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Numerical solution of boundary integral equations
by means of attenuation factors
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We consider first-kind boundary integral equations with logarithmic kernel such as those
arising from solving Dirichlet problems for the Laplace equation by means of single-layer
potentials. The first-kind equations are transformed into equivalent equations of the second
kind which contain the conjugation operator and which are then solved with a degenerate-
kernel method based on Fourier analysis and attenuation factors. The approximations we
consider, among them spline interpolants, are linear and translation invariant. In view of

the particularly small kernel, the linear systems resulting from the discretization can be
solved directly by fixed-point iteration.
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1. Introduction

Let I be a Jordan curve and denote Bythe interior of I". Our aim is the numerical
solution of the boundary integral equation with logarithmic kernel

1
> f loglz— wiv(w)do(w) =k(z), zeTl, 11
JT
r
whereo is an appropriate measure 6h Such an equation arises, for example, when one
seeks the solution of the interior Dirichlet problem
AU =0, inG, 1.2
U=-k, onr, (1.3

as a single-layer potential

U@ := —%/Iog|z—w|v(w)do(w), zeG.
r

Indeed, (1.2) is satisfied independently of the choice of the density functimal, for the
boundary condition (1.3) to be satisfiedhas to be a solution of equation (1.1). To ensure
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that U (z) is continuous for z — I', and that al arising functions can be written as their
Fourier series, we suppose that v € Lp(I7) for some p > 2, and that I" is a piecewise
regular C1-Jordan curve (Gaier, 1976).

For the theoretical study of (1.1), as well as for some efficient nhumerical solution
methods, it is useful to split the singular kernel into asingular part independent of the curve
and aregular part. Up until 1975, this splitting was performed in a way that destroyed the
periodicity, namely as

z(t) — z(s)

log|z(t) — z(s)| = log|t — s| + log P—

(see Hsiao et al., 1980). Then, Henrici suggested using the kernel for the circle as the
denominator, giving

zZ(t) — z(s)

log|z(t) — z(s)| = logle't — €3] + log - (1.4)

(see Henrici, 1979; Reichel, 1984, 1986, independently came up with the same ided),
and used it to analytically solve the equation for the élipse. In 1975 aso, the second
author of the present article (Berrut, 1976) and Reichel independently suggested using
this splitting in the numerical solution of (1.1) with trigonometric polynomials for general
curves (see Henrici, 1986). The method in Berrut (1976) merely uses one-dimensional
FFTs and solves the resulting systems of equations by iteration (see also Berrut, 1986).
Many closely related methods have been suggested since (Hoidn, 1983; Arnold, 1983;
Lamp et al., 1985; Atkinson, 1988). A theoretical study of the method for C*°-curves was
performed in McL ean (1986) and McLean et al. (1989).

Starting with Hsiao et al. (1980), the splitting (1.4) was subsequently used by severa
authors for the theoretical study of equation (1.1) (see, e.g., (Graham & Yan, 1990; Sloan,
1992, and the literature cited therein, and for example Yan & Sloan, 1988, for polygonal
curves). In Hsiao et al. (1980), the existence of a Fredholm equation of the second
kind derived from (1.1) was first noticed. The kernel and inhomogeneity of this equation
were given in Berrut (1986), where the latter equation was solved with the trigonometric
degenerate-kernel method of Berrut (1976). The advantage of this kernel, as compared
with the Neumann kernel of the double-layer potential (Henrici, 1986), isits smaller size
in many examples, resulting in afaster convergence of the direct application of fixed-point
iteration (see the numerical examplein Berrut, 1986).

Other effective methods for solving (1.1) have been presented, among them qual ocation
methods (see Chandler & Sloan, 1990; Sloan & Burn, 1992; Sarane & Sloan, 1992, for
smooth curves and Elschner & Graham, 1994, for curves with corners). Another efficient
method for piecewise analytic curves was developed in Hough (1990), where a very
elaborate program package was aso given.

The structure of the paper is as follows. After a short reminder in Section 2.1 on the
theoretical analysis of (1.1), the derivation of the equivaent equation of the second kind
mentioned above is outlined in Section 2.2. Since it contains the conjugation operator it
is best solved by Fourier methods. The case where I" is an open arc instead of a closed
curve is briefly considered in Section 2.3. In Section 3 we present a new degenerate-
kernel Fourier method which makes use of the theory of attenuation factors and covers
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a large class of approximation operators, namely all the linear and trandlation invariant
ones, like trigonometric and spline interpolation operators. Finally, some convergence and
computational results are given in Sections 4 and 5.

2. Theintegral equations

Denote by | theinterval [0, 27] C R, by 12 the square [0, 2] x [0, 27] ¢ R2 and let
I' :z=2zt),t €l, beadordan curve. If z € C*, I is said to be smooth. I" is called
apiecewise regular C"-Jordan curve if there exists a partition of | into a finite number of
subintervals[ti, ti11],i =0,..., p—1 withO=1ty <t; <--- <tp_1 < tp = 2m, such
that the restriction of the parametrization z(t) to each subinterval isr times continuously
differentiable with Z'(t) # 0. The points z(tj), i = 0, ..., p — 1, are called corners. We
denote by e(I") the set of nodes corresponding to the corners of I". A regular C"-Jordan
curve is a piecewise regular C"-Jordan curve without corners.
Using the notation x(t) := v(z(t))|Z'(t)| and f (t) := k(z(t)), equation (1.1) reads

2
%/Iogu(t) —z(s)|Ix(s)ds= f(t), tel (2.1)
0

or in operator notation
Ax = f. (2.2

2.1 Decomposition of the operator A and subsequent theoretical results

Asexplained in the introduction, we shall decompose the logarithmic kernel of the operator
A into the sum of asingular kernel and a bounded one (Berrut, 1986)

logz(t) — z(s)| = q(t,s) +r(t,s),

where
z(t) — z(s)

. it _ A4S — = =
q(t,s) :=log ple* — €9, r(t,s):=log ) (@ —e9)

and p € RT\{1}. This means that we subtract from the kernel of A the corresponding
kernel for the circle of radius p. This decomposition splits the operator A into the sum of
two operators,

A=Q+R,

with Q := (Intqg), R := (Intr), where

2
(Inth)x(t) := %/h(t,s)x(s) ds.
0

(We have borrowed this notation from Halmos & Sunder (1978): it has the advantage of
simply allowing for composite kernels like those appearing in the following sections.) For
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h e Lo(12), (Inth) is alinear, bounded and compact operator on Lo (1) called a Hilbert—
Schmidt integral operator (H—S operator).

