N � N0 and the solution x̂ converges towards the exact solution x . Moreover,
the following error bound holds:

‖x − x̂‖ � ‖(I + T)−1‖[2∥∥T − T̂
∥∥‖(I + T)−1‖ ‖ĝ‖ + ‖g − ĝ‖]. (4.3)

We have seen in Section 2 that, for every piecewise C2, C1-Jordan curve, and for every
piecewise regular C2-Jordan curve without cusps and with logarithmic capacity different
from 1, I + S−1R has a bounded inverse so that the first condition is satisfied. To verify
(4.1) and (4.2) let us bound ‖T̂x − Tx‖L2 for x ∈ L2(I ) and ‖g − ĝ‖L2 . We have

‖T̂x − Tx‖L2 = ∥∥− 2(Int KD̂r)x + c0(R̂x) + 2(Int KDr)x − c0(Rx)
∥∥

�
(∥∥R − R̂

∥∥ + 2‖K‖ ‖DR − D̂R‖
)
‖x‖

and

‖g − ĝ‖L2 = ∥∥ − 2KD̂ f + c0( f̂ ) + 2KD f − c0( f )
∥∥ � 2‖K‖ ‖D f − D̂ f ‖ + ‖ f̂ − f ‖.

We thus have the following theorem.

THEOREM 4.2 The convergence of x̂ toward x as N → ∞ is guaranteed if ‖D̂r −
Dr‖L2 → 0 and if ‖D̂ f − D f ‖L2 → 0 as N → ∞. Moreover, if Γ is such that ‖D̂r −
Dr‖L2 � O(hk) and ‖D̂ f − D f ‖L2 � O(h�) then

‖x̂ − x‖L2 � O
(
hmin{k,�}).

In the case of trigonometric interpolation, we only need the Riemann integrability of r , Dr ,
f and D f for convergence (see Berrut, 1986). Recalling the properties of r and Dr given in
Section 2 we see that this holds for every piecewise C2, C1-Jordan curve Γ . Then, for every
right-hand side function f such that f and D f are Riemann integrable, the approximate
equation (3.8) has a unique solution x̂, and x̂ → x as N → ∞. From the convergence
results for one- and two-dimensional trigonometric interpolating polynomials (see Canuto
et al., 1988) we conclude that ‖x − x̂‖L2 = O(hm), where h := 2π/N , if D f ∈ Hm(I )
and Dr ∈ Hm(I 2) for m > 1. On the other hand, if Γ is analytic, then exponential rates of
convergence can be expected if f is analytic (Berrut, 1986).

In the case of spline interpolants the rates of convergence depend, as for trigonometric
interpolation, on the smoothness of the curve Γ and of the inhomogeneity f . But they
are also restricted by the order of the splines. Thus, while the trigonometric polynomials
automatically fit to the order of differentiability, the latter order has to be known to choose
accordingly the spline degree. (On the other hand, the spline interpolant oscillates less
between the interpolation points.) Using the approximation power of spline and tensor-
product spline interpolants (Schumaker, 1981), we see that the maximal order O(hk) is
reached if the kernel Dr belongs to the tensor-product Sobolev space H(k,k)(I 2), and if D f
belongs to Hk(I ). If Dr ∈ H(m,m)(I 2) and D f ∈ Hp(I ) with m < k or p < k, k � 1, then
the rate of convergence is O(hmin{m,p}).

