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This paper presents a simple framework unifying a family of consensus algorithms that can tolerate

process crash failures and asynchronous periods of the network, also called indulgent consensus

algorithms. Key to the framework is a new abstraction we introduce here, called Alpha, and which

precisely captures consensus safety. Implementations of Alpha in shared memory, storage area

network, message passing and active disk systems are presented, leading to directly derived con-

sensus algorithms suited to these communication media. The paper also considers the case where the

number of processes is unknown and can be arbitrarily large.
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1. INTRODUCTION

Distributed computing is about devising algorithms for a set

of logical entities representing individual Turing machines,

and usually called processes. It is common in distributed

computing to assume that the processes communicate through

a communication medium that does not corrupt shared infor-

mation. (The issue of information corruption is typically

tackled separately through cryptographic techniques.) The

communication medium can be made up of a shared memory,

a storage area network, message passing channels or active

disks. Not surprisingly, the ability of the processes to reach

consensus on a common decision based on possibly different

proposals is key to distributed computing. If no agreement

is ever needed in the computation, then this consists of a set

of centralized independent programs rather than of a global

distributed program.

Informally, the consensus problem can be described as

follows. Each process proposes a value, and each correct

process (one that does not crash) has to decide a value

(termination), in such a way that there is a single decided

value (agreement) and that value is a proposed value

(validity). A seminal result in the theory of distributed

computing is the impossibility of solving consensus in an

asynchronous system even if only one process may crash [1].

The impossibility stems from the very fact that an async-

hronous system has no timing bounds on process speed or

communication delays. In particular, in an asynchronous

system, any algorithm that ensures validity and agreement

would have at least one execution where it does not terminate.

In practice, however, distributed systems are usually

synchronous and do have timing bounds on process speeds

and communication delays. Sometimes, due to high con-

tention, a distributed system might traverse an ‘instability’

period during which the bounds are violated, before resuming

to a ‘stable’ period during which some bounds do hold.

Synchronous consensus algorithms are pretty easy to

design. These are however fragile and might violate the

safety property of consensus (during ‘instability’ periods of

the system). Appealing alternatives are consensus algorithms

that preserve the safety of consensus during ‘instability’

periods, and achieves liveness whenever the system ‘stabi-

lizes’. Such algorithms have been said to be indulgent [2].

These algorithms are usually devised in partially synchronous

models [3] with only eventual timing assumptions.

There has been a lot of work to precisely capture these

eventual timing assumptions in the form of an abstract

liveness-oriented device. Most approaches came out from a

closer look at the consensus impossibility, revealing that the

need for timing assumptions was basically motivated by the

necessity to detect failures and distinguish crashed processes

from slow ones. Not surprisingly, the minimal timing

assumptions needed to solve consensus were captured by an

abstract device sometimes called a failure detector [4, 5, 6].

From a theoretical point of view, this device is defined

through axiomatic properties and the system enriched with

these properties is defined as a new computation model. The

most popular of these devices, called Omega (or sometimes

eventual leader election), was indeed shown to be minimal to

solve consensus [5]. From a practical perspective, exhibiting

a device like Omega makes it easier to design different

forms of indulgent consensus algorithms by varying the

implementations of Omega, as long as its properties remain

satisfied.
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By itself, Omega does not implement consensus. It is rather

complementary to an algorithm that preserves consensus

safety even during instability periods. A variety of such

algorithms have been devised and more will certainly be

discovered in the near future. This paper was motivated by

the appealing objective to devise the complement to Omega.

That is, to capture the exact properties of the algorithm that,

together with Omega, implement consensus (in an indulgent

way). The result of this quest was precisely Alpha, namely,

the safety-oriented abstraction we present in this paper.

Contribution This paper presents a simple and generic

framework that instantiate indulgent consensus algorithms

that clearly decouple safety and liveness properties. Liveness

relies on the use of the Omega abstraction. The information

structure used to ensure safety is encapsulated within the

Alpha abstraction we introduce here.

Interestingly, our generic framework is independent from

the way the processes communicate. Communication is

encapsulated within the implementation of Alpha. Several

implementations of Alpha are presented, each considering a

specific communication medium. In particular, the paper

visits the following communication models: shared memory,

storage area network, message passing channels and active

disks. We also consider the case where the number of

processes is not known and can be arbitrary large [7, 8, 9].

Our paper is driven by design simplicity and an interesting

methodological feature of the paper is the way these

algorithms are ‘derived’ one from the other.1 We start the

visit from a shared memory model providing basic register

objects [10, 11]. Then, using classic quorum techniques, we

show how each shared register can be replaced with shared

disk blocks [11]. Then, considering n disks (the same as the

number of processes), and observing that each process pi can

act as a peer playing two roles, a role offering the Alpha

primitive to its user, and a disk storage role, we obtain a

message-passing algorithm [12]. Finally, restricting a process

to play a single role (either implementing the Alpha primitive

or being only a disk storage), we obtain an active disk-based

algorithm [8].

Related work The spirit of our Alpha abstraction (implicitly

hidden in [12] and inspired from the notion of ‘eventual

register’ introduced in [13]) is close to the one of the Lambda

abstraction we have investigated in [14]. Both are designed

for round-based algorithms, and defined in an abstract way by

a set of axiomatic properties. However, unlike Lambda, Alpha

does not encapsulate failure detection issues that are needed

to terminate consensus; it captures the essence of what is

exactly needed as far as consensus safety is concerned [12]. It

is in this sense a strict complementary to Omega (as far as

consensus is concerned). We thus achieve a clean separation

of liveness and safety, in the spirit of indulgent algorithms.

Alpha differs from the notion of eventual register [13, 15]

(dedicated to the deconstruction or reconstruction of Paxos

algorithms), or the subsequent notion of ranked register [8]

(introduced to take into account active disks), in the sense that

it is a higher level abstraction providing a simple unifying

abstraction factoring out the way the processes communicate

and cooperate (whatever the underlying communication

medium). By analogy to failure detectors that are defined in

an abstract way independently of any particular implemen-

tation detail (such as message delay, local clocks, network

topology etc.), Alpha provides a unique framework to

describe a wide variety of indulgent consensus algorithms.