The analysis of the operators Q and R is carried out in 2r-periodic Sobolev
spaces. Let H™(1) be the periodic Sobolev space of order m and denote by || - ||m the
corresponding Sobolev norm. We denote the two-dimensional tensor products of such
spaces by H™™ (12). In two dimensions we consider also the space Cf'(12) of all m-
times continuously differentiable functions on R? that are 2 -periodic in both variables.
Then the two-dimensional 27 -periodic Sobolev space H™(1 2) is defined as the completion

of C3°(12) := ("; Cp(I?) with respect to the Sobolev norm

+o0 1/2
||h||m:=< > <1+k2+z2)m|ckz<h)|2) ,

K,{=—00

where ¢y, (h) denotes the (k, £)th two-dimensional Fourier coefficient of h.

By analysing the Fourier series of Qx, which can be given explicitly, one can easily
seethat Q is abounded operator from HP(1) to HP+1(1) for any p € R (Sloan, 1992). The
inverse operator Q1 is a bounded operator from HP+1(1) to HP(I) and can be written in
terms of the differentiation operator D and the conjugation operator K as (Berrut, 1986)

Co(y)

— 2KDy = Jy — 2KDy € HP(1), (2.3)
log p

Ql:iyeHP () Qly=

where Jy := co(y)/log p. The conjugation operator K (or Hilbert transform on the circle)
isthe linear and bounded operator from Lo(1) into itself which maps

+oo
xt)y= Y cn ()™ e La(l)
n=—00
to
+o00 .
KX(t) = Z —isign(n)ca(x)e™,  (sign(0) := 0). (2.4)
n=—o0o

Let usnow look at the operators R and DR and list some existence/uniquenessresults. If
I' isapiecewise analytic Cl-curve or a piecewise C? regular C1-curve, then (Hoidn, 1983)
Dr is bounded in a neighbourhood of (tj,tj), ti € €(I"), from which it follows that Dr
belongstoL»(12) and DR : Lo(1) — La(1) isaHilbert—Schmidt operator, and is therefore
compact. With (2.3) we can then write A asQ+ R = Q(I + Q'R) = Q(I — 2KDR + JR).
Using the fact that A isinjective if the logarithmic capacity y of I" is different from one
(Yan & Sloan, 1988), it follows with the Fredholm aternative that for each Jordan curve
I" withy # 1and suchthat Dr € Ly(12)

A: HO(1) — H(1) isan isomorphism.

If I" is a polygon or an arbitrary piecewise regular C2-Jordan curve without cusps, then
Dr is not bounded in a neighbourhood of (tj,tj), ti € €(I"). The first author has shown
(Reifenberg, 1997) that Dr no longer belongs to L»(12) (in fact, Dr € H7(12), ¢ > 0)
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and thus that DR can no longer be guaranteed to be a compact operator on HO(1). For
the case of a polygon with a parametrization proportional to arclength it has been shown
(Yan & Sloan, 1988) that DR = C + B, where C is a compact operator on H%(1) and
B is a non-compact Mellin convolution operator local to each corner. It follows that, for
such I', A is still an isomorphism from HO(1) to H1(1). With the help of perturbation
arguments, Elschner & Graham (1995) extend this result to more general parametrizations.
The generaization to arbitrary piecewise analytic Jordan curves without cusps or even to
piecewise regular C2-Jordan curves without cusps should be possible.

On the other hand, if we restrict I" to a smooth curve, then more genera results
hold. Here the kernel Dr (t,s) is a C* 2r-periodic function in both variables. Thus
DR : H™(1) — H™(l) is compact Ym € R (Yan & Sloan, 1988), and we conclude
that, if y # 1, A isanisomorphism from H™(1) to H™1(1).

2.2 Anoperator equation of the second kind

In constrast to most other authors (who solve (2.1) with Galerkin, collocation or
qualocation methods) we want to use a degenerate-kernel method. Since (2.1) is not
directly amenable to such a method, we first transform it through multiplication by Q1
into the equivalent equation of the second kind

(1+Q R)x =Q7*f. (2.5)

For afunction of two variablesh e Lo (12) with the Fourier series

“+00

Z Cnm(h)einte—ims

n,m=—oco
we define the conjugate function with respect to the first variable (again denoted by K) by

+w . .
Kh(t, s) = Z —isign(n)cam(h)eMe'™ms, (2.6)

n,m=—oco
Onethen verifiesthat KDR = KD(Intr) = (Int KDr ), where Dr isthe derivative of r with
respect to the first variable (Berrut, 1986):

Z(t) — z(s)
gt —ds

0
Dr(t,s) = aIog

/ it
=Re{ Z®) B '|e' |
z(t) —z(s) ¢€t—¢s

Using (2.3) we obtain the operator equation of the second kind (Berrut, 1986)
co((Intr)x)  co(f)
logp  logp

In contrast with the integral equation of the first kind (2.1), (2.7) no longer contains
a singular logarithmic kernel but the better behaved kernel Dr. Moreover, numerical
calculations (Berrut, 1985) show that in most cases the Lo and L o.-norms of this kernel
are smaller than those of the Neumann kernel of the second-kind equation obtained from

X — 2(IntKDr)x +

— 2KDf. 2.7)
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the double-layer representation of the solution (Henrici, 1986). (For instance, for the disc
of radius p, one has Dr = 0, whereas Neumann's kernel is 1/2mp, (see Henrici, 1986,
p 283).) Also, al the eigenvalues of the integral operator are smaller than one (Stenger
& Schmidtlein, 1998). As a conseguence, direct application of fixed-point iteration to the
discretized equation (see Berrut, 1986, and Section 3) always converges as soon as N is
large enough for a good approximation of the kernel, and typicaly in a small number
of iterations. Numerical experience with the Dirichlet problem of conformal mapping (see
Example 2, Section 5) also demonstrates that, for domains with reentrant corners or similar
smooth domains like reflected ellipses with small parameters (Berrut, 1985), the solution
of the discretized equation is more accurate than that obtained with the Neumann kernel
equation (called Warschawski’s equation in that context (Henrici, 1986)).