In the literature (e.g. Schumaker, 1981) we have merely found convergence results in
tensor Sobolev spaces H(p,q)(I 2) for integer p and q. However, numerical experiments
demonstrate that similar results should hold for real-valued exponents also.
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In the next section we report on experiments for Symm’s equation with piecewise
analytic C1 and C2-curves. Analysing the Fourier series, we see that the corresponding
parametric representations z(t) belong to H2.5−ε(I ) and H3.5−ε(I ), ε > 0, and the right-
hand side functions g(t) belong to H1.5−ε(I ) and H2.5−ε(I ), respectively. From the known
behaviour of the solution x at the corners (Lehman, 1957, 1959), it is easy to see (Hoidn,
1983) that, for piecewise analytic C1-curves, the exact solution x belongs to Hp(I ) for all
p < 1.5. Since Tx belongs to this same Sobolev space, it follows that the kernel function
Dr is in the tensor Sobolev space H(p,p+1)(I 2) ⊃ H(p,p)(I 2). Hence the convergence of
x̂ towards x in the L2-norm can be expected to be O(hmin{1.5−ε,k}), ε > 0, where k is the
order of the spline interpolant. In the same way we deduce O(hmin{2.5−ε,k}) convergence
rates for C2-curves.

5. Some numerical results

EXAMPLE 1 Conformal maps
Let Γ : z(t) be a Jordan curve with 0 ∈ G := int(Γ ) and with logarithmic capacity
different from one. The function h which conformally maps G onto the unit circle with
h(0) = 0, arg(h′(0)) = 0 is then given by

h(z) = zeU (z)+iV (z),

where U is the solution of the Dirichlet problem

∆U = 0 in G, (5.1)

U (z) = − log|z| on Γ (5.2)

and V is the function conjugate harmonic to U with V (0) = 0. The boundary integral
equation (2.1) then becomes

1

2π

2π∫
0

log|z(t) − z(s)|x(s) ds = log|z(t)|, (5.3)

where the charge density x is the derivative of the boundary correspondence function θ .
Equation (5.3) is called Symm’s equation. In a first test, we have applied the method of
Section 3 to an analytic curve, namely the ellipse with semi-axes β(1 + η) and β(1 − η),
whose parametric representation is given by

z(t) = β
(

eit + ηe−it
)

. (5.4)

As a second example we have constructed a piecewise analytic C1-curve by combining
one half of an ellipse with one half of a circle, and C2-curves by interpolating values of
known analytic curves, such as the ellipses (5.4), with periodic cubic splines. Finally we
have mapped the square of side length π/2 with the parametric representation

z(t) =
{

π
4 + it, for 0 � t � π

4 ,

π
2 − t + iπ

4 , for π
4 � t � π

2 ,
(5.5)
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periodically repeated on [π/2, 2π ]. The derivatives at the corners have been computed as
the arithmetic means of their left and right derivatives, in accordance with the behaviour of
Fourier series of piecewise smooth functions at jumps.

The numerical results for the four curves described above and for spline approximation
operators of different orders are shown in Tables 1 to 4. We give the experimental L2-
errors for N points in θ̂ ′

N := θ̂ ′ or θ̂N := θ̂ and the corresponding convergence rates for
increasing values of N . Analytical expressions of θ ′ and θ are known for the ellipse (see
Henrici, 1979, p 494) so that we can compute the experimental convergence rate as

ecr = log2

(
2047∑
k=0

∣∣θ ′(ξk) − θ̂ ′
N (ξk)

∣∣2

/
2047∑
k=0

∣∣θ ′(ξk) − θ̂ ′
2N (ξk)

∣∣2

)1/2

,

where ξk := k2π/2048, k = 0, . . . , 2047. Whenever the exact solution is not known we
replace θ ′ (resp. θ ) by θ̂ ′

2048 (resp. θ̂2048) in the computation of these experimental L2-errors
and convergence rates.

Table 1 displays the experimental convergence rates when Γ is an ellipse and for
splines of order 1, 2 and 4. These rates can be compared with the theoretical rates 1, 2
and 4.

In the case of the C2-curve, we have seen in Section 4 that the expected convergence
rates are O(hmin{2.5−ε,k}), where k is the order of the spline interpolant. These rates are
confirmed by the results in Table 2; the value of ecr in the case of cubic spline interpolation
is approximatively 2.5 and about 1, respectively 2, for splines of order 1, respectively 2.
In Table 3 we see that for the C1-curve the experimental convergence rates for splines of
order 1, 2 and 4 are approximately 1, 1.5 and 1.5, which corresponds to the convergence
rates of O(hmin{1.5−ε,k}) found in Section 4.