The algorithms we obtain by instantiating our framework

can be viewed as variants of the seminal Lamport’s

Paxos algorithm [12], and more precisely of its underlying

Synod consensus algorithm. (We focus in this paper on

variants in a crash-stop model with reliable communication,

for simplicity of presentation. Extensions to the crash-

recovery and failure omission model can also be obtained

through our framework). The goal of Paxos is actually to

implement highly available deterministic services despite

faulty processes. Paxos is based on the well-known state

machine approach [16] (also called active replication): the

service is replicated over a set of processes, and every replica

is supposed to compute every request and return the

associated result to the corresponding client (which selects

the first returned result). It is crucial to Paxos that the replicas

deliver client’s requests in the same total order. The replicas

can thus apply the same sequence of requests to their local

copies of the service state. In that way, the processes create

the illusion that there is a single copy of the service. Paxos

ensures the common request delivery order by using a

sequence of consensus instances, each instance ordering a

batch of requests.2 Paxos has been analyzed and described in

various ways in several papers [13, 15, 17, 18, 19]. Moreover,

several protocols inspired by or based on Paxos have been

recently developed [20, 8, 11]. Indirectly, our paper can be

seen as an endeavor to capture the essence of Paxos-like

consensus algorithms (e.g. [13, 8, 18]).

Roadmap The paper is made up of nine sections. Section 2

presents the process model. Section 3 presents the Alpha

abstraction and a generic consensus framework. Then the

Sections 4, 5, 6 and 7 present implementations of Alpha

suited to different underlying communication systems,

namely shared memory, disks, message-passing and active

disks. Finally, Section 8 addresses the case where there are

arbitrarily many processes. Section 9 concludes the paper.

1In the present context, the very notion of ‘derived’ does not mean that the

algorithms are obtained from automatic transformations. It means that they

are obtained from a methodological construction.

2Although the original name of the consensus protocol underlying Paxos

was the ‘Synod’ algorithm, this consensus algorithm was also named ‘Paxos’

in the literature.
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2. PRELIMINARIES

2.1. Processes

We consider a finite set of n > 1 processes p1, p2, . . . , pn.

A process can fail by crashing, i.e. prematurely halting.

Until it possibly crashes, a process behaves according to its

specification and executes atomic computation steps. A step

consists in reading or writing a local variable, invoking an

operation on a shared service (e.g. Omega), or an execution

of the return() statement. If it crashes, a process stops

executing any step. A run is a sequence of steps issued by the

processes.

By definition, a process is faulty during a run if it crashes

during that run. Otherwise, it is correct in that run. In the

following, t denotes the maximum number of processes that

may crash.

There is no assumption on the relative speed of a process

with respect to another. We only assume that, until it possibly

crashes, the speed of a process is positive (it cannot stop

during an infinite period between two consecutive steps of its

algorithm).

We assume that the communication medium through

which the processes communicate is reliable. Reliability

means here that the medium does not corrupt data. The

relevant properties of a particular communication medium

will be described when we will present a specific instance of

our framework for that particular medium.

2.2. The consensus problem

In the consensus problem, every process pi is supposed to

propose a value vi and the processes have to decide on the

same value v, which has to be one of the proposed values.

More precisely, the problem is defined by two safety

properties (validity and uniform agreement) and a liveness

property (termination):

� Validity: If a process decides v, then v was proposed

by some process.

� Agreement: No two processes decide differently.

� Termination: Every correct process eventually

decides on some value.

In the following ? denotes a default value that cannot be

proposed by a process.

2.3. The Omega abstraction

The Omega abstraction, denoted W, and sometimes called

eventual leader election, provides the processes with an

operation Omega() that returns the value true or false each

time it is invoked by a process. When the invoking process

pi obtains the value true, we say that it is currently elected.

A unique correct leader is eventually elected but there is no

knowledge of when the unique correct leader is elected.

Several leaders can coexist during an arbitrarily long period

of time, and there is no way for the processes to learn when

this ‘anarchy’ period is over. The Omega abstraction satisfies

the following property (that property refers to a notion of

global time, but this notion is not accessible to the processes):

� Eventual Leadership: There is a time t and a

correct process pi such that, after t, every invocation of

Omega() by pi returns true, and any invocation of

Omega () by pj 6¼ pi returns false.

The Omega abstraction has been introduced and formally

developed in [5]. According to its original specification in [5],

Omega is invoked at every computation step of a process and

returns the identity of a process which is said to be trusted :

eventually the same correct process is trusted by all correct

processes. For presentation simplicity, but without loss of

generality, we considered a slightly different specification

here where (a) we do not force a process p to invoke that

abstraction at every step of its computation and (b) the

abstraction simply returns a boolean according to whether

the process p is trusted or not. Omega was shown to be the

weakest, in terms of information about failures, to solve

consensus in a distributed system prone to process crashes but

where a majority of processes are correct (which is the best,

lower bound, that can be attained with Omega [5]). Several

Omega-based consensus protocols have been proposed, e.g.,

[22, 14, 12, 23] for message-passing systems, and [24] for

shared memory systems. All these protocols are indulgent [2].

It is important to notice that the original version of Paxos was

not described using the Omega abstraction; it was rewritten

using the Omega abstraction in [13].

Omega cannot be implemented in purely asynchronous

systems: this would violate the impossibility of solving

consensus despite asynchrony and failures [1]. To implement

Omega, one has to make additional assumptions. Such

assumptions can take the form of eventual synchrony pro-

perties. Several protocols implementing Omega in message

passing systems enriched with such additional properties

have been proposed (e.g., [25] and [26] consider the system

has eventual timely channels, while [27] assumes that the

message exchange pattern eventually satisfies some ordering

property). A protocol implementing Omega that combines

timing assumptions and time-free assumptions is described in

[28]. An Omega protocol for a shared memory system (the

only we are aware of) can be found in [21]. (In contrast, as we

will see in the rest of the paper, the other basic abstraction,

Alpha, can be implemented in fully asynchronous systems.)