2.3 Openarcs

We can also consider the case where I is no longer a closed curve, but an open arc
parametrized by v(z), T € [—1, 1], with |v/(7)| > 0. After transforming it to the circle with
the change of variablet = cos™1 ¢ (Yan & Sloan, 1988) and after defining z(t) := v(cost),
t € [0, ], equation (1.1) becomes

% / log|z(t) — z(s)|v(z(s))|v'(coss)| sinsds = k(z(t)), t e][O0,x]. (2.8)
0

Let x(t) = %v(z(t))|sint| |[v/(cost)| and f(t) := k(z(t)). Then x and f are even, 27-
periodic functions and (2.8) can be written as

%/Iog|z(t) —z(s)|x(s)ds = f(t), te]0,x]. (2.9
0

Moreover, the integral in the above expression can be replaced by one half of the integral
over a full period; we then again get (2.2) and we can solve it by the same numerical
methods.

The solution of (2.8) as afunction of that of (1.1) is given by

2x(t)
v'(cost)|ly/1 — (v=1(2))2

v(2) =v(zM) =

Dueto the factor /1 — (v—1(2))2 it has asingularity at the two extremities of the contour,
even if x is smooth, which reflects the different character of the solutions on closed and
open contours.

The theoretical analysis has been given by Yan & Sloan (1988). All the operators are
considered in even Sobolev spaces HE := {x € HP|c_n(X) = cn(X)¥n} and equation (2.9)
issplitinto

(Qe + Re)x =f
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with

Qex(t) = % / log|p(cost — coss)|x(s) ds
0

and

RexX(t) i= %/Iog' 2t) — 2(8) X(s) ds,
0

p(cost — coss)

for p # 1. The kernel re(t, s) := log|(z(t) — z(s))/(p(cost — coss))| is 2-periodic and
even in each variable and has the same properties as r. For an even function x one has
cn(X) = c_n(X) for al n, from which the cosine Fourier series representation of x

(0.¢]
X(t) = ap(X) + Z an(Xx) cosnt
n=1
follows, where an(x) = cp(X) + c_n(X) = 2c,(X). Making use of the fact that Qux =
Qx for x even, we easily obtain the cosine Fourier series of Qgx, from which it follows

immediately that Qe isabounded and invertible operator from HE to HE ™ for every p € RR.
Consequently, (2.9) is equivalent to the equation of the second kind

(I + Qg 'Re)x = Qg1 . (2.10)
For y even we still have ley = Cp(y)/log p — 2KDy and thus (2.10) can be written as

co((Intere)x)  Co(f)

X — 2(Inte KDre)x =
(Inte e)X + log p log p

_ 2KDf, (2.11)

which correspondsto (2.7) with r replaced by re and Int replaced by Inte, where
1 T
(Intg h)x(t) := —/h(t,s)x(s) ds.
T
0

If X iseven then (2.11) isequivalent to (2.7).

3. The numerical method

In this section we describe the numerical solution of the equation of the second kind (2.7)
by a degenerate-kernel method making use of attenuation factors. In order to simplify the
notation, we shall fromnow onset p := e, i.e,logp := 1.

Let {tx}, tk ;= k2r/N, k=0, ..., N — 1, be the equidistant mesh on | and {(tk, S¢)},
(tk, S¢) = (k27 /N, €27 /N), k, £ = 0, ..., N — 1, be the equidistant mesh on 2. For a
2 -periodic function f € Lo(l) defined everywhere, we denote by f the N-periodic bi-
infinite real sequence{fk}‘k*;’ioo, where fy ;== f(ty), k=0,...,N —1, and fy.n = fk
for al k. Similarly, for a function of two variables h, we defineh := {hk,g};f‘f:_oo, where
hg e = h(tk, s¢), k, £ = 0,..., N — 1, and where the other values are obtained through



32 M. REIFENBERG AND J.-P. BERRUT

N-periodic repetition in k and £. Asin Henrici (1986), we denote the space of such one-,
respectively two-dimensional sequences by 1Ty, resp. 1‘[,(\,2). We approximate f and h by
f = Pf, respectively h := Ph, where P: Iy — IT and P : H,(\IZ) — 1@ are
linear and translation invariant approximation operators, 17 and I7® denoting the spaces
of 27-periodic real one-, respectively two-dimensional functions. (Since al functions are
27 -periodic, characterizing approximations by a“ ™ does not create any confusion with
the Fourier transform.) These operators have the property

cn(PF) = mGn(f) foral nez, femy, fe, (3.1)

where c,(X) stands for the nth exact, €,(x) for the nth discrete Fourier coefficierlt of
x and 7, is the nth attenuation factor corresponding to the operator P. Thus Pf =
Y2 men(F)EM. If P hasthe additional property

PA...,1,1,1,....,1,..) =1, (3.2)

and if
P preserves central symmetry, 3.3
thento =1, jn = O0foral j e Z* :=Z\ {0} and 7_p = 7y € Rforaln e Z (see
Gautschi, 1972).
Moreover, if P isthe tensor-product of P by itself, one has

Cnm(Pﬁ) = 1 TmCnm(h), (3.4

where chm(h) and €im(h) are respectively the (n, m)th two-dimensional exact and discrete
Fourier coefficients of h (Gutknecht, 1987).
Setting T := Q'R and g := Q1 f, equation (2.5) reads