The exact boundary correspondence function θ for the square can be found in
Gaier (1964), for example. In Table 4 we observe experimental convergence rates of
approximately 2, 2.5 and 2.5 for θ̂ with piecewise constant, linear and cubic spline
interpolants. For θ̂ ′ this corresponds to an O(h)-convergence for piecewise constant splines
and an O(h1.5)-convergence for linear and cubic splines. Since the kernel function merely
belongs to H−ε(I 2), convergence is not ensured by Theorem 4.2.

EXAMPLE 2 Interior Dirichlet problem for the potential U (z) = Re(z2).
In the case of the ellipses (5.4) the boundary condition (1.3) is

f (t) = U (z(t)) = β2((1 + η2) cos 2t + 2η
)
.

Let x̂(t) be the solution of equation (2.1) for these Dirichlet data f . Then the approximate
potential Û is given by

Û (z) := 1

2π

2π∫
0

log|z − z(s)|̂x(s) ds.

Table 5 shows some error and convergence results for the approximate density function
x̂(t) for the ellipse with η = 1/3 in the case of spline interpolation. For cubic splines we
observe the expected O(h4) convergence.
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TABLE 1
L2-errors in θ̂ ′ and experimental convergence rate for the ellipse with η = 1/3 and for splines of

order k.

k = 1 k = 2 k = 4

N L2-errors ecr L2-errors ecr L2-errors ecr

32 2.2852 × 10−1 3.6961 × 10−2 4.3233 × 10−4

64 1.0814 × 10−1 1.079 1.1738 × 10−2 1.654 4.7428 × 10−5 3.188
128 5.2446 × 10−2 1.044 3.1999 × 10−3 1.875 3.8082 × 10−6 3.638
256 2.5807 × 10−2 1.023 8.2724 × 10−4 1.951 2.6866 × 10−7 3.825
512 1.2798 × 10−2 1.011 2.0975 × 10−4 1.979 1.7825 × 10−8 3.913

1024 6.3727 × 10−3 1.006 5.2776 × 10−5 1.990 1.1475 × 10−9 3.987

TABLE 2
L2-errors in θ̂ ′ and experimental convergence rates for the C2-curve approximating an ellipse with

η = 1/3 and for splines of order k.

k = 1 k = 2 k = 4

N L2-errors ecr L2-errors ecr L2-errors ecr

16 1.2814 × 10−1 8.9517 × 10−1 4.3946 × 10−2

32 5.4901 × 10−2 1.222 1.9477 × 10−2 5.522 1.0534 × 10−3 5.299
64 2.5722 × 10−2 1.093 4.9434 × 10−3 1.978 6.8179 × 10−5 4.032

128 1.2411 × 10−2 1.051 1.2399 × 10−3 1.995 9.7672 × 10−6 2.803
256 6.0916 × 10−3 1.026 3.0928 × 10−4 2.003 1.6308 × 10−6 2.582
512 3.0171 × 10−3 1.014 7.5794 × 10−5 2.028 2.8251 × 10−7 2.529

TABLE 3
L2-errors in θ̂ ′ and experimental convergence rates for the C1-curve and for splines of order k.

k = 1 k = 2 k = 4

N L2-errors ecr L2-errors ecr L2-errors ecr

16 2.9540 × 10−2 1.2309 × 10−1 1.5712 × 10−2

32 1.3365 × 10−2 1.106 2.9549 × 10−3 5.380 4.4916 × 10−3 1.806
64 6.2345 × 10−3 1.100 9.3719 × 10−4 1.656 1.4970 × 10−3 1.585

128 2.9781 × 10−3 1.065 3.0440 × 10−4 1.622 5.1691 × 10−4 1.534
256 1.4499 × 10−3 1.038 1.0258 × 10−4 1.583 1.8061 × 10−4 1.517
512 7.1419 × 10−4 1.021 6.3452 × 10−5 1.509 6.3452 × 10−5 1.509
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TABLE 4
L2-errors in θ̂ and experimental convergence rates for the square and for splines of order k.