3. A GENERIC FRAMEWORK

3.1. The alpha abstraction

Alpha captures the essence of indulgent consensus as far

as consensus safety is concerned. In short, one can view the
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Alpha abstraction as a shared one-shot storage object:

processes invoke it with a value to store and get a value in

return: the actual value stored. If accessed concurrently, the

object might not store anything (it sticks with its initial

value ?). If accessed sequentially, the object stores the first

value and holds it forever.

More specifically, the Alpha abstraction (we also say

Alpha object when we consider one of its instances) exports

a single operation, denoted Alpha(). Each time a process pi
invokes Alpha(), pi provides it with a pair of parameters,

namely, a round number r and a value v. Alpha assumes

that (1) distinct processes use distinct round numbers, and

(2) each process uses strictly increasing round numbers.3 In

the following, when we write Alpha (r, �), we mean that

the second parameter of the invocation is irrelevant for the

property we consider. The Alpha abstraction is defined by

the following set of properties.

� Validity.

If the invocation Alpha (r, v) returns, the returned value

is either ? or a value v0 such that there is a round r0 � r

and Alpha (r0, v0) has been invoked by some process.

� Quasi-agreement.4

Let Alpha (r, �) and Alpha (r0, �) be any two

invocations that return v and v0 respectively. We have,

((v 6¼ ?) ^ (v0 6¼ ?)) ) (v ¼ v0).
� Conditional non-? convergence.

An invocation I ¼ Alpha (r, �) must return a non-?
value if every invocation I0 ¼ Alpha (r0, �) that starts

before I returns is such that r0 < r.

� Termination.

Any invocation Alpha() by a correct process returns.

As we will see more explicitly when we will use it, it is

important to notice Alpha is a safety-oriented abstraction:

its aim is to guarantee the validity and agreement pro-

perties of consensus (i.e. its safety properties). It is also

important to notice that the Alpha abstraction (considered

alone) is not powerful enough to ensure the consensus termi-

nation property (this is because concurrent processes might

never be able to store any value in an Alpha object). So, the

termination property of the Alpha() operation is not related

to consensus liveness; it only states that, similarly to a read

or write operation, an Alpha() invocation has to terminate.

3.2. A generic algorithm

Algorithm description A generic consensus algorithm based

on the abstractions Alpha and Omega is described in Figure 1.

For simplicity of exposition, this description uses a shared

atomic variable DECIDED (initialized to ?) whose aim is

to contain the decided value.5 The simplicity and elegance

provided by the use of Alpha and Omega is conveyed by

the figure. As we pointed it out, the safety issue addressed by

the Alpha abstraction is clearly separated from the liveness

issue solved by the leader abstraction Omega.

The algorithm is round-based and the intuitive idea is the

following. Processes go from a round to a higher round

and access Alpha in every round they move to. To ensure

that Alpha indeed stores a value that will be the consensus

decision value and prevent contention among processes,

processes use rounds in a disciplined fashion. Basically,

a round is kind of ‘resource’ that has to be used eventually

by a single process (i.e. in a very unfair way!). The leader

abstraction Omega plays precisely the role of resource

allocator providing the required ‘eventual unfairness’. A

process pi does move to the next round only with the

permission of Omega (i.e. if pi is leader). Eventually, a single

process keeps accessing Alpha and does so with a round that

is higher for a non-? value to be returned.

A process pi invokes consensus (vi) where vi is the value it

proposes to the consensus instance. It terminates its parti-

cipation to that instance when it executes return (DECIDED)

at line 9; moreover, pi uses the sequence of increasing round

numbers i, i + n, i + 2n etc. (so, no two processes use the same

round numbers). The local variable r is used by pi to keep

track of round numbers. If pi considers it is leader, it invokes

Alpha (r + i, vi). According to the result value it obtains,

pi helps the other processes decide (by storing in DECIDED

the non-? value it is about to decide), or starts a new loop

(waiting for a decided value or to be again elected leader).

The text of the algorithm is self-explanatory.

If a single correct leader is elected from the very beginning,

consensus is obtained after the first invocation of Alpha()

by the leader. Moreover, in that case, the (message and time)

cost of the algorithm does not depend on the number of faulty

processes.

Correctness Proof Due to the tests of line 2 and line 4,

a consensus function cannot return ?. The validity property

FIGURE 1. A generic framework, code for process pi (t < n).

3Round numbers are called ballots in Paxos 2.
4This property is called quasi-agreement instead of agreement to

emphasize the fact that two values can be returned, namely, a non-? value

proposed by a process, and the default value ?.

5By convention, we use uppercase letters for shared variables and

lowercase letters for local variables.
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of consensus follows from this observation, the validity

property of Alpha, and the fact that a process always invokes

Alpha() with the value it proposes. The consensus agree-

ment property follows from the fact that ? cannot be decided,

combined with the quasi-agreement property of the Alpha

abstraction.

The consensus termination property follows from the even-

tual leadership guarantee provided by Omega. To show that

there is a process that eventually stores a value in DECIDED,

assume by contradiction that no process stores a value in

DECIDED. By Omega, there is a time t after which a correct

process (say p‘) is forever elected as single leader, which

means that, from t on, only p‘ can execute ‘non empty’

rounds (i.e. lines 3–6) and invoke Alpha(). As the round

numbers used by a process can only increase, p‘ eventually

executes a round r such that, any other process that invoked

Alpha() with some round number r0 is such that r > r0.
Due to the conditional non-? convergence and termination

properties of Alpha, we conclude that Alpha (r, vi) returns a

non-? value that is deposited in DECIDED: a contradiction.

Remark It is also important to remark that our proof is only

based on the properties provided by the abstractions Omega

and Alpha. There is no additional requirement on the number

(denoted t) of processes that are allowed to crash. So it works

for t < n. In a sense, these requirements are encapsulated

within the abstractions, and in particular Alpha.