X+ Tx=g. (3.5

In Berrut & Reifenberg (1997) we solved Fredholm integral equations of the second kind
X+Hx = f by approximating the operator H := (Inth) for h € La(l 2) by H:= (Inth) =
(Int Ph) and the inhomogeneity f € La(l) by f = Pf. Applying this to equation (3.5)
would mean approximating (Int KDr) by (IntKDr) = (Int P@r) and KD f by KDf =
PKD f. To achieve these approximations we would have to compute the discrete Fourier
coefficients of KDr and KD f, which would require knowledge of the values of KDr at
the N2 points (tx, s¢), k, £ = 0,..., N — 1, and of KD f at the points ty. But, except for
special curves such as the ellipse and the circle, these values are not available: one cannot
obtain the values KDr (tk, s¢) and KD f (tx) from those of Dr and D f. . For this reason we
first approximate the known functionsr, Dr, f and D f by T = PT, Dr = PDr, f = Pf
andDf = PDf, respectively, and we conjugate afterwards, making use of formulas (2.4)
and (2.6). Thisyields the operator

T:xelyl)— Tx:= —2(IntKDr)x + co((IntF)x) = K(—2(Int ﬁ)x) + co((IntF)x)
(3.6)
as an approximation of T, and the approximate inhomogeneity

G=—2KDT +co(f). (3.7)
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We observe that Tx and § are both in the form KY for some function y Lg(l ), plus
some constant term, where Lg(l ) isthe subspace of those functionsin L (1) whose zeroth
Fourier coefficient equals 0. Therefore the sameistruefor the solution X of the approximate
equation R

X+TX=0 (3.8

and we have the following theorem.
THEOREM 3.1 The solution of (3.8), if it exists, can be expressed as
X =KPy + «

for some ¥ € ITy and somea € C. Moreover, withy := Py, (3.8) can be written explicitly
as

KY +a — 2(IntKDr)KY + co((IntF) KY) — 2(IntKDr)a + co((IntF) &) (3.9)
— —2KDT + co().

Conditions guaranteeing the existence of X will be given in Theorem 4.1. We do not need
to know the value of Co(y) since we apply the conjugate operator K to ¥ whenever the
latter occurs, which multiplies €y (Y) by zero. We can therefore set €o(Y) = 0. Expanding
al the terms of (3.9) into their Fourier series, using the orthogonality of the trigonometric
functionsaswell asthe properties (3.1) and (3.4) and equating on both sides the coefficients
of ", n e Z*, we obtain the infinite system

+00
a—i Y Sgn(m)ziCom(r)Em(Y) + Coo(r ) = Co(f),

m=—o0
+00
men(Y) +2ith ) Sign(m)fr%Enm(Dr Yem(Y) — 2tnCno(Dr)a = —2taCn(D T).

mM=—o0
(3.10
For the existence of a unique solution (a, €i(Y),...,En_1(Y¥))" the infinite system
(3.10) should be equivalent to N distinct equations. Making use of the N-periodicity
of the discrete Fourier coefficients Cym(Dr) and €n(Y), we get the following finite N-

dimensiona system for the N — 1 unknown coefficients c,(¥),n = 1,...,N — 1, and
. . N1 R R R R
o —i Y pmCom(r)Cm(Y) + Coo(r)a = Co(f),
m=l (3.11)
ch(Y) +2i Z pmEnm(Dr)Em(Y) — 2Cho(Dr)ae = —2€,(D ),
m=1
where
+o0
om = Z sign(m+¢N)z2,,n, for m=1... ,N-1
l=—00

REMARK 3.1 Iflogp # 1, thenlog p appears merely in the first equation as a factor of
the first term «. It could be used numerically to balance this equation when its terms are
very different in size.
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REMARK 3.2 Instead of solving Symm'’s integral equation (1.1) or (2.1), Henrici made
use of his splitting (1.4) and solved the equation

Qx=—-Rx+ f

by devel oping the given functions and the unknown x into their Fourier series, whichyields
the corresponding infinite linear system

+00

1
—5—C() =— Y Cm(Cm() =cn(f),  n#O.
2n| M=o

Writing this equation for trigonometric interpolants, as in Berrut (1976), one gets a finite
linear system which can be written as an approximate functional equation

Qx=-Rx+ T, (3.12)

for the unknown
N/2

—~ //A —~ i
L= Z Ch(X)eM,

—N/2

where R := (IntPT) and f := Pf, P and P denoting respectively the one- and two-
dimensional trigonometric interpolation operators. The approximate equation (3.12) looks
simpler than the equation of the second kind (2.7). Suppose however that, instead of
being trigonometric interpolation operators, P and P are spline, respectively tensor product
spline interpolation operators. Assuming X = PX, one sees that RXisadsoa spline but
unfortunately thisis not true for QX. Hence, one cannot solve the equation corresponding
to (3.12) for arbitrary linear and translation invariant approximation operators.

ReEMARK 3.3 Since the corresponding matrices are large and dense, in practice we do
not solvethe linear system (3.11) by Gaussian elimination, but we directly apply the fixed-
point iteration described in Berrut & Reifenberg (1997). This means that at the (j + 1)th
iteration step, j =0, 1, ..., we compute the values

. N—-1 . .
a0 =1 37 pmCom()Em(¥ 1) +Coo(raV —To(F),
m=1

o 2i N=L N L (3.13)
@It = =5 D | 2 pmCm(Or em@ ) | w
k=0 Lm=1

+2Cho(Dr)a) — 26,(Df),

forn=1,..., N — 1, wherew := e*/N and where the G, (Dr ') are the coefficients of
the trigonometric polynomial interpolating the function Dr ®)(s) := Dr (tx, s) between
the points s;, £ = 0,..., N — 1. These values are the same at every interpolation

step and therefore are computed only once through N one-dimensional fast Fourier
transforms (FFTs) in about %(N2 log N) (complex) flops. (For real functions the practical
computations are obviously more efficient in rea arithmetic, see Berrut (1985).) The
coefficients Com(r), m = 0,..., N — 1, can be calculated simultaneously by a single
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one-dimensional FFT, so that this iterative method does not require any two-dimensional
FFTs. If N is a power of 2 then the total number of flops needed for the FFTs is about
%(N + M + )N log, N, where M denotes the number of iterations. Since the matrix—
vector products require M N2 flops, for N largetheiterative solution isfaster than Gaussian
elimination aslong as the number of iterationsislessthan about N /3. Theiterative method
is equivalent to that using the two-dimensional FFT, and converges as soon as N is large
enough for a good approximation of the kernel of the integral operator.