k = 1 k = 2 k = 4

N L2-errors ecr L2-errors ecr L2-errors ecr

32 1.0162 × 10−2 1.6872 × 10−2 5.7658 × 10−3

64 3.1095 × 10−3 1.708 3.3695 × 10−3 2.324 9.2885 × 10−4 2.634
128 8.3204 × 10−4 1.901 6.0859 × 10−4 2.469 1.5849 × 10−4 2.551
256 2.1249 × 10−4 1.969 1.0901 × 10−4 2.481 2.7671 × 10−5 2.518
512 5.3290 × 10−5 1.995 1.9005 × 10−5 2.520 4.8645 × 10−6 2.508

TABLE 5
L2–errors in x̂ and experimental convergence rates in Example 2 for the ellipse with η = 1/3 and

for splines of order k.

k = 1 k = 2 k = 4

N L2-errors ecr L2-errors ecr L2-errors ecr

32 2.2852 × 10−1 3.6961 × 10−2 4.3233 × 10−4

64 1.0814 × 10−1 1.079 1.1738 × 10−2 1.654 4.7428 × 10−5 3.188
128 5.2446 × 10−2 1.044 3.1999 × 10−3 1.875 3.8082 × 10−6 3.638
256 2.5807 × 10−2 1.023 8.2724 × 10−4 1.951 2.6866 × 10−7 3.825
512 1.2798 × 10−2 1.011 2.0975 × 10−4 1.979 1.7825 × 10−8 3.913

1024 6.3727 × 10−3 1.006 5.2776 × 10−5 1.990 1.1475 × 10−9 3.987

Finally we have used the N -point trapezoidal rule to evaluate Û (z) and we denote the
corresponding values by Û (N )(z). In Table 6 we list the absolute error |U (z)− Û (N )(z)| of
the potential at the points z1 = (0.0, 0.0), z2 = (2.0, 1.0) and z3 = (3.8, 0.0), as well as
the experimental convergence rate ecr := log2

(|U (z) − Û (N )(z)|/|U (z) − Û (2N )(z)|) at
these points.

Further interesting examples of approximation operators which can be used with our
method are operators which are only defined in Fourier spaces as linear and translation
invariant smoothing operators like cosine-, Cesáro-, Lanczos- and spline-smoothing, see
Berrut & Reifenberg (1997).

The number of iterations required for numerical convergence is usually small, but
depends on the shape of the curve Γ . Less than 10 iterations are needed for many curves
and 40 iterations are usually sufficient. Only for curves with reentrant arcs like reflected
ellipses and small parameters (Berrut, 1985) did we have to compute between 100 and 130
iterations for convergence to machine precision.
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TABLE 6
Absolute error in Û (N ) and experimental convergence rates at the points z1 = (0.0, 0.0), z2 =

(2.0, 1.0) and z3 = (3.8, 0.0) for the ellipse with η = 1/3 and for splines of order 4.

N |U (z1) − Û (N )(z1)| ecr |U (z2) − Û (N )(z2)| ecr |U (z3) − Û (N )(z3)| ecr

64 1.0734 × 10−5 4.6874 × 10−6 2.0525 × 10−2

128 6.2477 × 10−7 4.103 2.7767 × 10−7 4.077 5.6430 × 10−4 5.643
256 3.7679 × 10−8 4.051 1.6746 × 10−8 4.051 2.8209 × 10−7 10.507
512 2.3130 × 10−9 4.026 1.0279 × 10−9 4.026 3.8719 × 10−9 6.181

1024 1.4286 × 10−10 4.017 6.3402 × 10−11 4.019 2.3977 × 10−10 4.015
2048 8.8364 × 10−12 4.015 3.2409 × 10−12 4.290 1.4827 × 10−11 4.013
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