4. IMPLEMENTING ALPHA IN A SHARED
MEMORY SYSTEM

This section presents an implementation of an Alpha object

in a shared memory model.

4.1. Shared memory model

The shared memory is made up of an array of n reliable

1WnR (one writer/n readers) regular registers, denoted

REG[1..n]. 1 WnR means that the register REG[i] can be7

read by any process and written only by pi. Reliability

means here that a register never crashes: it can always

execute a read or a write operation and never corrupts its

value. Regularity means the following [29]: a regular register

is a shared register such that a read that is not concurrent

with a write (their executions do not overlap) delivers the

current value of the register; a read concurrent with one or

more—sequential—writes delivers the previous value of the

register or one of the values being written.

The notion of regular register has been introduced by

Lamport [29]. A regular register is weaker than an atomic

register in the following sense. Consider a register with initial

value v. Let R1 and R2 be two consecutive read operations

(R2 starts after R1 has completed) issued by the same or two

different processes, and a write W that writes v0 and that is

concurrent with R1 and R2. If the register is regular, it is

possible for the first read R1 to obtain the second value v0,
while the second read R2 obtains the initial value v. This is

called a ‘new/old inversion’. (An atomic register is a regular

register that does not allow for new/old inversions [29].

If the first read operation R1 obtains the second value v0,
no subsequent read R2 can obtain a value older than v0).

A register REG[i] is made up of three fields REG[i].lre,

REG[i].lrww, and REG[i].val, initialized to 0,�i and ?
respectively. The meaning of these fields is the following:

� REG[i].lre stores the number of the last round entered by

pi. It can be seen as the logical date of the last invocation

of Alpha() issued by pi.

� REG[i].lrww and REG[i].val constitutes a pair of related

values 0: REG[i].lrww stores the number of the last

round with a write of a value in the field REG[i].val.

So, REG[i].lrww is the logical date of the last write in

REG[i].val, that contains the value that pi attempts to

write in the Alpha object.

To simplify the writing and the reading operations in the

algorithm, we consider that each field of REG[i] can be

written separately. This is done without loss of generality

because, as the process pi is the only one that can write

REG[i], it trivially knows its last value. So, REG[i].lre  r

is a shortcut for REG[i] hr, REG[i].lrww, REG[i].vali
and, similarly, REG[i].(lrww, val)  (r, value) stands for

REG[i]  hr, r, valuei.

4.2. The algorithm

The algorithm implementing Alpha (r, v) using a shared

memory is described in Figure 2 (it is close to algorithms that

can be found in [10, 11]). A simple examination of its code

shows that it is a wait-free algorithm: if pi does not crash

while executing Alpha (r, v) it will terminate (at line 3, 8

or 9) whatever the behavior of the other processes.

A naive algorithm To get an intuition of the algorithm, let us

consider the particular case where there would be no

concurrent invocations of Alpha (�). The implementation

would then be very simple. A register could have only one

field, namely, REG[i].val, and a process would only have to

execute the following statements (reg[1..n] is a local array

destined to contain the result of reading REG[1..n]):

reg[1..n]  REG[1..n]; % pi reads (in any order) the regular

registers % if (9j:reg[j].val6¼?) then value  reg[j].val else

value  v end_if; REG[i].val  value;

return (value)

Coping with concurrency The problems are created by

concurrent Alpha() invocations. (Of course addressing

concurrency by always returning ? would violate the condi-

tional non-? convergence!) So, to preserve both quasi-

agreement and conditional non-? convergence despite

concurrent invocations, the algorithm is based on the
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following idea: we use logical time to timestamp the invo-

cations, and answer ? when the corresponding invocation is

not processed according to the total order defined by the

timestamps.6 The algorithm uses the round numbers as logical

dates associated with each invocation (notice that no two

invocations have the same dates). Intuitively, the algorithm

aims at ensuring that, if there is a last invocation of Alpha()

(‘last’ with respect to the round numbers), it will succeed in

associating a definitive value with the Alpha object.7 To that

aim, the algorithm manages and uses control information,

namely the ‘date’ fields of each shared register (i.e.

REG[i].lre and REG[i].lrww).

More explicitly, a process pi proceeds as follows:

� Step 1 (lines 1–3).

– Line 1: When it starts executing Alpha (r, v), pi first

informs the other processes that the Alpha object has

attained (at least) the date r

– Line 2: Then pi reads the shared registers to know the

‘current state’ of the other processes.

– Line 3: If it discovers it is late (i.e. other processes

have invoked Alpha (�) with higher dates),

pi aborts its current attempt and returns ?. Let us

observe that this preserves quasi-agreement and does

not contradict conditional non-? convergence.

� Step 2 (lines 4–5). If, it is not late, pi determines a value.

To not violate quasi-agreement, pi selects the last value

(‘last’ according to the round numbers/logical dates) that

has been deposited in a regular register REG[j]. If there

is no such value it considers its own value v. If there is

one it is unique because no two processes use the same

round numbers.

� Step 3 (lines 6–8).

– Line 6: pi writes in REG[i] the value it has computed

(together with its timestamp).

– Lines 7–8: It reads again the shared registers to check

again if it is late (in that case, there are concurrent

invocations of Alpha() with higher dates). As

before, if it is the case, pi aborts its current attempt

and returns ?.

� Step 4 (line 9).

� Otherwise, pi was not late: it actually succeeded in

‘writing’ v in the Alpha object and consequently returns

that value.

4.3. Correctness proof

Termination As it is wait-free, the algorithm described

in Figure 2 trivially satisfies the termination property.

Validity Let us observe that if a value v is written in

REG[i].val, that value has been previously passed as a

parameter in an Alpha() invocation (lines 4–6). The validity

FIGURE 2. Alpha in a shared memory system.

6A similar idea has been used in timestamp-based transaction systems

[32]. A timestamp is associated with each transaction, and a transaction is

aborted when it accesses a data that has already been accessed by another

transaction with a higher timestamp (an aborted transaction has to be re-

issued with a higher timestamp).
7Thanks to the leader abstraction Omega, the notion of ‘last’ is well-

defined: there is a time after which an invocation will have the greatest round

number.
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property follows from this observation and the fact that only

? or a value deposited in a register REG[i] can be returned

from an Alpha() invocation.