REMARK 3.4 Let us come back to the case where I" is an open arc and consider the
approximate equation
X+ TeX =0,

whergfe isdefinedasT in (3.6) withr replaced by re and Int replaced by Inte. Considering
that f iseven (odd) if f iseven (odd), and that the derivative and the conjugate function
of an even, respectively odd function are odd, respectively even, we see that for x even,
Tex and G are both of the form K plus a constant term, where ¥ is an odd function
in LY. We thus set X := K¥ + « for an odd function ¥ € L9 and @ € C. Since dll
the functions involved in the approximate equation are either even or odd, expansions
in cosine, respectively sine series instead of exponential Fourier series can be used. The
resulting system is then equivalent to (3.10).

3.1 Examples of the use of some interpolation operators

We derive here formulas for oy in some of the most important cases. Indeed, the
presence of the sign function in p,, makes them al quite different from the corresponding
expressions for the general Fredholm equation in Berrut & Reifenberg (1997). The same
istrue also for the evaluation of the approximate solution in the following paragraph.

EXAMPLE 1 Trigonometric interpolation

Here only a finite number of attenuation factors are non-zero and the factors py, can be
computed in an easy way. They aregivenby pm = 1if 1 <m < N/2, pm = 0if m=0or
N/2and pm = —1if N/2 < m < N — 1. The method is then equivalent to that in Berrut
(1986).

EXAMPLE 2 Spline interpolation
(a) Splineinterpolants of even order 2d (d > 1).

Since
m 2d
Tm+¢N = N+ m Tm,
wecanwriteform=1,...,N -1
-1 4d +00 4d
2 m m
— — 1 .
pm rm[ e;oo<‘3'\‘+m) + +€;<ZN+m) ]

Let us set asin Gutknecht (1986)

+00 7 p+1
2) = —_— forzeC\{-1,-2,...}, p=12,....
Vp(2) ;(HZ> eC\{ Lop
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Then m

pm = T3 [—Wd—l (_ﬁ) + 1+ Yad—1 (%)] .

The function vp(z) can be expressed in terms of the polygamma function (P (2), the pth
derivative of the psi function v (z) = (d/dz)logI'(z) = I"’'(2)/T" (), where I" denotes the
gamma function (Gutknecht, 1986):

—1)p+1
Vp(2) = %zpﬂw(p’m D.
In order to calculate py, we have to evaluate ¥4q—1 inzx = k/N, k=0,...,N -1, i.e,

Yv@-D gt thevalueszx + 1,k = 0,..., N — 1; these al liein the interval [1, 2) which
does not contain the pole of v “4—1_ Following Luke (1978, vol 1, p 2; vol 2, p 301), we
can write

PP x+1) = P (x+3) + (~1)PLp! [(x +)P g (x 2)—9—1] ,

for x e [0, 1]. This formula allows us to use Luke's expansions for (P in the interval
[3,4] in terms of Cebyev polynomials. Luke lists the coefficients of these Cebyzev
polynomiasfor p = 0, ..., 6. We evaluate v at the negative values —z¢, k = 1, ...,
N — 1, by using the relation yp(—2) = op(2) — 1 — ¥p(2), where o, denotes the sigma
function defined by

Jio ( 7 )p+1 { mzcotmz, forp=0,
0p(2) = - =
[ R SINC~ PtV (72)qp_1(cosz), for p e N\{0},

and gp_1 isthe polynomial of degree p — 1 defined recursively by

42
go(t) =1, Qet) =tge-1(t) + m%_ﬂt), t=12,...

For the linear splineinterpolant (d = 1) we get
pm =t [-03(zm) + 1+ ¥3(zm) + 1+ ¥3(zm)] = 3[2 — 03(zm) + 2¥3(zm)] .
whereas for the cubic spline (d = 2)
pm = T4 [2 — 07(2m) + 2¥7(zm)]

(b) Spline interpolants of odd order 2d + 1(d > 0).

Here
( )6 m 2d+1

and thus

+00 4d+-2
pm=1m Y Sign(m+¢N) ( ) = (2 — 04d+1(Zm) + 2Yad+1(Zm)).

{=—00

m -+ ¢N
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For the piecewise constant spline interpolant (d = 0) thisyields

pm = T5(2 — 01(Zm) + 2¢r1(zm)).

Since the evaluation of each of the o, and yp necessitates O(1) flops, their evaluation at
al zy, requires O(N) flops, and so does the calculation of all ppy,.

3.2 Evaluation of the approximate solution

Oncea and €1 (Y), ..., En_1(Y) have been calculated by solving the linear system (3.11)
(directly or by the iterative method (3.13)), one needs to evaluate the approximation X to
x. We have

+o0o .
() = +KJt) =a—i Y sign(n) tnCn(y)e™.
Nn=—o0
This can again be written as a finite sum by collecting the factors of each of the different

Ch:

N-1 ) +00 )
() =a—i Y C(y)e™ [ >~ Sign(n + EN) TN é‘fN‘} :
n=0

{=—00
Let
+0o0 .
Sn(t) == > sign(n + LN)Tnpen €N
{=—00

If property (3.2) holds, then ép(t) = 0.
If we consider splines of even order 2d (d > 1), thenforn £ 0

400 Zn 2d Nt 400 Zn 2d eiZNt
n(t) = - — 1 _n
()= ;(—Hzn) et +;(Z+zn) ’
wherez, :=n/N,n=1,..., N — 1. This can be expressed in terms of the generalized
zeta-function, which figures among the predefined special functionsin some programming
languages (e.g. Mathematica, where it is known under the name LerchPhi), and which is
defined by

[e’e] Zk
t(saz)=) ——
k;; (k +a)s

for any complex number s with Re(s) > 0if |z] < 1, z # 1, and for s with Re(s) > 1if
z=1,a e R (see eg., Hansen, 1975, p 142). From this definition we see that 5, (t) can
be written as

Sn(t) = T [1+ 229(z(2d, zn, €NY — ¢ (2d, 2z, e—”\“))] .

At the interpolation pointsty = k27 /N thisyields

+00
St = Y SN+ EN)Tosen = 7|1+ 22 (520, 20, 1) — ¢ (2d, 70, 1) ].

{=—00
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Using the definition of y,(z) we see that zﬁdg(Zd, Zn, 1) = ¥24—1(z4) and so 8p(tx) can
be expressed as

n(tk) = tn[— Vad—1(—=2n) + 1+ Y2d4-1(zn) | = ™[2 — 02d-1(2n) + 2¥2d0-1(20)].
where yo4_1(zn) is computed through the polygammafunction v (24—D | asin the previous

section.
For odd orders2d + 1 (d > 0),

+00 n 2d+1 )
Sn(t) :[;oosign(n +EN)(—=1)* <£N " n) TnetNt

_ = 1) —Zn 2d+1eiENt 1 = 1) Zn 2d+1ei£Nt
S () e S (1)

and in terms of the zeta-function

Sn(t) = 0 [—1 + 29 (¢2d + 1, —2z, —e VY + £(2d + 1. 20, —é”t))] .

At the interpolation points, §,, can again be expressed in terms of the polygamma function.
For this purpose, |et us define

- +00 . 7 p+1
To@ = ;(—1) (—He) .

Then we have _ ~
Sn(tk) = n [—V2d(—2zn) + 1+ 2d(zn) ]

and making use of the relation yrp(—2) = 5p(2) — 1 — ¥p(2), where &, is defined by

5 i (2 ~(0+D (1 2/
op(2) = Z (-1 <m> = SINC (m2)qp(cosm2)

j=—00
and Gy is apolynomial defined recursively by

2

14

Go®) =1, Go(t) :=tGe-a(t) + G, =12,
8n(tk) becomes

Sn(tk) = Tn [2 — 52d(Zn) + 224 (zn)] - (3.14)
If t is one of the midpoints between the interpolation points, i.e.,, t = tx + /N for some
k e {0,..., N — 1}, then we have to evaluate

+00
Snltc+m/N) = Y (=Dfsign(n+ ¢N)nen.

{=—00
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In the case of spline interpolation of even order 2d (d > 1) we get by similar calculations
asfor 8p(ty) ~
Sn(tk +71/N) = 1[2 — God—1(Zn) + 2¢2d-1(2n)] (3.15)

and for the splines of odd order 2d + 1 (d > 0)
Sn(t + 7/N) = 1n[2 — 024d(Zn) + 2¢24(2Zn)].

The functions Jp appearing in (3.14) and (3.15) are absent from most libraries, in contrast
to the polygamma function v (P (z), which is available as an intrinsic function in many
programming languages (e.g., Mathematica, Maple, MATLAB, etc). In order to express
the series Y/ (zn) in terms of the functions ¥ (P’ we define the series

+o00 l
)
B(2) = § .
=@+

It can easily be verified that

o3[ (552) -+ (3]

With the above notation and formulas, we have

~ zZPt(—1)P ZPti(—1P z+1
Up(2) = T'B(p)( 7) — ZTIpl [w(P) < 5 ) 1/,(F’) ( )] -1

To avoid the pole at z = 0 we finaly transform the last equation using ¥P(z + 1) =
v P (2) + (=1)Pplz~PLinto

ZPH(—1P z+1 z z \PH

— (P _ 4P (Z _ _

@ == oo [w ( . ) v (2+1)] <z+1> .
Thus, after the €, (y) have been determined through the linear system (3.11), O(N) flops
are needed to evaluate X at the N interpolation points and/or intermediate points.

4. Rates of convergence of the approximate solution

As noted in the literature (see, e.g., Atkinson, 1997), one advantage of degenerate-kernel
methods isthe simplicity of their analysis. Consider the approximate equation X+TX= g
with T and g defined in (3.6) and (3.7). We can use a convergence theorem of Schleiff
for such operator equations of the second kind in L (1) (see Schleiff, 1968, p 480, for the
proof) or the theorems on operator approximationsin Kress (1989, Chapter 10).

THEOREM 4.1 Suppose that (I + T)~! exists and that the following two conditions are
satisfied: R

IT—T| — 0 intheLy-norm 4.2
and

lg—g|l — 0 intheLs-norm. 4.2
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Then for some Ng € N the approximate equation X + TX = § is uniquely solvable in
Lo(1) for N > Ng and the solution X converges towards the exact solution x. Moreover,
the following error bound holds:

Ix =X < I+ D7H2IT=T)1a + D18l + g - ai]. (4.3)

We have seen in Section 2 that, for every piecewise C2, C1-Jordan curve, and for every
piecewise regular C?-Jordan curve without cusps and with logarithmic capacity different
from 1, | + SR has a bounded inverse so that the first condition is satisfied. To verify
(4.1) and (4.2) let usbound [ Tx — x|, for x € Lo(1) and [|g — §l|L,. We have

ITx — TX|lL, = | — 2AntKDr)x + co(Rx) + 2(INtKDr)x — co(RX) |
<(IR=RJ +2IK] IDR - BRI ) Ix|
and
g —GllL, = | — 2KDT + co(F) + 2KDf — co(F)|| < 2K[ [DF — DT |+ | F— f].
We thus have the following theorem.