Conditional convergence Let I ¼ Alpha(r,�) be an

invocation -by a process pi—such that no invocation I0 ¼
Alpha(r0,�) with r0 > r starts before I returns. During the

execution of I, we consequently have 8j 6¼ i: REG[j].lre < r.

It follows that I cannot be directed to return ? at line 3 or

line 8. Moreover, the value determined by pi at line 5 is

necessarily a non- ? value. It follows from these observations

that I returns at line 9 a non- ? value.

Quasi-agreement If none or a single invocation executes

line 9, the quasi-agreement property is trivially satisfied. So,

among all the invocations that return at line 9 (i.e. that return

a non- ? value), let I ¼ Alpha(r,�) be the invocation with

the smallest round number. Moreover, let I0 ¼ Alpha(r0, �)

be any invocation such that r0 > r and that executes at least

until line 6, i.e. an invocation that writes a value in

REG[1..n]8. Let pi (resp., pj) be the process that invoked

I(resp., I0), and v (resp., v0) the value it writes in REG[i] (resp.,

REG[j]). We show that v0 ¼ v, from which it follows that no

two different values can be returned at line 9 (as a process

that returns at line 9, returns the non-? value it has just

written in the array REG[1..n]).

We use the following time instant definitions (Figure 3).

� Definitions concerning I (I executes from line 1 until

line 9):

– Let w6(I) be the time at which I terminates the write

of the regular register REG[i] at line 6. We then have

REG[i] ¼ hr, r, vi.
– Let r7(I, j) be the time at which I starts reading

REG[j] at line 7. As pi is sequential we have

w6(I) < r7(I, j).

� Definitions concerning I0: (I0 executes from line 6 until at

least line 1, it can crash just after):

– Let w1(I0) be the time at which I0 terminates the write

of the regular register REG[j] at line 1. We then have

REG[j] ¼ hr0, �, �i.

– Let r2(I0, i) be the time at which I0 starts reading

REG[i] at line 2. As pj is sequential we have

w1(I0) < r2(I0, i).

Let us first observe that, as I returns a non-? value, it

passed successfully the test of line 8, i.e. the value it read

from REG[j].lre was smaller than r. Moreover, when I0

executed line 1, it assigned to REG[j].lrer0 > r. As the register

REG[j] is regular we conclude that I started reading REG[j]

before I0 finished writing it (otherwise, pi would have read r0

from REG[j].lre and not a value smaller than r). Conse-

quently, we have r7(I, j) < w1(I0), and by transitivity w6(I) <
r7(I, j) < w1(I0) < r2(I0, i). This is illustrated in Figure 3.

It follows that when I0 reads REG[i] at line 2, it obtains

hx, x,�i with x � r (this is because, after I, pi has possibly

executed other invocations with higher round numbers).

Moreover, as I0 does not return ? at line 12, when I0 reads

REG[1..n] at line 2 it does not see a register REG[k] such that

REG[k].lre > r0. As we always have REG[k].lre �
REG[k].lrww for any register REG[k], this means that,

when I0 determines a non-? value v0 at line 4, it obtains

v0 ¼ REG[k].val from some register REG[k] such that r0 >
REG[k].lre � REG[k].lrww � REG[i].lrww ¼ x � r. Let I00 be

the invocation that has deposited v0 in REG[k].val(I00 is

consequently issued by pk).

� If REG[k].lrww ¼ r, we have i ¼ k (because r can be

generated only by pi—no two processes use the same

round numbers), and consequently I00 is I. It follows

that v0 ¼ v.

� Otherwise, I00 is not I. The invocation I00 by pk has then

written v0 in REG[k].val at line 6, with a corresponding

round number r00 such that r0 > REG[k].lrww ¼ r00 > r.

As, by assumption, I0 and I00 can execute only the lines 1–

6, we can replace in our reasoning I0 by I00 and consider

the pair of invocations (I, I00) instead of the pair (I, I0).
� So, either I00 obtained v0 written by I and then v0 ¼ v,

or I00 obtains v0 from another invocation I0000. We then

consider the pair of invocations (I, I000) instead of the

pair (I, I00), and so on. When considering the sequence of

invocations defined by the round numbers, the number of

invocations between I and I0 is finite (there are at most

r0 � r + 1 invocations in this sequence). It follows that

the chain of invocations conveying v0 to I0 is finite, and

FIGURE 3. Regular register: read and write ordering.

8Let us remind that the ordering on the round numbers constitutes the

basic intuition from which the algorithm is designed.
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can only start with the invocation I that has written v in

the corresponding register. It follows that v0 ¼ v.

Remark 1 It is important to notice that the only requirement

that underlies the previous proof is the fact that the shared

memory is reliable and provides ‘regular register’ semantics.

There is no requirement on the number of processes that are

allowed to crash.

Remark 2 The reader can observe that the test of line 3 is not

used in the proof. This means that this line is not necessary

for the algorithm correctness. Its aim is only to allow

‘aborting’ the current Alpha(r,�) invocation (directing it to

return ?) when it is known, from its very beginning, that it

will return ?. More generally, a copy of the lines 2–3 could

be inserted at any place in the algorithm (e.g. between line 4

and line 5) without compromising its correctness.

5. IMPLEMENTING ALPHA WITH DISKS

Advances in hardware technology have made possible a

new approach for storage sharing, where clients can access

disks directly over a storage area network. The disks are

directly attached to high speed networks that are accessible

to clients. A client can access raw disk data (mediated

by disk controllers with limited memory and CPU capabili-

ties). These disks (usually called commodity disks or

network attached disks) are cheaper than computers and are

consequently attractive for achieving fault-tolerance [30].

This has motivated the design of disk-based consensus

algorithms [8, 11].