THEOREM 4.2 The convergence of X toward x as N — oo is guaranteed if ||[/)j —
Dr|lL, — Oandif ||D/f_\— DflL, = 0as N — oco. Moreover, if I" is such that ||[Dr —
Dril, < Oy and [Df — Df ||, < O(h) then

IX — x|, < O(hmintk-a)y,

In the case of trigonometric inter polation, we only need the Riemann integrability of r, Dr,
f and D f for convergence (see Berrut, 1986). Recalling the propertiesof r and Dr givenin
Section 2 we seethat thisholds for every piecewise C2, C1-Jordan curve I". Then, for every
right-hand side function f such that f and D f are Riemann integrable, the approximate
equation (3.8) has a unique solution X, and X — x as N — oo. From the convergence
results for one- and two-dimensional trigonometric interpolating polynomials (see Canuto
et al., 1988) we conclude that ||x — XL, = O(h™), where h := 27/N, if Df € H™(I)
and Dr € H™(12) for m > 1. On the other hand, if I" is analytic, then exponential rates of
convergence can be expected if f isanalytic (Berrut, 1986).

In the case of spline interpolants the rates of convergence depend, as for trigonometric
interpolation, on the smoothness of the curve I and of the inhomogeneity f. But they
are also restricted by the order of the splines. Thus, while the trigonometric polynomials
automatically fit to the order of differentiability, the latter order has to be known to choose
accordingly the spline degree. (On the other hand, the spline interpolant oscillates less
between the interpolation points.) Using the approximation power of spline and tensor-
product spline interpolants (Schumaker, 1981), we see that the maximal order O(h¥) is
reached if the kernel Dr belongs to the tensor-product Sobolev space H®X) (12), and if D f
belongsto HX(1). If Dr € HM™™(12) and D f € HP(l) withm < kor p < k, k > 1, then
the rate of convergenceis @ (hmnm.phy,

In the literature (e.g. Schumaker, 1981) we have merely found convergence resultsin
tensor Sobolev spaces H(P-® (12) for integer p and ¢. However, numerical experiments
demonstrate that similar results should hold for real-valued exponents also.



NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS 41

In the next section we report on experiments for Symm’s equation with piecewise
analytic C! and C2-curves. Analysing the Fourier series, we see that the corresponding
parametric representations z(t) belong to HZ5=¢(1) and H3%¢(1), ¢ > 0, and the right-
hand side functions g(t) belong to H1"5=# (1) and H2'>~¢(1 ), respectively. From the known
behaviour of the solution x at the corners (Lehman, 1957, 1959), it is easy to see (Hoidn,
1983) that, for piecewise analytic C1-curves, the exact solution x belongs to HP(I) for all
p < 1-5. Since Tx belongs to this same Sobolev space, it follows that the kernel function
Dr isin the tensor Sobolev space H(P-P+D (12) 5 H(P-P)(]2). Hence the convergence of
X towards x in the L-norm can be expected to be O(h™Mn15-¢kly ¢ - 0 wherek isthe
order of the spline interpolant. In the same way we deduce O (h™M™2'5-¢.k}y convergence
rates for C2-curves.

5. Somenumerical results

EXAMPLE 1 Conformal maps

Let I : z(t) be a Jordan curve with 0 € G := int(I") and with logarithmic capacity
different from one. The function h which conformally maps G onto the unit circle with
h(0) = 0, arg(h’(0)) = O isthen given by

where U isthe solution of the Dirichlet problem
AU =0inG, (5.

U@ = —loglzionT” (5.2

and V is the function conjugate harmonic to U with V(0) = 0. The boundary integral
equation (2.1) then becomes

2
% / log|z(t) — z(s)|x(s) ds = log|z(t)], (5.3)
0

where the charge density x is the derivative of the boundary correspondence function 6.
Equation (5.3) is called Symm’s equation. In afirst test, we have applied the method of
Section 3 to an analytic curve, namely the ellipse with semi-axes 8(1 + n) and (1 — n),
whose parametric representation is given by

2(t) = B (ét n ne—“) . (5.4)

As a second example we have constructed a piecewise analytic Cl-curve by combining
one half of an ellipse with one half of a circle, and C2-curves by interpolating values of
known analytic curves, such as the ellipses (5.4), with periodic cubic splines. Finaly we
have mapped the square of side length 7z /2 with the parametric representation

Z(t) = {

+it, forO<t <7,
(5.5

INERNE]

1T /4 b/
—t+i7, for 7 <t <73,
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periodically repeated on [ /2, 27]. The derivatives at the corners have been computed as
the arithmetic means of their |eft and right derivatives, in accordance with the behaviour of
Fourier series of piecewise smooth functions at jumps.

The numerical resultsfor the four curves described above and for spline approximation
operators of different orders are shown in Tables 1 to 4. We give the experimental Lo-
errors for N pointsin 8, := & or Ay := 6 and the corresponding convergence rates for
increasing values of N. Analytical expressions of 8’ and 6 are known for the ellipse (see
Henrici, 1979, p 494) so that we can compute the experimental convergence rate as

2047 2047 ) 12

ecr = log, (Z 16/ — B E0I” [ 16" &0 — Oy &0
k=0 k=0

where & = k27/2048, k = 0, ..., 2047. Whenever the exact solution is not known we
replaced’ (resp. 0) by By,q (resp. B204s) in the computation of these experimental Lo-errors
and convergence rates.

Table 1 displays the experimental convergence rates when I" is an €llipse and for
splines of order 1, 2 and 4. These rates can be compared with the theoretical rates 1, 2
and 4.

In the case of the C2-curve, we have seen in Section 4 that the expected convergence
rates are O (h™nt2’5—e.kly “where k is the order of the spline interpolant. These rates are
confirmed by the resultsin Table 2; the value of ecr in the case of cubic spline interpolation
is approximatively 2-5 and about 1, respectively 2, for splines of order 1, respectively 2.
In Table 3 we see that for the C'-curve the experimental convergence rates for splines of
order 1, 2 and 4 are approximately 1, 1-5 and 1-5, which corresponds to the convergence
rates of O (h™n{1"5—£.khy found in Section 4.

The exact boundary correspondence function 6 for the square can be found in
Gaier (1964), for example. In Table 4 we observe experimental convergence rates of
approximately 2, 2-5 and 2-5 for 6 with piecewise constant, linear and cubic spline
interpolants. For o this correspondsto an O (h)-convergence for piecewise constant splines
and an O (h'®)-convergence for linear and cubic splines. Since the kernel function merely
belongs to H=¢(12), convergence is not ensured by Theorem 4.2.