5.1. Shared disks model

We consider here a ‘shared memory’ made up of m disks,

each disk contains n blocks (one per process). We denote a

disk by d and by DISK_BK[i, d] the block of the disk d

associated with pi (which means that only pi can write this

block while any process is allowed to read it). DISK_BK[�,

d] denotes the overall set of blocks, see Figure 4.

A disk block DISK_BK[i, d] can be accessed by a read or a

write operation. These operations are atomic: all read and

write operations on a disk block can be totally ordered (there

is no possibility of new/old inversion as allowed by regular

registers). A disk can crash. When the disk d crashes, all its

blocks DISK_BK[i, d] (1 � i � n) become inaccessible. After

a disk becomes inaccessible, a read or a write operation on

this disk either return ? or never return (it is then left pending

forever). A disk that crashes in a run is faulty in that run;

otherwise it is correct. It is assumed that a majority of disks

are correct.

5.2. Underlying principle of the algorithm

When we consider the previous algorithm implementing a

Alpha object, let us first observe that if each register REG[i] is

replaced by a reliable disk, the algorithm still works. So, the

idea consists in:

� First, we replicate each register REG[i] on each disk

d(1 � d � m) in order to make that register fault-tolerant

(REG[i]; this is implemented by copies, namely the disk

blocks DISK_BK [i, 1], . . . ,DISK_BK [i, m]). So, each

DISK_BK [i, d] is made up of three fields denoted lrw,

lrww and val (with the same meaning as before) and

initialized to < 0 , �i, ? >.

� Then, we apply classic quorum-based replication tech-

niques to the disks where a disk quorum is any majority

set of disks. The assumption on the majority of correct

disks guarantees that there is always a live quorum (this

ensures termination), and two disk quorums always

intersect (this ensures safety).

5.3. Building a reliable register from unreliable disks

The disk-based implementation of Alpha uses the well-known

quorum-based replication technique to translate the read and

FIGURE 4. Replicating and distributing REG[1..n] on the m disks.
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write operations on a ‘virtual’ object REG[i] into its disk

access counterparts on the m copies DISK_BK [i, 1], . . . ,

DISK_BK[i, m].

Each time it has to write new data into the virtual object

REG[i], pi associates a new sequence number with that data,

issues a write of that < pair on the corresponding block

DISK_BK [i, d] of each of the m disks (1 � d � m). The write

terminates when the pair has been written on a majority of

disks. Similarly, a read of the virtual object REG[i] is

translated into m read operations, each one reading the

corresponding block DISK_BK[i, d] on the disk d (1 � d �
m). The read terminates when a pair has been received from a

majority of the disks; the data with the greatest sequence

number is then delivered as the result of the read of the virtual

object REG[i]. Let us observe that, due to the ‘majority of

correct disks’ assumption, every read or write operation on a

virtual object REG[i] always terminates.

It is easy to see that a read of the virtual object REG[i] that

is not concurrent with a write obtains the last data deposited

in the object. For the read operations of REG[i] that are

concurrent with a write in REG[i], let us consider Figure 5.

That figure considers five disk blocks: DISK_BK[i, 1], . . . ,

DISK_BK [i, 5]. A write of a virtual object REG[i] by pi
is represented by a ‘write line’ the meaning of which is the

following: the point where the ‘write line’ crosses the time

line of a disk is the time at which that disk executes the

write of the corresponding < data, sequence number > pair.

As the system is asynchronous, these physical writes can

occur as indicated in the figure, whatever their invocation

times. The figure considers also three reads of REG[i]:

each is represented by an ellipse and obtains the hdata,

sequence numberi pair of the disks contained in the

corresponding ellipsis (e.g. READ2 obtains the current pairs

of the disk blocks DISK_BK[i, 3], DISK_BK[i, 4], and

DISK_BK[i, 5]. As we can see, each read obtains pairs

from a majority of disks (let us notice that this is the best

that can be done as, from the invoking process point of

view, all the other disks can have crashed). READ1 and READ2

are concurrent with the write of the virtual object REG[i],

and READ1 obtains the new data, while READ2 obtains the old

data. This new/old inversion is consistent with the definition

of a regular register.

Remark If we were interested in obtaining an atomic register

instead of a regular register, before returning its result, a

read operation should first write in a majority of disks the

value it is about to return. (A read operation has to ‘help’ the

future read operations.) This would also require the ability for

a disk to compare sequence numbers, as then each block

of a disk could be written by all the processes, and not only by

a single process (see Section 7). When implementing a shared

register from disks, the difference between an atomic register

and a regular register is that the former requires every read

operation to help other reads (namely writing the read value).

This helping is not required by regularity. (End of remark.)

Let us finally notice that a write by a process pi that crashes

can leave the disk blocks DISK_BK[i, 1], . . . ,DISK_BK[i, m]

in a state where the pair that is written has not been written to

a majority of disks. Considering that a write during which the

corresponding process crashes never terminates, this remains

consistent with the definition of a regular register. As shown

by Figure 5, all future reads will then be concurrent with that

write and each of them can consequently return the old or the

new data of REG[i].

5.4. The algorithm

Let us look at Figure 2. The fields REG[i].lre and

REG[i].lrww of a virtual object REG[i] play actually the

role of sequence numbers, the first for the writes issued at

line 1, the second for the writes issued at line 6. Consequently,

we can use these values as sequence numbers.

On another side, as far as disk accesses are concerned, we

can factor out the writing of REG[i] at line 2 and the reading

of REG[1..n] at line 2. This means that we can issue for

each disk d, the writing of DISK_BK[i, d] and the reading of

DISK_BK[1, d], . . . ,DISK_BK[n, d], and wait until these

operations have been executed on a majority of disks. When

considering Figure 2, the same factorization can be done for

the writing of REG[i] at line 6 and the reading of REG[1..n]

at line 7.

The resulting disk-based algorithm (inspired by the Disk

Paxos algorithm presented in [11]) is described in Figure 6.

The variable reg[i] is a local variable where pi stores the last

value of REG[i] (there is no REG[1..n] array, the array-like

notation reg[i] is only used for notational convenience). The

algorithm tolerates any number of process crashes (t < n), and

up to (m � 1)/2 disk crashes. It is wait-free as the progress of

a process does not depend on the progress of the other

processes.

This algorithm can be easily improved. For instance,

when at line 4, pi receives a triple block[j, d] such that

block[j, d].lre > r, it can abort the current attempt and return

? without waiting for triples from a majority of disks.

(The same improvement can be done at line 13.) We did not

include such optimizations in our algorithm for our aim is

rather to show how an algorithm suited to a new context can

FIGURE 5. Implementing a 1WnR regular register with disks.
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be derived by applying simple transformations to an

algorithm designed for another context.

6. IMPLEMENTING ALPHA IN A

MESSAGE-PASSING SYSTEM

6.1. Message-passing model

This section considers the case where the underlying system

is a message-passing distributed system. There is no shared

memory made up of shared registers or shared disks. Each

pair of processes pi pj is connected by a bidirectional channel

that allows each of them to send messages to the other. To

send a message m to pj, pi invokes ‘send m to pj’’. A message

is received by pj when pj returns from executing receive ()

that provides it with a message9. The communication channels

are reliable in the following sense: they neither lose, duplicate,

nor corrupt messages. This means that every message that has

been sent is received by its destination process (unless the

destination process has crashed). There is no assumption on

the time it takes for a message to go from its sender to its

destination. The communication system is asynchronous.

6.2. From disks to message-passing

Let us consider Figure 4 that displays the way the array

REG[1..n] is replicated and distributed on the m disks. In a

message passing system made up of n processes (without

shared disks) we can take m ¼ n and implement each disk on

a separate process, e.g. process pi hosting disk I.

In that way, we obtain a simple peer system, where each pi
is a peer that on one side plays a process role for its client,

and on the other side plays the role of a disk accessed by the

set of processes. Such a transformation provides a message-

passing version of Alpha, where the ‘majority of correct

disks’ assumption becomes accordingly the ‘majority of

correct processes’ assumption, i.e. we need to have t < n /2.

When we look at the disk blocks implemented by a process

pi, namely, the blocks DISK_BK[1, i], . . . ,DISK_BK[n, i]

defining column I in Figure 4, and the way the previous

algorithms use their values, we see that both algorithms are

FIGURE 6. Implementing Alpha with shared disks.

9In the message-passing algorithm described in Figure 7, the receive ()

operation is not explicitly used. It appears implicitly at lines 13 and 16 in the

statement ‘upon the reception of msg_tag(param)‘ where msg_tag

denotes the type associated with the received message and param denotes its

value.
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interested only in the maximum value of DISK_BK[1,

i].lre, . . . ,DISK_BK[n, i].lre (see lines 3 and 8 in Figure 2,

and lines 7 and 16 in Figure 6). The same observation holds

for the set of pairs < DISK_BK[j, i].lrww, DISK_BK[j,

i].val >, 1 � j � n.

It follows that it is possible to benefit from the way the

sequence numbers are used to shrink the array of disk blocks

implemented by pi into a single local variable disk such that:

� disk.lre ¼ max (DISK_BK[1, i].lre, . . . ,DISK_BK[n,

i].lre), i.e., the last round with which a process entered

the Alpha object,

� disk.lrww ¼ max (DISK_BK[1, i].lrww, . . . ,DISK_BK[n,

i].lrww, the last round during which a process deposited

a value in disk.val,

� disk.val ¼ DISK_BK[j, i].val such that 8k: DISK_BK[n,

i].lrww) � DISK_BK[k, i].lrww.

6.3. The algorithm

The resulting algorithm is described in Figure 7. For each

process pi, it consists of two parts: a part implementing

the local invocation of Alpha (vi), and a part dedicated to the

implementation of the associated ‘reduced’ disk disk. The

algorithm uses two types of request messages.

� The type write_round&read is used (at line 1) to tag

messages carrying (1) the new round number entered by

pi, plus (2) a request for pi to know the last lre and lrww

rounds entered by the other processes. The answers to

FIGURE 7. Implementing Alpha in a message-passing system.
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these requests are typed ack_wr&read (they are sent at

line 15). The lre and lrww round values will be used by

pi to check whether it has to abort its current attempt, and

if it does not abort, to compute the value it has to adopt.

� The type write_val&read is used (at line 8) to tag a

message carrying (1) the value pi wants to write

(virtually in REG[i]) with the associated round number

and (2) a request for pi to know the last round entered by

the other processes. The answers to these requests are

typed ack_wval&read and need to carry a single lre

round number (they are sent at line 18).

Messages are processed atomically by a process. Similarly,

each invocation of Alpha () by pi can only be interrupted at

line 2 or at line 9. Moreover, the local variable disk of each

process pi is initialized to h0, �i, ?i. (As in the previous

section, this algorithm can be improved. A process pi
can abort the current attempt and returns ? without waiting

for triples from a majority of processes, when at line 2 or 9,

it receives a triple diskj such that diskj.lre < r.) The algorithm

obtained from this methodological construction can be seen

as a variant, where failures are restricted to process crashes,

of the original Paxos algorithm described in 12. (The

message-passing version of Paxos considers that a process

can crash and later recover, and also allows for message

losses and message duplicates.)

7. IMPLEMENTING ALPHA WITH ACTIVE

DISKS

7.1. On the disk side

An active disk is a disk that can atomically execute some

operations more sophisticated than a simple read or a write

operation. An example of active disk is described in [31].

The disk provides its users with an atomic create operation

that atomically creates a new file object and updates the

corresponding directory object. A disk can also provide

processes with the ability to read and modify it with the same

operation.

We have seen in Section 6.2 that, in the algorithm described

in Figure 7, each process pi is a peer playing two roles: one

role consists in implementing Alpha(), while the other role

consists actually in implementing an active disk that can

atomically execute the two ‘operations’ write_round&read ()

and write_val&read (). After having decoupled each peer

pi as indicated, we obtain n active disks (one per process):

disk[1], . . . , disk[n]. Moreover, when we consider the semant-

ics of the object we want to implement (namely a Alpha

object), it appears that are relevant only:

� The value disk[j].lre such that 8 k : disk[j].lre �
disk[k].lre.