EXAMPLE 2 Interior Dirichlet problem for the potential U (z) = Re(Z?).
In the case of the ellipses (5.4) the boundary condition (1.3) is

f(t) = U(z(t) = B2((L+ n?) cos2t + 2n).

Let X(t) be the solution of equation (2.1) for these Dirichlet data f. Then the approximate
potential U is given by

27
U@ = % / log|z — z(s)[X(S) ds.
0

Table 5 shows some error and convergence results for the approximate density function
X(t) for the ellipse with n = 1/3 in the case of spline interpolation. For cubic splines we
observe the expected O (h*) convergence.
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TABLE 1
Lo-errorsin & and experimental convergence rate for the ellipse with n = 1/3 and for splines of
order k.
N Lo-errors ecr Lo-errors ecr Lo-errors ecr
32 22852x 1071 36961 x 1072 43233 x 104

64 10814x 101 1079 11738x 102 1654 47428x 10> 3188
128 52446 x 1072 1044 31999 x 10~3 1.875 3-8082x 10°® 3638
256 25807 x 1072 1023 82724 x 104 1951 2:6866x 10~/ 3-825
512 12798 x 1072 1011 2:0975x 1004 1979 17825x 1078 3.913

1024 63727 x 1073 1006 52776 x 107> 1990 1-1475x 10~° 3.987

TABLE 2
Lo-errorsin  and experimental convergence rates for the C2-curve approximating an ellipse with
n = 1/3 and for splines of order k.
N Lo-errors ecr Lo-errors ecr Lo-errors ecr
16 12814 x 107! 89517 x 1071 4-3946 x 1072

32 54901 x 1072 1.222 19477 x 1072 5522 1.0534 x 10~3 5-299
64 25722 x 1072 1093 49434 x 103 1978 68179 x 10> 4-032
128 12411 x 1072 1051 12399 x 1073 1995 97672 x 1076 2-803
256 6:0916 x 1073 1026 3-0928 x 107* 2:003 1-6308 x 1076 2.582
512 30171x 103 1014 75794 x 10> 2028 2:8251x 107 2529

TABLE 3
Lo-errorsin 6’ and experimental convergence rates for the C1-curve and for splines of order k.

N Lo-errors ecr Lo-errors ecr Lo-errors ecr

16 2:9540 x 102 12309 x 101 1.5712 x 1072

32 13365x 102 1106 29549 x 103 5380 4-4916 x 103 1.806

64 62345x 102 1100 93719 x 104 1656 14970 x 10~3 1.585
128 29781 x 103 1065 3:0440 x 1074 1622 51691 x 10~% 1534
256 14499 x 1073 1.038 10258 x 104 1.583 1-8061 x 1074 1517
512 71419 x 107% 1021 63452 x 10°° 1509 63452 x 107> 1.509
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TABLE 4
Lo-errorsin 6 and experimental convergence rates for the square and for splines of order k.

N Lo-errors ecr Lo-errors ecr Lo-errors ecr

32 10162 x 102 1-6872 x 102 57658 x 103

64 31095x 103 1.708 33695x 1073 2324 92885 x 1074 2634
128 83204 x 1074 1901 6:0859 x 10~4 2469 1.5849 x 10~% 2551
256 21249 x 104 1969 10901 x 104 2481 27671 x 107° 2518
512 53290 x 107° 1.995 1.9005 x 10~°> 2:520 4-8645x 10~ 6 2.508

TABLE 5
Lo—errorsin X and experimental convergence rates in Example 2 for the ellipse with n = 1/3 and
for splines of order k.

N Lo-errors ecr Lo-errors ecr Lo-errors ecr

32 22852 x 1071 36961 x 102 4-3233 x 104
64 10814 x 101 1079 11738x 102 1654 47428 x 10> 3188
128 52446 x 1072 1044 31999 x 10~3 1.875 3-8082x 10°® 3638
256 25807 x 1072 1.023 82724 x 10~* 1951 26866 x 10~/ 3-825
512 12798 x 1072 1011 2:0975x 104 1979 1.7825x 108 3.913
1024 63727 x 103 1006 52776 x 107> 1.990 1-1475x 10°° 3.987

Finally we have used the N-point trapezoidal rule to evaluate U(z) and we denote the
corresponding valuesby U\ (2). In Table 6 we list the absolute error |U (z) — U N (z)| of
the potential at the points zz = (0-0, 0-0), z2 = (20, 1-0) and z3 = (3-8, 0-0), aswell as
the experimental convergence rate ecr := log, (JU(2) — UM (2)|/|U(2) - U@V (2)]) at
these points.

Further interesting examples of approximation operators which can be used with our
method are operators which are only defined in Fourier spaces as linear and translation
invariant smoothing operators like cosine-, Cesaro-, Lanczos- and spline-smoothing, see
Berrut & Reifenberg (1997).

The number of iterations required for numerical convergence is usually small, but
depends on the shape of the curve I'. Less than 10 iterations are needed for many curves
and 40 iterations are usually sufficient. Only for curves with reentrant arcs like reflected
elipses and small parameters (Berrut, 1985) did we have to compute between 100 and 130
iterations for convergence to machine precision.
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TABLE 6
Absolute error in UMN) and experimental convergence rates at the points z; = (0:0,0:0), z =
(2:0, 1-0) and z3 = (3-8, 0-:0) for the ellipse with n = 1/3 and for splines of order 4.

N U@)-0MNz)| ear [U@)-0N(z) eor [U@zs)-0N(zz)] ecor

64 10734 x 10~° 46874 x 106 2:0525 x 102
128 62477 x 10~7 4103 27767 x 107 4077 56430 x 1074 5643
256 37679 x 108 4051 16746 x 108 4051 2-8209 x 10~/ 10507
512 2:3130 x 1079 4026 1-0279 x 1079 4026 3-8719 x 1079 6181
1024 14286 x 10~10 4017 63402 x 10711 4019 23977 x 10~10 4015

2048 88364 x 10~12 4015 3-2409 x 10712 4200 14827 x 10~11 4013
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