� The pair < disk[j].lre, disk[k].val > such that 8 k0:
disk[k].lrww � disk[k0].lrww.

This means that the whole array of disk blocks described

in Figure 4 can be ‘shrinked’ to a single shared variable

accessed by appropriate operations. This variable can be

implemented by a reliable active disk (denoted AC_DISK and

made up of three fields: AC_DISK.lre, AC_DISK.lrww and

AC_DISK.val), and atomically accessed by two operations

that (for consistency reasons) we call write_round&read ()

and write_val&read (). Both operations return values, their

semantics is described in Figure 8. (These operations belong

to family of ‘read_modify_write ()’ operations.)

7.2. On the process side

The associated implementation of Alpha for a process pi is

described in Figure 9. It is a simple adaptation of the

algorithm described in Figure 7. ac_disk is a local variable

containing the last value of the active disk as read by pi;

r0 is an auxiliary local variable used to contain a round

number.

Interestingly, the resulting algorithm (that has been syste-

matically constructed from a base message-passing algorithm)

can be seen as a variant of an algorithm presented in [8]. It

enjoys the same properties as algorithm based on shared

registers described in Figure 2, namely, it tolerates any

number of process crashes and is consequently wait-free.

7.3. Unreliable active disks

The previous algorithm assumes that the underlying active

disk is reliable. An interesting issue is to build a reliable

virtual active disk from unreliable base active disks.

Unreliability means here that an active disk can crash (it

does not corrupt its values): after it has crashed a disk does no

longer executes the operations that are applied to it, before

FIGURE 8. The primitives of an active disk.
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crashing it executes them atomically. As before (Section 6),

a disk that crashes during a run is said to be faulty with

respect to that run; otherwise it is correct. Let us assume there

are m active disks.

A simple way to build a correct virtual active disk consists

in using the replication quorum-based strategy employed in

Section 6. A process pi issues write_round&read ()(or write_

val&read()) operations on all the disks and waits until the

operations have been successfully executed on a majority

of active disks. Then, among all the triples of values returned

by these invocations, pi computes the maximal lre value,

and the pair hlrww, vali such that lrww is maximal and

considers the resulting triple as the result of the invocation

of write_round&read () on the virtual active disk. The

write_val&read () operation on the virtual active disk is

implemented similarly.

The algorithm we obtain tolerates any number of process

crashes (t < n), and up to (m �1)/2 disk crashes. It is wait-free

as the progress of a process does not depend on the progress

of the other processes.

8. CONSENSUS WITH INFINITELY MANY
PROCESSES

Let us first observe that the specification of the leader abstrac-

tion Omega given in Section 2.3 does not involve process

identities. It is consequently suited to work with an arbitrary

number of processes. So, in order to get a consensus algorithm

that works with infinitely many processes, we need to

� Ensure that no two processes use the same round

numbers.

� Provide an implementation of Alpha that is not based on

the partitioning of the shared memory into blocks such

that, prior to the execution, each block is statically

assigned to some process, namely the only process that

can write it (as it is done in the algorithms described in

the Figures 2, 6 and 7 where process identities need to be

a priori known).

The Alpha object When we look at the algorithms based on a

reliable active disk (Figures 8 and 9), we observe that there

is no association between memory blocks and processes, and

the number of processes is not used. It follows that these

algorithms work whatever the identities and the number of

processes (this number can be unknown or even unlimited [8]).

Private round numbers The Alpha abstraction assumes that

distinct processes use distinct round numbers. If processes

have different identities (e.g. integers), it is easy for them to

forge distinct round numbers. An algorithm to ‘name the

anonymous’ is described in [7].

A round number made up of hsequence number, process idi
pair can then be associated with each invocation of

Alpha (). No two invocations have the same round number,

and all the invocations can be totally ordered using a lexico-

graphical order: (sn1, i) < (sn2, j) if ((sn1 < sn2) _ (sn1 ¼
sn2 ^ i < j)). Lamport’s logical clocks can generate ‘close’

sequence numbers [16]. (This can allow the leader to catch

up quicker a higher round.)

It follows from the previous discussion that the consensus

algorithm described in Figure 1 can be adapted to work with

infinitely many processes by identifying each round with a

hsequence number, process idi pair, and instantiating it with

an implementation of Alpha based on active disks.

FIGURE 9. Alpha with an active disk.
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This conveys an interesting tradeoff relating the power of

active disks with respect to commodity disks, and the infor-

mation that has a priori to be known on the number and the

identities of processes. Active disks are shared objects that

provide all the processes with the same operations. Although

they are more sophisticated than simple read/write operations,

their implementation does not require partitioning the disk

into one block per process. In contrast, a commodity disk

provides the processes with a weaker read/write semantics,

but each block of a commodity disk has to be associated with

a single process (the only one that can write it).

9. CONCLUSION

Understanding the basic principles underlying the design of

algorithms solving fundamental distributed computing prob-

lems, and finding the deep structure that unifies several algori-

thms solving similar problems, are challenging tasks at the

heart of computer science.

This paper focuses on the basic principles that underlie

the design of indulgent consensus algorithms. These algo-

rithms are particularly robust as they tolerate the failure of

the processes together with the ‘instability’ of the network.

They clearly decouple the safety and liveness of consensus

as advocated in Lamport’s seminal Paxos algorithm [12].

Rather than introducing new indulgent consensus algo-

rithms, each specific to a given model, the aim of this paper

was to exhibit a simple abstraction, namely Alpha, which

factors out the essence of the safety of indulgent consensus

algorithms. Such an approach has allowed a systematic and

incremental visit of several communication models, while

providing each of them with a simple implementation of

the proposed Alpha abstraction. More explicitly, starting from

the shared memory model, each implementation has been

obtained from the previous one by taking into account the

peculiarities of the new target communication medium

considered.
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